[go: up one dir, main page]

JPH01238013A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPH01238013A
JPH01238013A JP6348188A JP6348188A JPH01238013A JP H01238013 A JPH01238013 A JP H01238013A JP 6348188 A JP6348188 A JP 6348188A JP 6348188 A JP6348188 A JP 6348188A JP H01238013 A JPH01238013 A JP H01238013A
Authority
JP
Japan
Prior art keywords
silicon
wiring metal
semiconductor substrate
polycrystalline silicon
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6348188A
Other languages
Japanese (ja)
Inventor
Kenichi Kuroishi
黒石 憲一
Takashi Toida
戸井田 孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP6348188A priority Critical patent/JPH01238013A/en
Publication of JPH01238013A publication Critical patent/JPH01238013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To establish secure electrical connection with low contact resistance by forming a diffusion layer of high impurity concentration in a predetermined region of a semiconductor substrate, forming wiring metal in a connecting hole which is formed by etching a polycrystalline silicon film and an insulating film formed on the semiconductor substrate, and connecting the diffusion layer and the wiring metal. CONSTITUTION:A diffusion layer 14 is provided by introducing impurity into a semiconductor substrate 12. An insulating layer 16 comprising silicon oxide and the like is formed and a polycrystalline silicon film 18 is formed. A connecting hole 20 is formed by etching the polycrystalline silicon film 18 and the insulating film 16. Then, wiring metal 22 comprising an aluminum silicon alloy containing 0.5-2.0wt.% silicon is formed by a vacuum deposition method and the like, and the wiring pattern 22 is patterned into a predetermined shape by photo-etching and further heat-treated in the atmosphere of hydrogen or nitrogen at 400-500 deg.C. No excessive silicon is separated on the semiconductor substrate 12 in the connecting hole 20 but excessive silicon in the wiring metal 22 is separated on the polycrystalline silicon film 18 to from nodules.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路の製造方法、とくに半導体基板
に形成した不純物濃度が高い不純物層と配線金属との接
続を低抵抗で行なつ製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor integrated circuit, and in particular, a method for manufacturing a semiconductor integrated circuit, in particular a method for manufacturing a semiconductor integrated circuit in which an impurity layer with a high impurity concentration formed on a semiconductor substrate is connected to a wiring metal with low resistance. Regarding.

〔従来技術とその課題〕[Conventional technology and its issues]

不純物層と配線金属との接続の従来例を第2図を用いて
説明する。
A conventional example of connection between an impurity layer and a wiring metal will be explained with reference to FIG.

第2図(a)に示すように、半導体基板120所定領域
に不純物イオンを導入して不純物層14を形成する。そ
の後全面に酸化シリコン膜等からなる絶縁膜16を形成
し、さらにフォトエツチングにより絶縁膜16に開口部
を設は接続穴20を形成する。その後アルミニウムから
なる配線金属22を形成して、水素あるいは窒素雰囲気
中にて400〜500℃の温度で熱処理を行なう。この
熱処理においてアルミニウムの持つH’J化膜還元作用
を利用して、接続穴20内の半導体基板12上に形成さ
れた自然酸化膜を除去し、不純物層14と配線金属22
との間に接続抵抗の低いオーミックコンタクトが得られ
る。しかしながら配線金属22として純アルミニウムを
使用した場合、この熱処理によって半導体基板12のシ
リコンがアルミニウム中に固溶拡散することにより、半
導体基板12が食われてしまい第2図(a)に示すいわ
ゆるアロイスパイク26が発生する。このアロイスパイ
ク26が大きく成長して不純物層14を突き抜けると、
配線金属22と半導体基板12とが短絡する。なおこの
アロイスパイク26の形状は面方位(100)のシリコ
ン基板では錐状に、(111)シリコン基板では底が平
らな形状になる。
As shown in FIG. 2(a), impurity ions are introduced into a predetermined region of the semiconductor substrate 120 to form an impurity layer 14. Thereafter, an insulating film 16 made of a silicon oxide film or the like is formed on the entire surface, and an opening is formed in the insulating film 16 by photoetching to form a connection hole 20. Thereafter, a wiring metal 22 made of aluminum is formed and heat treated at a temperature of 400 to 500° C. in a hydrogen or nitrogen atmosphere. In this heat treatment, the natural oxide film formed on the semiconductor substrate 12 in the connection hole 20 is removed by utilizing the H'J film reduction effect of aluminum, and the impurity layer 14 and the wiring metal 22 are removed.
An ohmic contact with low connection resistance can be obtained between the two. However, when pure aluminum is used as the wiring metal 22, this heat treatment causes the silicon of the semiconductor substrate 12 to diffuse into the aluminum as a solid solution, causing the semiconductor substrate 12 to be eaten away, resulting in so-called alloy spikes shown in FIG. 2(a). 26 occurs. When this alloy spike 26 grows large and penetrates the impurity layer 14,
The wiring metal 22 and the semiconductor substrate 12 are short-circuited. Note that the shape of the alloy spike 26 is a conical shape in a silicon substrate with a (100) plane orientation, and a shape with a flat bottom in a (111) silicon substrate.

そこでアロイスパイク26の発生を抑えるために、アル
ミニウム中に固溶限界以上の濃度であらかじめシリコン
を含有させ配線金属22とする方法がある。しかし前述
の水素あるいは窒素雰囲気中の400〜500°Cの熱
処理において、第29図(b)に示すように接続窓20
内の半導体基板12シリコンを種結晶として、配線金属
22中の余剰シリコンが固相エビタキ/ヤル成長し析出
シリコン28が形成される。この析出シリコン28は真
性半導体に近(高い比抵抗値を有するため、析出シリコ
ン28が接続穴20の一部あるいは全部に形成されると
、配線金属22と拡散層14との間のコンタクト抵抗が
高くなり電気的接続不良が生じる原因となる。
Therefore, in order to suppress the occurrence of alloy spikes 26, there is a method of pre-containing silicon in aluminum at a concentration higher than the solid solubility limit to form the wiring metal 22. However, in the aforementioned heat treatment at 400 to 500°C in a hydrogen or nitrogen atmosphere, the connection window 20
Using the silicon of the semiconductor substrate 12 inside as a seed crystal, the excess silicon in the wiring metal 22 undergoes solid phase epitaxy/dial growth to form precipitated silicon 28. Since this precipitated silicon 28 is close to an intrinsic semiconductor (has a high specific resistance value), when the precipitated silicon 28 is formed in part or all of the connection hole 20, the contact resistance between the wiring metal 22 and the diffusion layer 14 increases. This may cause electrical connection failure.

上記課題を解決して配線金属と拡散層との接続を低いコ
ンタクト抵抗で行なうための製造方法を提供することが
本発明の目的である。
It is an object of the present invention to provide a manufacturing method for solving the above problems and connecting a wiring metal and a diffusion layer with low contact resistance.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明の配線金属と拡散層と
の接続は下記記載の方法により行なう。
In order to achieve the above object, the wiring metal of the present invention and the diffusion layer are connected by the method described below.

半導体基板の所定領域に高不純物濃度を有する拡散層を
形成する工程と、半導体基板上に絶縁膜と多結晶シリコ
ン膜とを順次形成する工程と、フォトエツチングにより
多結晶シリコン膜と絶縁膜とをエツチングして接続穴を
形成する工程と、配線金属を形成する工程とより拡散層
と配線金属とを接続する。
A process of forming a diffusion layer having a high impurity concentration in a predetermined region of a semiconductor substrate, a process of sequentially forming an insulating film and a polycrystalline silicon film on the semiconductor substrate, and a process of forming the polycrystalline silicon film and the insulating film by photoetching. The diffusion layer and the wiring metal are connected through a process of etching to form a connection hole and a process of forming a wiring metal.

〔実施例〕〔Example〕

以下第1図の本発明における拡散層と配線金属との接続
方法を示す断面図を用いて本発明の詳細な説明する。
The present invention will be described in detail below using the cross-sectional view shown in FIG. 1 showing a method of connecting a diffusion layer and a wiring metal according to the present invention.

まず感光性樹脂であるフォトレジストあるいは酸化シリ
コン膜に選択的に開口部を形成して、このフォトレジス
トあるいは酸化シリコン膜をマスクとしてイオン注入法
などにより、半導体基板12と同じ導電型あるいは逆導
電型を有する不純物を半導体基板12に導入して、第1
図(a)に示すように拡散層14を設ける。その後化学
気相成長法(以下CVD法と記す)により酸化シリコン
First, an opening is selectively formed in a photoresist or a silicon oxide film, which is a photosensitive resin, and the photoresist or silicon oxide film is used as a mask to form an opening of the same or opposite conductivity type as the semiconductor substrate 12 by ion implantation or the like. Introducing an impurity having a first
A diffusion layer 14 is provided as shown in Figure (a). Thereafter, silicon oxide was formed using a chemical vapor deposition method (hereinafter referred to as CVD method).

あるいはリンを添加した酸化シリコン、あるいはボロン
を添加した酸化シリコン、あるいはリンとボロンとを添
加した酸化シリコンからなる絶縁膜16を500 nm
程度の厚さで形成する。さらにこの絶縁膜16上に厚さ
2〜1100nの多結晶シリコン膜18をCVD法ある
いはスパッタリング法により形成する。
Alternatively, the insulating film 16 made of silicon oxide to which phosphorus is added, silicon oxide to which boron is added, or silicon oxide to which phosphorus and boron are added is formed to a thickness of 500 nm.
Form to a certain thickness. Furthermore, a polycrystalline silicon film 18 having a thickness of 2 to 1100 nm is formed on this insulating film 16 by CVD or sputtering.

次にフォトレジストを回転塗布法などにより半導体基板
12全面に形成して、所定のマスクを用いて露光現像を
行ないフォトレジストをパターニングする。このパター
ニングされたフォトレジストをエツチングのマスクとし
て、多結晶シリコン膜18と絶縁膜16とをエツチング
して、第1図(blに示すように接続穴20を形成する
。なお多結晶シリコン膜18と絶縁膜16とを不純物導
入のマスクとして、接続穴20に整合した領域に不純物
を導入して拡散層14を形成しても良い。
Next, a photoresist is formed on the entire surface of the semiconductor substrate 12 by a spin coating method or the like, and the photoresist is patterned by exposure and development using a predetermined mask. Using this patterned photoresist as an etching mask, the polycrystalline silicon film 18 and the insulating film 16 are etched to form connection holes 20 as shown in FIG. The diffusion layer 14 may be formed by introducing an impurity into a region aligned with the connection hole 20 using the insulating film 16 as a mask for impurity introduction.

次に第1図(C1に示すように、例えばシリコンな0.
5〜2.0重量%含むアルミニウムシリコン合金からな
る配線金属22を蒸着法あるいはスパッタリング法によ
り形成する。その後フォトエツチングにより配線金属2
2を所定の形状にパターニングし、さらに水素あるいは
窒素雰囲気中にて400〜500℃の温度で熱処理を行
なう。この熱処理において接続穴20内の半導体基板1
2上には配線金属22中の余剰シリコンは析出せず、多
結晶シリコン膜18上に配線金属22中の余剰シリコン
が析出して小さな塊いわゆるシリコンノジーール24が
形成される。これは接続穴2o上の配線金属22と多結
ムシリコン膜18上の配線金属22との面積比の効果に
より、面積の小さい接続穴20内に半導体基板12上に
は配線金属22中の余剰シリコンは析出せず、一方面績
の大きい多結晶シリコン膜18には配線金属22中の余
剰シリコンが析出するためである。
Next, as shown in FIG. 1 (C1), for example, silicon 0.
A wiring metal 22 made of an aluminum silicon alloy containing 5 to 2.0% by weight is formed by a vapor deposition method or a sputtering method. After that, the wiring metal 2 is etched by photo-etching.
2 is patterned into a predetermined shape, and further heat-treated at a temperature of 400 to 500° C. in a hydrogen or nitrogen atmosphere. In this heat treatment, the semiconductor substrate 1 inside the connection hole 20
The excess silicon in the interconnect metal 22 does not precipitate on the polycrystalline silicon film 18, but the excess silicon in the interconnect metal 22 precipitates on the polycrystalline silicon film 18, forming a small lump, so-called silicon nozzle 24. This is due to the effect of the area ratio between the wiring metal 22 on the connection hole 2o and the wiring metal 22 on the polycrystalline silicon film 18. This is because excess silicon in the wiring metal 22 is not deposited, but on the polycrystalline silicon film 18 having a large surface roughness.

なお第3図に本発明の製造方法における接玩穴の大きさ
と接続穴内に固相エピタキシャル成長し析出した析出シ
リコンの最大径との関係を示す。
FIG. 3 shows the relationship between the size of the connecting hole and the maximum diameter of precipitated silicon deposited by solid phase epitaxial growth in the connecting hole in the manufacturing method of the present invention.

絶縁膜上に厚さ3Qnmの多結晶シリコン嘆を堆積後、
0.8〜5μm0の大きさの接続穴を形成して、その後
シリコンを1市量%含んだアルミニウムシリコン合−金
からな、る配線金属を形成し、配線金属を所定のパター
ンにエツチングして、さらに水素雰囲気中温度425℃
時間30分の熱処理を行なうことにより試料を作成した
。その後配線金属を剥離して接続穴内の半導体基板表面
における析出シリコンの最大径を測定した。第3図のグ
ラフは各々の大きさの接続窓100個について複数枚の
半導体基板における測定値の最大値を示しである。
After depositing polycrystalline silicon with a thickness of 3 Qnm on the insulating film,
A connection hole having a size of 0.8 to 5 μm is formed, and then a wiring metal made of an aluminum silicon alloy containing 1% silicon by market weight is formed, and the wiring metal is etched into a predetermined pattern. , and further at a temperature of 425°C in a hydrogen atmosphere.
A sample was prepared by performing a heat treatment for 30 minutes. Thereafter, the wiring metal was peeled off, and the maximum diameter of the deposited silicon on the surface of the semiconductor substrate within the connection hole was measured. The graph in FIG. 3 shows the maximum value measured on a plurality of semiconductor substrates for 100 connection windows of each size.

第3図から明らかなように大きさが1.5μmD以下の
接続穴においては析出シリコンの発生はまった(認めら
れない。一方大きさが2μm 以上の接続穴では固相エ
ピタキシャル成長による析出シリコンの発生は認められ
るが、接続穴面積に対する析出シリコン面積の面積比は
10%以下であり、拡散層と配線金属との接続は充分低
いコンタクト抵抗で接続される。さらに微細な接続穴内
には析出シリコン発生が認められないことにより、前記
の接続穴上の配線金属と多結晶シリコン膜上の配線金属
との面積比と、析出シリコン発生との相関関係が裏付け
られている。
As is clear from Figure 3, in connection holes with a size of 1.5 μm or less, no precipitated silicon is generated (not observed).On the other hand, in connection holes with a size of 2 μm or more, no precipitated silicon is generated due to solid phase epitaxial growth. However, the area ratio of the precipitated silicon area to the connection hole area is less than 10%, and the connection between the diffusion layer and the wiring metal is made with a sufficiently low contact resistance.Furthermore, the precipitated silicon occurs in the fine connection hole. The fact that this is not observed supports the correlation between the area ratio of the wiring metal on the connection hole and the wiring metal on the polycrystalline silicon film and the occurrence of silicon precipitation.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、アルミニウムシリコン合
金からなる配線金属中に固溶限界以上含まれているシリ
コンは、微細な大きさの接続穴内の半導体基板上には析
出しないため配線金属と拡散層との接続は、低いコンタ
クト抵抗でかつ確実な電気的接続を行なうことができる
As is clear from the above explanation, the silicon contained in the wiring metal made of aluminum-silicon alloy in an amount exceeding the solid solubility limit does not precipitate on the semiconductor substrate in the micro-sized connection holes, so the wiring metal and the diffusion layer A reliable electrical connection can be made with low contact resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ta+、(bJ及びtc)は本発明における配線
金属と拡散層との接続を行なう製造方法を示す断面図。 第2図(a)及び[b)は従来例における配線金属と拡
散層との課題を説明するための断面図、第3図は本発明
の製造方法における接続穴の大きさと接続穴内に固相エ
ピタキシャル成長し析出した析出シリコンの最大径との
関係を示すグラフである。 14・・・・・・拡散層、 16・・・・・・絶縁膜、 18・・・・・・多結晶シリコン膜、 20・・・・・・接続穴、 22・・・・・・配線金属。 第1図 (a) (b) (C) 14、  狐救膚 16、   命色秀遍に月臭 18、  %季吉晶シ、ソコンル先 22、  西己魂金属
FIGS. 1A and 1B are cross-sectional views showing a manufacturing method for connecting a wiring metal and a diffusion layer in the present invention. Figures 2 (a) and [b] are cross-sectional views for explaining the problems between the wiring metal and the diffusion layer in the conventional example, and Figure 3 shows the size of the connection hole and the solid phase in the connection hole in the manufacturing method of the present invention. It is a graph showing the relationship between the maximum diameter of precipitated silicon that is epitaxially grown and precipitated. 14... Diffusion layer, 16... Insulating film, 18... Polycrystalline silicon film, 20... Connection hole, 22... Wiring metal. Figure 1 (a) (b) (C) 14, Fox Salvation 16, Life Color Shuhen and Moon Smell 18, % Kiyoshi Akashi, Sokonru tip 22, West Spirit Metal

Claims (1)

【特許請求の範囲】[Claims]  半導体基板の所定領域に高不純物濃度を有する拡散層
を形成する工程と、前記半導体基板上に絶縁膜を形成す
る工程と、前記絶縁膜上に多結晶シリコン膜を形成する
工程と、フォトエッチングにより前記多結晶シリコン膜
と絶縁膜とをエッチングして接続穴を形成する工程と、
配線金属を形成する工程とを有することを特徴とする半
導体集積回路の製造方法。
a step of forming a diffusion layer having a high impurity concentration in a predetermined region of a semiconductor substrate; a step of forming an insulating film on the semiconductor substrate; a step of forming a polycrystalline silicon film on the insulating film; and a step of forming a polycrystalline silicon film on the insulating film. etching the polycrystalline silicon film and the insulating film to form a connection hole;
1. A method for manufacturing a semiconductor integrated circuit, comprising the step of forming wiring metal.
JP6348188A 1988-03-18 1988-03-18 Manufacture of semiconductor integrated circuit Pending JPH01238013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6348188A JPH01238013A (en) 1988-03-18 1988-03-18 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6348188A JPH01238013A (en) 1988-03-18 1988-03-18 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH01238013A true JPH01238013A (en) 1989-09-22

Family

ID=13230472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6348188A Pending JPH01238013A (en) 1988-03-18 1988-03-18 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH01238013A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494120A (en) * 1990-08-09 1992-03-26 Fuji Electric Co Ltd Manufacturing method of semiconductor device
US5373192A (en) * 1990-06-26 1994-12-13 Mitsubishi Denki Kabushiki Kaisha Electromigration resistance metal interconnect
JP2014187192A (en) * 2013-03-22 2014-10-02 Toshiba Corp Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373192A (en) * 1990-06-26 1994-12-13 Mitsubishi Denki Kabushiki Kaisha Electromigration resistance metal interconnect
JPH0494120A (en) * 1990-08-09 1992-03-26 Fuji Electric Co Ltd Manufacturing method of semiconductor device
JP2014187192A (en) * 2013-03-22 2014-10-02 Toshiba Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JPH01238013A (en) Manufacture of semiconductor integrated circuit
JP3072544B2 (en) Semiconductor device wiring method
JPS6024013A (en) Manufacture of semiconductor device
JPS5968949A (en) Manufacture of semiconductor device
JPH02106971A (en) Semiconductor integrated circuit device and manufacture thereof
KR940005708B1 (en) Method of making metal wire
JPS5891670A (en) Manufacturing method of semiconductor device
JPS5821820A (en) Manufacture of semiconductor device
JP2905648B2 (en) Method for manufacturing semiconductor device
JPH02186626A (en) Manufacture of semiconductor integrated circuit
JPS61242058A (en) Manufacture of polycrystalline silicon resistor
JPH0290611A (en) Manufacture of semiconductor device
JPS63283161A (en) Semiconductor device and manufacture thereof
JPH02114641A (en) Manufacture of semiconductor device
JP2935732B2 (en) Method for manufacturing semiconductor device
JPS6188543A (en) Manufacture of semiconductor device
JPS62108541A (en) Manufacture of semiconductor device
JPS59125664A (en) Manufacture of semiconductor device
JPS6068614A (en) Manufacture of semiconductor device
JPS6362352A (en) Manufacture of semiconductor device
JPS5968950A (en) Manufacture of semiconductor device
JPS62143422A (en) Manufacturing method of semiconductor device
JPH02299261A (en) Semiconductor device
JPS5941829A (en) Forming method of ohmic contact with compound semiconductor
JPS62194617A (en) Manufacture of semiconductor device