JPH01239766A - Manufacture of cadmium negative plate - Google Patents
Manufacture of cadmium negative plateInfo
- Publication number
- JPH01239766A JPH01239766A JP63066974A JP6697488A JPH01239766A JP H01239766 A JPH01239766 A JP H01239766A JP 63066974 A JP63066974 A JP 63066974A JP 6697488 A JP6697488 A JP 6697488A JP H01239766 A JPH01239766 A JP H01239766A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- cadmium
- paste
- active material
- filling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/26—Processes of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はアルカリ蓄電池に使用されるペースト式のカド
ミウム負極板の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a paste-type cadmium negative electrode plate used in an alkaline storage battery.
[従来の技術]
アルカリ蓄電池の1種である密閉形ニッケル・カドミウ
ム蓄電池は通常、カドミウム負極板の容量をニッケル正
極板のそれよりも大きくすると共に、各極板の一部が電
解液から露出する程度に電解液が各極板に含浸されて構
成されている。これは蓄電池への充電末期に正極板側か
らのみ酸素ガスを発生させ、この発生した酸素ガスを負
極板の金属カドミウムによって吸収し、電池内圧の増加
を抑制するためである。このような密閉形ニッケル・カ
ドミウム蓄電池のカドミウム負極板の製造は工程が比較
的簡単なペースト式によって行われている。従来のペー
スト式製造方法は、酸化カドミウム粉末や水酸化カドミ
ウム粉末などの活物質をメチルセルロースやCMC(カ
ルボキシメチルセルロース)などの結着材と混練してペ
ースト状となし、このペーストをニッケルメッキされた
多孔鋼板などの導電性芯体に塗着し、乾燥の後、アルカ
リ溶液中で化成処理を施すことにより予備充電mを付与
している。[Prior Art] A sealed nickel-cadmium storage battery, which is a type of alkaline storage battery, usually has a cadmium negative plate with a larger capacity than a nickel positive plate, and a portion of each plate is exposed from the electrolyte. Each electrode plate is impregnated with an electrolytic solution to a certain extent. This is because oxygen gas is generated only from the positive electrode plate side at the end of charging the storage battery, and this generated oxygen gas is absorbed by the metal cadmium of the negative electrode plate, thereby suppressing an increase in battery internal pressure. The cadmium negative electrode plate of such a sealed nickel-cadmium storage battery is manufactured by a paste method, which is a relatively simple process. The conventional paste manufacturing method involves kneading active materials such as cadmium oxide powder or cadmium hydroxide powder with a binder such as methylcellulose or CMC (carboxymethylcellulose) to form a paste, and then applying this paste to a nickel-plated porous It is applied to a conductive core such as a steel plate, dried, and then subjected to a chemical conversion treatment in an alkaline solution to impart a precharge m.
[発明が解決しようとする課題]
しかしながら、従来のペースト式で得られるカドミウム
負極板は焼結式による負極板のような密な導電性マトリ
クスが少ないため、充電時における負極板表面での金属
カドミウム化の進行が遅く、正極板から発生した酸素ガ
スのガス吸収能力が小さく、過充電によって電池内圧が
上昇する。[Problems to be Solved by the Invention] However, since the cadmium negative electrode plate obtained by the conventional paste method does not have a dense conductive matrix like the negative electrode plate obtained by the sintering method, metal cadmium on the surface of the negative electrode plate during charging. The progress of hydrogenation is slow, the ability to absorb oxygen gas generated from the positive electrode plate is small, and the internal pressure of the battery increases due to overcharging.
このため、例えば0.5C以上の大電流による充電がで
きないものとなっている。For this reason, charging with a large current of 0.5C or more is not possible, for example.
本発明は上記事情を考慮してなされたものであり、酸素
ガス吸収能力を増大させて大電流による充電に適したカ
ドミウム負極板の製造方法を提供することを目的とする
。The present invention has been made in consideration of the above circumstances, and it is an object of the present invention to provide a method for manufacturing a cadmium negative electrode plate that increases the oxygen gas absorption capacity and is suitable for charging with a large current.
[課題を解決するための手段]
上記目的を達成するため本発明に係る製造方法は、酸化
カドミウム又は水酸化カドミウムが混練されたペースト
を連続した三次元空孔を有する金属構造板に充填し乾燥
して充填板を形成する工程と、前記充填板の表面が露出
するようにペーストを除去する工程と、前記充填板を板
厚方向に加圧する工程と、加圧後の充填板をアルカリ電
解中で陰電解して予備充電量を付与する工程と、前記充
填板をフッ素樹脂分散液に浸漬してフッ素樹脂皮膜を形
成する工程とを備えていることを特徴とする。[Means for Solving the Problems] In order to achieve the above object, the manufacturing method according to the present invention involves filling a metal structural plate having continuous three-dimensional pores with a paste in which cadmium oxide or cadmium hydroxide is kneaded, and drying the paste. a step of removing the paste so that the surface of the filling plate is exposed; a step of pressurizing the filling plate in the thickness direction; and a step of subjecting the pressurized filling plate to alkaline electrolysis. The present invention is characterized in that it includes a step of applying a preliminary charge amount by negative electrolysis, and a step of immersing the filling plate in a fluororesin dispersion to form a fluororesin film.
連続した三次元空孔を有する金属構造板は、いわゆるス
ポンジ状空孔な有する金属板であり、例えば発泡金属薄
板あるいは金属短繊維の集合体からなるマット状薄板な
どを使用することができる。この金属構造板は気孔率が
大きく、活物質ペーストの担持量が増大するので金属化
されるカドミウム量が大きく、酸素ガス吸収能力が増大
する。このような金属構造板に充填される活物質ペース
トは酸化カドミウム、水酸化カドミウムの粉末と結着剤
とを混練することにより調整される。The metal structure plate having continuous three-dimensional pores is a metal plate having so-called sponge-like pores, and for example, a foamed metal thin plate or a mat-like thin plate made of an aggregate of short metal fibers can be used. This metal structure plate has a large porosity and the amount of active material paste supported increases, so the amount of cadmium metallized is large and the oxygen gas absorption capacity is increased. The active material paste filled in such a metal structural plate is prepared by kneading cadmium oxide or cadmium hydroxide powder and a binder.
結着剤としてはポリビニルアルコール(PVA)、メチ
ルセルロース、カルボキシメチルセルロース(CMC)
などの樹脂あるいはこれらの樹脂に繊維が混合されたも
のが選択される。酸化カドミウム等と結着剤との混練に
よってペーストが生成され、このペーストを前記金属構
造板に練り込みあるいは金属構造板をペースト中に浸漬
して、乾燥することで充填板が形成される。As a binder, polyvinyl alcohol (PVA), methylcellulose, carboxymethylcellulose (CMC)
These resins or mixtures of these resins with fibers are selected. A paste is produced by kneading cadmium oxide or the like with a binder, and the filled plate is formed by kneading this paste into the metal structural plate or by immersing the metal structural plate in the paste and drying it.
次に、この充填板の表裏両面が露出するようにペースト
を除去し、ペースト除去後に充填板を板厚方向に加圧す
る。充填板表裏面のペーストの除去は、これに続く加圧
操作における圧縮が充填板の表層部分のみに作用するよ
うに行われるものである。すなわち、表裏面部分のペー
ストを除去しない場合には加圧力が充填板全体に均一に
加わって、充填板全体が厚さ方向に均一に圧縮されるの
対し、表裏面のペーストを除去すると、ペーストが担持
されている充填板内部に比へ充填板表層部分の機械的強
度が小さくなり、これを加圧すると充填板の表層部分の
みが密となるように圧縮されるからである。このように
密となった表層部分は充填板内部に比べて通電時の電流
が流れ易いため、充電時には表層部分から充電される。Next, the paste is removed so that both the front and back sides of the filling plate are exposed, and after the paste is removed, the filling plate is pressurized in the thickness direction. Removal of the paste on the front and back surfaces of the filling plate is performed so that compression in the subsequent pressurizing operation acts only on the surface layer portion of the filling plate. In other words, if the paste on the front and back surfaces is not removed, the pressure will be applied uniformly to the entire filling plate, and the entire filling plate will be compressed uniformly in the thickness direction, whereas if the paste on the front and back surfaces is removed, the paste will This is because the mechanical strength of the surface layer of the filling plate becomes smaller compared to the inside of the filling plate in which the filling plate is supported, and when this is pressurized, only the surface layer of the filling plate is compressed so as to become dense. Since current flows through the dense surface layer more easily than inside the filling plate, the surface layer is charged from the surface layer during charging.
従って、表層部分における活物質の金属カドミウム化が
迅速且つ円滑に行われ、酸素ガス吸収能力が増大する。Therefore, the active material in the surface layer is rapidly and smoothly converted into metal cadmium, and the oxygen gas absorption capacity is increased.
なお、充填板表裏面の活物質ペーストの除去はブラシ、
ヘラ、ローラなどを使用して掻き取ることにより容易に
行うことができる。又、活物質ペースト除去後の加圧は
充填板の表層部分のみが緻密構造となるような圧力で行
オ)れる。Note that the active material paste on the front and back surfaces of the filling plate can be removed using a brush,
This can be easily done by scraping off using a spatula, roller, etc. Further, the pressure after the active material paste is removed is applied at such a pressure that only the surface layer portion of the filling plate has a dense structure.
このような加圧の後、充填板を化成して予備充電量を付
与する。化成は上記加圧後の充填板を陰極としてアルカ
リ電解液中で除電解することにより行う。アルカリ電解
液としては水酸化カリウム溶液、水酸化ナトリウム溶液
などを使用することができる。この化成によって酸化カ
ドミウムもしくは水酸化カドミウムが活性化されその一
部を金属カドミウムとして残し、予備充電量が付与され
る。この場合、予備充電量は負極板容量に対して所定パ
ーセントとなるように行われる。化成によって生じた金
属カドミウムは蓄電池の充電時に発生する酸素ガスを吸
収するものである。そして、この化成の後、充填板を水
洗し、乾燥する。After such pressurization, the filling plate is chemically formed to provide a precharge amount. Chemical formation is performed by removing electrolysis in an alkaline electrolyte using the pressurized packed plate as a cathode. Potassium hydroxide solution, sodium hydroxide solution, etc. can be used as the alkaline electrolyte. This chemical conversion activates cadmium oxide or cadmium hydroxide, leaving a part of it as metallic cadmium, and providing a pre-charge amount. In this case, the amount of preliminary charging is performed to be a predetermined percentage of the negative electrode plate capacity. The metal cadmium produced through chemical formation absorbs oxygen gas generated during charging of storage batteries. After this chemical formation, the filling plate is washed with water and dried.
フッ素樹脂皮膜形成工程では充填板をフッ素樹脂分散液
に浸漬し、その後、乾燥することで行う。フッ素樹脂と
しては、例えばポリテトロフルオロエチレン(PTFE
)(商品名テフロン)を使用することができる。この場
合、かかるフッ素樹脂分散液への浸漬は前述した化成処
理直後でもよく、化成後の水洗を経た後でもよく、水洗
の後の乾燥を経た後でもよく、さらには化成前におりる
充填板の加圧の後でもよい。フッ素樹脂分散液の浸漬お
よび乾燥により充填板表面はフッ素樹脂皮膜で覆われる
ので蓄電池の電池缶内の電解液との疎液性が得られ、三
相界面の形成が容易となる。すなわち、蓄電池の充電に
よって発生する酸素ガスは負極板の金属カドミウムによ
って吸収されるが、この吸収反応は同相である負極板の
金属カドミウムと、液相である極板に含浸された電解液
と、気相である酸素ガスとからなる三相界面で行われる
。本発明ではフッ素樹脂被膜によって負極板の電解液に
対する疎液性が増大して、電解液が分散し易いため、三
相界面が確実に得られ、これにより、酸素ガスの吸収能
が大幅に向上するものである。このため大量の酸素ガス
が発生しても電池缶の内圧の増大が抑制でき、大電流に
よる充電が可能となり、これにより蓄電池の急速充電能
力を高めることが可能となる。The fluororesin film forming step is carried out by immersing the filling plate in a fluororesin dispersion and then drying it. As the fluororesin, for example, polytetrofluoroethylene (PTFE) is used.
) (trade name: Teflon) can be used. In this case, the immersion in the fluororesin dispersion may be performed immediately after the above-mentioned chemical conversion treatment, after washing with water after chemical conversion, after drying after washing with water, or even after the filling plate is lowered before chemical conversion. This may be done after applying pressure. By dipping and drying the fluororesin dispersion, the surface of the filling plate is covered with a fluororesin film, which provides lyophobicity with the electrolyte in the battery can of the storage battery, facilitating the formation of a three-phase interface. In other words, oxygen gas generated by charging the storage battery is absorbed by the metal cadmium of the negative electrode plate, but this absorption reaction occurs between the metal cadmium of the negative electrode plate, which is in the same phase, and the electrolytic solution impregnated in the electrode plate, which is in the liquid phase. It is carried out at a three-phase interface consisting of oxygen gas, which is a gas phase. In the present invention, the fluororesin coating increases the lyophobicity of the negative electrode plate to the electrolyte, making it easier for the electrolyte to disperse, thereby ensuring a three-phase interface, which significantly improves oxygen gas absorption ability. It is something to do. Therefore, even if a large amount of oxygen gas is generated, an increase in the internal pressure of the battery can can be suppressed, making it possible to charge with a large current, thereby increasing the rapid charging ability of the storage battery.
[作 用]
本発明は以上の通りに構成されるので、カドミウム負極
板は酸素ガス吸収能力が増大するようになっている。[Function] Since the present invention is configured as described above, the oxygen gas absorption capacity of the cadmium negative electrode plate is increased.
[実施例] 以下、本発明を実施例によりさらに具体的に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.
ポリビニルアルコールのエヂレングリコール溶液に酸化
カドミウムを粉末混練してペーストを調整した。次に、
このペーストを平均孔径200μ、厚さ0.7mmの金
属繊維マットからなる金属構造板に練り込んで充填し、
乾燥した。そして、この充填板の表裏面をナイロンブラ
シで掻き落し、表面を露出させた。その後、充填板を厚
さ0.55mmとなるように加圧した。加圧の後、比重
1.20を有する濃度の水酸化カリウム水溶液中で陰電
解を行って金属カドミウムを付与する化成を行った。こ
の後、充填板を水洗し、PTFEの5%水分散液中に3
分間浸漬し、その後乾燥して本発明のカドミウム負極板
を得た。次に、この負極板を所定寸法に切断し、焼結式
で得られたニッケル正極板と組み合わせて、JIS C
8705KR−AA500mAhに相当する密閉形アル
カリ蓄電池を製造し、電池特性を検査した。検査は充電
レートに対する過充電時の電池缶の内圧ピークを測定す
ることにより行い、結果を第1図に示す。第1図中、特
性曲線aは上記方法により得られた本発明品を示す、特
性曲線すはPTFE分散液への浸漬を行わないで他は同
様な処理を行ったカドミウム負極板、特性曲線Cは活物
質ペーストの除去および1)TFE分散液への浸漬を行
わないで他は同様な処理を行ったカドミウム負極板をそ
れぞれ使用した蓄電池を示す0図示の通り本発明による
カドミウム負極板を使用した蓄電池は内圧の上昇が抑制
されており、酸素ガス吸収能力が増大していることが判
る。これは充電時に掻板表面に金属カドミウムが分布し
易いと共に、フッ素樹脂皮膜による三相界面の形成が良
好のため、酸素ガス吸収能力が増大したためと思われる
。A paste was prepared by kneading cadmium oxide powder into an ethylene glycol solution of polyvinyl alcohol. next,
This paste was kneaded and filled into a metal structural plate made of metal fiber mat with an average pore diameter of 200 μm and a thickness of 0.7 mm.
Dry. Then, the front and back surfaces of this filling plate were scraped off with a nylon brush to expose the surface. Thereafter, the filling plate was pressurized to a thickness of 0.55 mm. After pressurization, negative electrolysis was performed in an aqueous potassium hydroxide solution having a specific gravity of 1.20 to perform chemical conversion to impart metal cadmium. After this, the filling plate was washed with water and 3%
It was immersed for a minute and then dried to obtain a cadmium negative electrode plate of the present invention. Next, this negative electrode plate is cut to a predetermined size and combined with a nickel positive electrode plate obtained by sintering.
A sealed alkaline storage battery equivalent to 8705KR-AA 500mAh was manufactured and the battery characteristics were examined. The test was carried out by measuring the internal pressure peak of the battery can during overcharging with respect to the charging rate, and the results are shown in FIG. In FIG. 1, the characteristic curve a shows the product of the present invention obtained by the above method. 1) shows a storage battery using a cadmium negative electrode plate that was subjected to the same treatment without removing the active material paste and 1) immersing it in a TFE dispersion.As shown in the figure, a cadmium negative electrode plate according to the present invention was used. It can be seen that the increase in internal pressure of the storage battery is suppressed and the oxygen gas absorption capacity is increased. This is thought to be because metal cadmium is easily distributed on the surface of the scraper during charging, and the three-phase interface is well formed by the fluororesin film, resulting in an increase in oxygen gas absorption capacity.
[発明の効果]
以上説明した通り本発明は、連続した三次元空孔を有す
る金属構造板に活物質ペーストを充填して充填板を得、
この充填板の表層部分のみが密となるように加圧し、さ
らにフッ素fNt脂皮膜を形成したので、酸素ガス吸収
能力が増大する。このため本発明によるカドミウム負極
板を使用した蓄電池は大電流による充電が容易となり、
急速充電能力が増大する。[Effects of the Invention] As explained above, the present invention provides a method for obtaining a filled plate by filling an active material paste into a metal structural plate having continuous three-dimensional pores.
Since only the surface layer of this filling plate was pressurized to be dense and a fluorine fNt fat film was formed, the oxygen gas absorption capacity was increased. Therefore, the storage battery using the cadmium negative electrode plate according to the present invention can be easily charged with a large current.
Rapid charging capacity increases.
第1図は密閉形ニッケル・カドミウム蓄電池の充電レー
トと過充電時の電池内圧のピークとを示す図である。
特許出願人 古河電池株式会社
代理人 弁理士 佐 藤 英 昭FIG. 1 is a diagram showing the charging rate of a sealed nickel-cadmium storage battery and the peak of battery internal pressure during overcharging. Patent applicant: Furukawa Battery Co., Ltd. Representative Patent attorney: Hideaki Sato
Claims (1)
ストを連続した三次元空孔を有する金属構造板に充填し
乾燥して充填板を形成する工程と、前記充填板の表面が
露出するようにペーストを除去する工程と、前記充填板
を板厚方向に加圧する工程と、加圧後の充填板をアルカ
リ電解液中で陰電解して予備充電量を付与する工程と、
前記充填板をフッ素樹脂分散液に浸漬してフッ素樹脂皮
膜を形成する工程とを備えていることを特徴とするカド
ミウム負極板の製造方法。A step of filling a metal structure plate having continuous three-dimensional holes with a paste in which cadmium oxide or cadmium hydroxide is kneaded and drying it to form a filled plate, and removing the paste so that the surface of the filled plate is exposed. a step of pressurizing the filling plate in the thickness direction; and a step of negative electrolyzing the pressurized filling plate in an alkaline electrolyte to provide a preliminary charge amount;
A method for manufacturing a cadmium negative electrode plate, comprising the step of immersing the filling plate in a fluororesin dispersion to form a fluororesin film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63066974A JPH01239766A (en) | 1988-03-21 | 1988-03-21 | Manufacture of cadmium negative plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63066974A JPH01239766A (en) | 1988-03-21 | 1988-03-21 | Manufacture of cadmium negative plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01239766A true JPH01239766A (en) | 1989-09-25 |
Family
ID=13331504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63066974A Pending JPH01239766A (en) | 1988-03-21 | 1988-03-21 | Manufacture of cadmium negative plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01239766A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03133057A (en) * | 1989-10-18 | 1991-06-06 | Matsushita Electric Ind Co Ltd | Manufacture of phase type cadmium negative electrode |
-
1988
- 1988-03-21 JP JP63066974A patent/JPH01239766A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03133057A (en) * | 1989-10-18 | 1991-06-06 | Matsushita Electric Ind Co Ltd | Manufacture of phase type cadmium negative electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3661645A (en) | Polytetrafluoroethylene battery separator and method for producing same | |
JP2000323137A (en) | Manufacturing method of battery electrode | |
JPH01239766A (en) | Manufacture of cadmium negative plate | |
JP2546638B2 (en) | Manufacturing method of battery plate | |
JPH0578141B2 (en) | ||
JP7528106B2 (en) | Electrodes for rechargeable energy storage devices | |
JPS59143275A (en) | Base plate for alkaline storage battery | |
JPH01173572A (en) | Manufacture of cadmium negative electrode plate | |
JPS5887765A (en) | Manufacture of electrode plate for battery | |
RU2836833C2 (en) | Composite current collectors for secondary zinc accumulators and methods of their manufacturing, plates of negative electrodes and secondary zinc accumulators | |
JPS63266766A (en) | Manufacture of nickel electrode for battery | |
JP2902751B2 (en) | Manufacturing method of cadmium negative electrode for alkaline storage battery | |
JP3653441B2 (en) | Method for producing negative electrode for alkaline storage battery | |
JP3524748B2 (en) | Method for producing sintered cadmium negative electrode | |
JPH09245777A (en) | Electrode for secondary battery and manufacture thereof | |
JP2567672B2 (en) | Sintered cadmium negative electrode for alkaline storage battery and method for producing the same | |
JP3749001B2 (en) | Sintered cadmium negative electrode and method for producing the same | |
JP2538322B2 (en) | Method for manufacturing electrode plate for alkaline storage battery | |
JPH08203515A (en) | Manufacture of nickel electrode | |
JPH0582027B2 (en) | ||
JPS5887764A (en) | Manufacture of electrode plate for battery | |
JPH01239764A (en) | Paste type positive plate for alkaline storage battery and manufacture thereof | |
JPH0973896A (en) | Paste type hydrogen storage alloy electrode | |
JPS5931833B2 (en) | Manufacturing method for battery electrodes | |
JPS59196564A (en) | Manufacture of non-sintered negative cadmium plate |