[go: up one dir, main page]

JPH01241040A - Information recording medium - Google Patents

Information recording medium

Info

Publication number
JPH01241040A
JPH01241040A JP63065664A JP6566488A JPH01241040A JP H01241040 A JPH01241040 A JP H01241040A JP 63065664 A JP63065664 A JP 63065664A JP 6566488 A JP6566488 A JP 6566488A JP H01241040 A JPH01241040 A JP H01241040A
Authority
JP
Japan
Prior art keywords
recording medium
substrate
information recording
recording layer
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63065664A
Other languages
Japanese (ja)
Inventor
Tadashi Kobayashi
忠 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63065664A priority Critical patent/JPH01241040A/en
Publication of JPH01241040A publication Critical patent/JPH01241040A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain the information recording medium having a large reproduction signal quantity by forming the recording layer of a thin film of an alloy consisting Ca, Ga and X (X is an element selected from Se, Te and Ge). CONSTITUTION:The information recording medium is constituted of a substrate 1 and by providing an inorg. protective layer 3, the optical recording layer 2, an inorg. protective layer 3, and an org. protective layer 4 successively on the substrate 1. Sputtering sources of Ca and Ga and Te or Se are provided in a vacuum vessel 11 and the inside of the vessel is evacuated down to 5X10<-6>Torr in case of forming the recording layer. Gaseous Ar is then introduced into the vessel to control the pressure over the entire part in the vessel to 5X10<-3>Torr. The disk-shaped polycarbonate substrate is used and while this substrate is rotated at 60rpm, the sputtering rates of the respective elements are detected by a monitor and the electric power to be thrown to the respective sputtering sources is controlled to deposit the respective elements until the entire part attains 1,000Angstrom film thickness. The recording layer is thus formed. The information recording medium which is stable in the recording state, is increased in the reflectivity change arising from a phase transition and has the large reproduction signal quantity is thereby obtd.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は記録用の光ビームの照射により記録層の原子配
列の変化に伴う光学的特性の変化を生じさせて、情報の
記録、消去を繰返し行い、光学的特性の変化を検出して
情報を再生する情報記録媒体に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention produces information by causing a change in optical properties due to a change in the atomic arrangement of the recording layer by irradiation with a recording light beam. The present invention relates to an information recording medium that reproduces information by repeatedly recording and erasing information and detecting changes in optical characteristics.

(従来の技術) 従来広く開発がなされている記録、消去が可能な情報記
録媒体には光ビームの照射による原子配列の変化を利用
したものがある。
(Prior Art) Some recordable and erasable information recording media, which have been widely developed in the past, utilize changes in atomic arrangement caused by irradiation with a light beam.

このような情報記録媒体に情報を記録する際には、まず
情報記録層に光ビームを全面照射して加熱し、記録層を
結晶性の高い状態(以下結晶状態という)にする。次に
短い強いパルス光を照射し、記録層を加熱急冷する。す
るとパルス照射部の結晶性が低下した状態(以下非晶質
状態という)となり、情報が記録される。上記の結晶状
態と非晶質状態では、原子配列が異なることから、光学
的特性(反射率、透過率)が変化するため、この光学的
特性の変化を検出して情報を再生することができる。書
込まれた情報を消去するには、長い弱いパルス光を照射
して加熱徐冷し、原子配列を変化させ、再び結晶状態と
する。
When recording information on such an information recording medium, the information recording layer is first irradiated with a light beam over the entire surface and heated to bring the recording layer into a highly crystalline state (hereinafter referred to as a crystalline state). Next, a short, strong pulse of light is irradiated to heat and rapidly cool the recording layer. Then, the crystallinity of the pulse irradiated area becomes reduced (hereinafter referred to as an amorphous state), and information is recorded. The optical properties (reflectance, transmittance) change between the crystalline state and the amorphous state because the atomic arrangement is different, so information can be reproduced by detecting changes in these optical properties. . To erase the written information, the material is heated and slowly cooled by irradiation with long, weak pulsed light to change the atomic arrangement and return to a crystalline state.

このように光ビーにの照射条件によって原子配列を変化
させ、情報を記録、消去する記録層の材料としては、反
射率変化の特に大きなTe、Se。
Te and Se, which have a particularly large change in reflectance, are used as materials for the recording layer that records and erases information by changing the atomic arrangement depending on the irradiation conditions with the light beam.

Geなどカルコゲナイド系元素を主成分とする半導体非
晶質が提案されている。しかし半導体非晶質以外にもC
aとGaとの2元合金においてはCaの含有率が30原
子%以上80%以下の範囲で上記と同様に光ビームの照
射条件の違いにより、金属結晶と金属非晶質とに繰返し
変化しうろことが見い出された。ところがこれらの金属
合金においては相変化に伴う光学的特性の変化が記録材
料として使用できるほど充分大きくない。又、結晶化温
度が低く室温での非晶質状態の安定性が悪いなどの欠点
があり、情報記録媒体として使うことができない。
Semiconductor amorphous materials containing chalcogenide-based elements such as Ge as a main component have been proposed. However, in addition to semiconductor amorphous materials, C
In a binary alloy of a and Ga, when the Ca content is in the range of 30 atomic % to 80 %, the alloy repeatedly changes into metallic crystal and metallic amorphous due to the difference in the light beam irradiation conditions as described above. Scales were discovered. However, in these metal alloys, changes in optical properties due to phase change are not large enough to allow them to be used as recording materials. Furthermore, it has drawbacks such as low crystallization temperature and poor stability of the amorphous state at room temperature, and cannot be used as an information recording medium.

(発明が解決しようとする課題) 以上詳述したようにCaとGa  (30原子%≦Ca
≦80原子%)、との2元合金では、結晶化温度が低く
室温における非晶質状態の安定性が悪く、また、相変化
に伴う光学的特性の変化が小さいため、情報記録媒体の
材料としては使用できなかっt二。
(Problem to be solved by the invention) As detailed above, Ca and Ga (30 atomic%≦Ca
≦80 at. It cannot be used as t2.

上記課題を解決するために、本発明ではCaとGaとの
2元合金にカルコゲナイド元素Te、Se、Geを加え
ることにより、結晶化温度を高めて室温における非晶質
状態を安定させ、又、相変化に伴う光学的特性の変化量
を増大させ、情報記録媒体として使いうる材料を提供す
ることを目的とする。
In order to solve the above problems, the present invention adds chalcogenide elements Te, Se, and Ge to a binary alloy of Ca and Ga to increase the crystallization temperature and stabilize the amorphous state at room temperature. The purpose of this invention is to provide a material that increases the amount of change in optical properties due to phase change and can be used as an information recording medium.

[発明の構成コ (課題を解決するための手段と作用) 本発明の情報記録媒体は例えば第1図に示されるような
断面を有する。第1図において情報記録媒体は基板1と
この基板1上に無機物保護層3゜光記録層2.無機物保
護層3.有機物保護層4を順次備えて構成されている。
[Configuration of the Invention (Means and Effects for Solving the Problems) The information recording medium of the present invention has a cross section as shown in FIG. 1, for example. In FIG. 1, the information recording medium includes a substrate 1, an inorganic protective layer 3, an optical recording layer 2. Inorganic protective layer 3. It is constructed by sequentially comprising organic protection layers 4.

基板1はガラスやプラスチック材料(例えばポリオレフ
ィン、エポキシ、ポリカーボネイト、ポリメシルメタク
リレート等)からなる。
The substrate 1 is made of glass or plastic material (eg, polyolefin, epoxy, polycarbonate, polymethacrylate, etc.).

無機物保護層3は光記録層2の経時変化を防ぐために光
記録層2の両側を挾んだ構造となっており、金属又は半
金属の酸化物、弗化物、硫化物。
The inorganic protective layer 3 has a structure sandwiching both sides of the optical recording layer 2 in order to prevent the optical recording layer 2 from deteriorating over time, and is made of a metal or metalloid oxide, fluoride, or sulfide.

窒化物例えばSi 02+ A1203.Zn Sなど
の誘電体からなる。この無機物保護層は反射光を増幅さ
せる機能も有する。有機物保護層4は、紫外線硬化樹脂
からなり、この情報記録媒体を取扱う場合の表面での傷
や埃を防止するために配設されている。
Nitride such as Si 02+ A1203. It is made of dielectric material such as ZnS. This inorganic protective layer also has the function of amplifying reflected light. The organic protection layer 4 is made of an ultraviolet curing resin and is provided to prevent scratches and dust on the surface when handling this information recording medium.

このような組成の記録層は多元同時スパッタ法により成
膜する。すなわち、使用されるスパッタ装置は第2図及
び第3図に示す通りである。第2図中11は真空容器で
あり、ガス排気ボート12を介して排気装置13に接続
され、ガス導入ボート14を介してアルゴンガスボンベ
15に接続されている。真空容器11内の上部には、基
板16が支持装置17に水平に支架され支持装置171
;より回転駆動できる。又、真空容器11の底部には、
所定元素で形成されたスパッタ源18.19゜20が設
けられ、各スパッタ源上部にはモニタ装置21,22.
23が設けられている。
A recording layer having such a composition is formed by a multi-source simultaneous sputtering method. That is, the sputtering equipment used is as shown in FIGS. 2 and 3. Reference numeral 11 in FIG. 2 is a vacuum container, which is connected to an exhaust device 13 via a gas exhaust boat 12 and to an argon gas cylinder 15 via a gas introduction boat 14. At the upper part of the vacuum container 11, the substrate 16 is supported horizontally on a support device 17.
;Can be driven more rotationally. Moreover, at the bottom of the vacuum container 11,
Sputter sources 18, 19, 20 made of a predetermined element are provided, and monitor devices 21, 22, .
23 are provided.

この装置により、記録層の成膜を行なう場合には、まず
排気装置13により、真空容器11内を1O−6Tor
r台の真空度まで排気する。次いでガス導入ボート14
よりArガスを導入し排気装置13の排気量を調節して
真空容器11内を所定の減圧下に保持する。そして基板
16を回転させつつスパッタ源18,19.20に所定
時間電力を印加する。これにより基板16に記録層が形
成される。
When forming a recording layer using this apparatus, first, the inside of the vacuum chamber 11 is heated to 1O-6 Torr using the exhaust device 13.
Evacuate to a vacuum level of R. Next, the gas introduction boat 14
Ar gas is then introduced and the exhaust amount of the exhaust device 13 is adjusted to maintain the inside of the vacuum container 11 at a predetermined reduced pressure. Then, while rotating the substrate 16, power is applied to the sputtering sources 18, 19, and 20 for a predetermined period of time. As a result, a recording layer is formed on the substrate 16.

(実施例)・ 上記のような構造の情報記録媒体の実施例を具体的に以
下に述べる。
(Example) An example of the information recording medium having the above structure will be specifically described below.

一実施例1− 第2図の真空容器11内にCaとGaとTeまたはSe
のスパッタ源を設け、容器内を5X10−’T orr
まで排気した。次にArガスを導入して5x 1o−”
r orrに全体の圧力を調節した。基板として充分に
洗浄した外径130nm 、板厚1.2Hの円板状ポリ
カーボネート基板を用い、この基板を60rpmで回転
しつつモニタにより各元素のスパッタ量を検知して各ス
パッタ源に投入する電力を制御し、全体の膜厚1000
人になるまで各元素を堆積させて記録層を成膜した。C
a4oGa6oに対してT e sSeの含有量をしだ
いに増加させ高感度DSC(示差走査熱量計)で昇温速
度lO℃/■で結晶化温度を測定しTe、Seの含有量
と結晶化温度の関係を調べた。結果は第4図に示す通り
である。
Embodiment 1 - Ca, Ga, Te or Se are contained in the vacuum vessel 11 shown in FIG.
A sputtering source of
Exhausted until. Next, introduce Ar gas to 5x 1o-”
The total pressure was adjusted to r orr. Using a thoroughly cleaned disc-shaped polycarbonate substrate with an outer diameter of 130 nm and a plate thickness of 1.2H as the substrate, the amount of sputtering of each element was detected by a monitor while rotating this substrate at 60 rpm, and the power input to each sputtering source was determined. control, and the total film thickness is 1000
The recording layer was formed by depositing each element until it became a human. C
The content of Te sSe was gradually increased for a4oGa6o, and the crystallization temperature was measured using a high-sensitivity DSC (differential scanning calorimeter) at a heating rate of 10°C/■. I investigated the relationship. The results are shown in FIG.

CaとGaの組成比に関係なく結晶化温度が充分高かっ
た。また、Geでも同様の効果が得られた。
The crystallization temperature was sufficiently high regardless of the composition ratio of Ca and Ga. Similar effects were also obtained with Ge.

従ってCa、Ga、X (X−Te、Se、Ge)から
なる情報記録媒体はCaとGaとの組成比に関係なく結
晶化温度が十分高く、非晶質状態が安定であることがわ
かった。
Therefore, it was found that an information recording medium composed of Ca, Ga, and X (X-Te, Se, Ge) has a sufficiently high crystallization temperature and a stable amorphous state regardless of the composition ratio of Ca and Ga. .

一実施例2一 実施例1と同様の方法でCaとGaとX (X−T e
、 S e)の3元記録層を多元同時スパッタ法で成膜
し波長790r+mの光を照射してその表面反射率を測
定した。結果は第4図に示す通りである。カルコゲナイ
ド元素Te、Seの含有量が増すと反射率の変化量も増
大することがわかる。CaとGaとの組成比を変えても
同様の効果が得られた。更にTe、Seの代わりにGe
を加えた場合にも同様の効果が得られた。
Example 2 Ca, Ga, and X (X-T e
, Se) was formed by a multi-component simultaneous sputtering method, and its surface reflectance was measured by irradiating it with light having a wavelength of 790 r+m. The results are shown in FIG. It can be seen that as the content of the chalcogenide elements Te and Se increases, the amount of change in reflectance also increases. Similar effects were obtained even when the composition ratio of Ca and Ga was changed. Furthermore, Ge instead of Te and Se
A similar effect was obtained when adding .

以上の実験結果によりCaとGaとの2元合金にカルコ
ゲナイド元素を加えることにより相変化に伴う反射率の
変化量が増大し、ひいては再生信号量も増大することが
わかった。
The above experimental results revealed that by adding a chalcogenide element to a binary alloy of Ca and Ga, the amount of change in reflectance due to phase change increases, and the amount of reproduced signal also increases.

一実施例3− ここでは成膜された合金薄膜の非晶質状態の安全性を調
べた。
Example 3 - Here, the safety of the amorphous state of the formed alloy thin film was investigated.

ガラス基板上にS i O2100nIIl、光記録材
料100nIIl、Si O□1100n 、 UV硬
化樹脂層を前記のスパッタ法により形成した。成膜した
記録層の組成は(Ca 4oGa 60) 9oTe 
IO+ (Ca 5oGa 50)goTe 10. 
 (Ca 70Ga30) 9oTe 10である。こ
の記録層にまず光ビームを全面照射し、次いで短い強い
パルス光を照射し、X線構造回折により非晶質となって
いることを確かめた。
On a glass substrate, 100nIIl of SiO2, 100nIIl of optical recording material, 1100n of SiO□, and a UV curable resin layer were formed by the sputtering method described above. The composition of the formed recording layer is (Ca 4oGa 60) 9oTe
IO+ (Ca 5oGa 50)goTe 10.
(Ca 70Ga30) 9oTe 10. This recording layer was first irradiated with a light beam over its entire surface, and then with short, intense pulsed light, and it was confirmed by X-ray structural diffraction that it was amorphous.

つぎにこの試料を45℃、70%RHの環境に供し反射
率の変化を測定した。基板側での表面反射率の初期値を
Ro、経時での反射率の値をRとし、経時々間に対して
R/ Roの値をプロットした(第6図) o  (C
a 4oGa 6G) 、oTe Ion  (Ca 
5oGa so) 9oTe i。、(Ga toGa
 30) 、oTeloいずれの組成の記録層について
も3力月経過しても反射率にはほとんど変化がないこと
がわかつた。又Teの代わりにSe、Geを加えた場合
にも同様の効果が得られる。
Next, this sample was subjected to an environment of 45° C. and 70% RH, and changes in reflectance were measured. The initial value of the surface reflectance on the substrate side is Ro, and the reflectance value over time is R, and the value of R/Ro is plotted against time (Figure 6) o (C
a 4oGa 6G), oTe Ion (Ca
5oGa so) 9oTe i. , (Ga to Ga
30) It was found that there was almost no change in the reflectance of the recording layer of any of the compositions of oTelo even after 3 months. Similar effects can also be obtained when Se or Ge is added instead of Te.

以上の実験結果よりCaとGaとからなる2元合金に、
Te、Se、Ge等のカルコゲナイド元素を加えた材料
は経時反射率が安定であり情報記録媒体として使いうる
材料であることがわかった。
From the above experimental results, a binary alloy consisting of Ca and Ga,
It has been found that materials to which chalcogenide elements such as Te, Se, and Ge are added have stable reflectance over time and can be used as information recording media.

一実施例4− 本実施例では、成膜された記録層を有する情報記録媒体
を第7図に示すような実用的な試験装置に実装して再生
信号量を測定した。
Example 4 In this example, an information recording medium having a film-formed recording layer was mounted on a practical test device as shown in FIG. 7, and the amount of reproduced signal was measured.

半導体レーザー源34により出た光はコリメータレンズ
35を通過して平行光となる。続いて光はビームスプリ
ッタ36を通過してλ/4板3板金7過し、対物レンズ
38により試料31上に集光される。試料31から反射
した光はλ/4板3板金7過し、ビームスプリッタ36
で反射される。
The light emitted by the semiconductor laser source 34 passes through a collimator lens 35 and becomes parallel light. Subsequently, the light passes through the beam splitter 36, passes through the λ/4 plate 3 and the metal plate 7, and is focused onto the sample 31 by the objective lens 38. The light reflected from the sample 31 passes through the λ/4 plate 3 and the beam splitter 36.
reflected.

この反射された光は検出レンズ39により集光され、受
光器40に入って検出信号となる。
This reflected light is collected by the detection lens 39, enters the light receiver 40, and becomes a detection signal.

更に検出信号は、サーボ系42を通って電流に変えられ
、駆動コイル41に流れこの電流により対物レンズが駆
動され、試料31上の情報を記録した溝(案内溝)上に
正確に集光される。
Further, the detection signal is converted into an electric current through a servo system 42, which flows through a drive coil 41, which drives an objective lens to accurately focus the light onto the groove (guide groove) on the sample 31 in which information is recorded. Ru.

実施例1に示した方法を用い、Ca4゜Ga6oに対し
てTeの含有量をふった記録層を作成し、この記録層の
両側を5IO2(膜厚1000A)で挟んだ媒体試料を
作成し、前述の装置に実装して再生信号量を測定した。
Using the method shown in Example 1, a recording layer was created in which the content of Te was increased relative to Ca4°Ga6o, and a medium sample was created in which both sides of this recording layer were sandwiched between 5IO2 (film thickness 1000A). The amount of reproduced signal was measured by installing it in the above-mentioned device.

その結果Teの含有量が増すごとに再生信号量も増える
ことがわかった。
As a result, it was found that as the Te content increased, the amount of reproduced signals also increased.

また、CaとGaの組成比を変えても同様の効果が得ら
れた。更に、Teのかわりに5eSGeを加えた場合に
も同様の効果が得られた。
Furthermore, similar effects were obtained even when the composition ratio of Ca and Ga was changed. Furthermore, similar effects were obtained when 5eSGe was added instead of Te.

以上の実験結果から、CaとGaの2元合金にカルコゲ
ナイド元素のTe、Se、Geを加えるとより再生信号
量の大きな情報記録媒体が得られることがわかった。
From the above experimental results, it has been found that by adding chalcogenide elements Te, Se, and Ge to a binary alloy of Ca and Ga, an information recording medium with a larger amount of reproduced signal can be obtained.

[発明の効果] 以上詳述したように結晶状態と非晶質状態との相変化を
可逆的に起こすCaとGaとの2元合金に更にカルコゲ
ナイド元素Te、Se、Geを加えると結晶化温度が上
昇し、記録状態が安定で相変化に伴なう反射率変化が増
大し、再生信号量の大きな情報記録媒体が得られる。
[Effect of the invention] As detailed above, when chalcogenide elements Te, Se, and Ge are further added to a binary alloy of Ca and Ga that causes a reversible phase change between a crystalline state and an amorphous state, the crystallization temperature increases. increases, the recording state is stable, the change in reflectance due to phase change increases, and an information recording medium with a large amount of reproduced signal can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の情報記録媒体の断面構造図、第2図
は、スパッタ装置の側面図、 第3図は、スパッタ装置の底面図、 第4図は、カルコゲナイド元素の添加量と結晶化温度の
相関を示すグラフ、 第5図は、カルコゲナイド元素の添加量と反射率変化量
の相関を示すグラフ、 第6図は、Ca、Ga、Teの3元記録層の経時反射率
変化量の相関を示すグラフである。 第7図は、実用的な試験装置の概略図である。 1・・・基板 2・・・記録層 3・・・無機物保護層 4・・・有機物保護層
FIG. 1 is a cross-sectional structural diagram of the information recording medium of the present invention, FIG. 2 is a side view of the sputtering device, FIG. 3 is a bottom view of the sputtering device, and FIG. 4 is the amount of chalcogenide added and the crystallization. Figure 5 is a graph showing the correlation between the amount of chalcogenide added and the amount of change in reflectance; Figure 6 is the amount of change in reflectance over time of a ternary recording layer of Ca, Ga, and Te. It is a graph showing the correlation. FIG. 7 is a schematic diagram of a practical test apparatus. 1...Substrate 2...Recording layer 3...Inorganic protection layer 4...Organic protection layer

Claims (1)

【特許請求の範囲】[Claims] 光ビームの照射により原子配列の変化を生じさせて情報
を記録しうる記録層がCaとGaとX(XはSe、Te
、Geの中から選ばれた元素)とを含有する合金薄膜か
らなることを特徴とする情報記録媒体。
The recording layer that can record information by causing a change in atomic arrangement by irradiation with a light beam is composed of Ca, Ga, and X (X is Se, Te
, Ge).
JP63065664A 1988-03-22 1988-03-22 Information recording medium Pending JPH01241040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63065664A JPH01241040A (en) 1988-03-22 1988-03-22 Information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63065664A JPH01241040A (en) 1988-03-22 1988-03-22 Information recording medium

Publications (1)

Publication Number Publication Date
JPH01241040A true JPH01241040A (en) 1989-09-26

Family

ID=13293486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63065664A Pending JPH01241040A (en) 1988-03-22 1988-03-22 Information recording medium

Country Status (1)

Country Link
JP (1) JPH01241040A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790592B2 (en) * 2000-09-14 2004-09-14 Ricoh Company, Ltd. Phase-change optical information recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790592B2 (en) * 2000-09-14 2004-09-14 Ricoh Company, Ltd. Phase-change optical information recording medium

Similar Documents

Publication Publication Date Title
JPS6034897A (en) Rewritable optical recording medium
TW200419178A (en) Optical switch
US7459194B2 (en) Optical information recording medium, manufacturing method of the same and optical information recording and reproducing apparatus
US7485356B2 (en) Optical recording medium
JPH01241040A (en) Information recording medium
JP2755593B2 (en) Information recording medium
JPH01241035A (en) Information recording medium
JPH03197173A (en) Data recording medium
JPH01241037A (en) Information recording medium
JPH01241038A (en) Information recording medium
JPH01241036A (en) Information recording medium
JPH01241039A (en) Information recording medium
JP3151464B2 (en) Optical recording medium and recording method
JPH01241034A (en) Information recording medium
JP2918234B2 (en) Information recording medium
JPH01227235A (en) Information recording medium
JPH01227237A (en) Information recording medium
JPH01224938A (en) Information recording medium
JPH01227236A (en) Information recording medium
JPH03197174A (en) Data recording medium
JPH01251335A (en) Information recording medium
JPH01251340A (en) Information recording medium
JPS63167440A (en) How to record or record and delete information
JPH01251341A (en) Information recording medium
JPH03197175A (en) Data recording medium