JPH01237587A - Electrophotographic method - Google Patents
Electrophotographic methodInfo
- Publication number
- JPH01237587A JPH01237587A JP63065244A JP6524488A JPH01237587A JP H01237587 A JPH01237587 A JP H01237587A JP 63065244 A JP63065244 A JP 63065244A JP 6524488 A JP6524488 A JP 6524488A JP H01237587 A JPH01237587 A JP H01237587A
- Authority
- JP
- Japan
- Prior art keywords
- photoreceptor
- residual potential
- layer
- organic
- photosensitive body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 19
- 238000010438 heat treatment Methods 0.000 claims abstract description 15
- 108091008695 photoreceptors Proteins 0.000 claims description 81
- 238000011161 development Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 7
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 68
- 239000000049 pigment Substances 0.000 description 33
- 239000000126 substance Substances 0.000 description 24
- 229920005989 resin Polymers 0.000 description 18
- 239000011347 resin Substances 0.000 description 18
- 230000003068 static effect Effects 0.000 description 13
- 239000011230 binding agent Substances 0.000 description 11
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 11
- 239000011669 selenium Substances 0.000 description 11
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 229910052711 selenium Inorganic materials 0.000 description 10
- 239000000123 paper Substances 0.000 description 9
- 239000002356 single layer Substances 0.000 description 9
- 238000003379 elimination reaction Methods 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 230000008030 elimination Effects 0.000 description 7
- 238000000576 coating method Methods 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- -1 hydrazone compounds Chemical class 0.000 description 3
- 230000002427 irreversible effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- NGQSLSMAEVWNPU-UHFFFAOYSA-N 1,2-bis(2-phenylethenyl)benzene Chemical group C=1C=CC=CC=1C=CC1=CC=CC=C1C=CC1=CC=CC=C1 NGQSLSMAEVWNPU-UHFFFAOYSA-N 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- SXQCTESRRZBPHJ-UHFFFAOYSA-M lissamine rhodamine Chemical compound [Na+].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=C(S([O-])(=O)=O)C=C1S([O-])(=O)=O SXQCTESRRZBPHJ-UHFFFAOYSA-M 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910001120 nichrome Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000012860 organic pigment Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 125000006617 triphenylamine group Chemical group 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- WDIRZLFLYLGVBB-UHFFFAOYSA-N 1-(2-phenylethenyl)-9h-carbazole Chemical group C=1C=CC(C2=CC=CC=C2N2)=C2C=1C=CC1=CC=CC=C1 WDIRZLFLYLGVBB-UHFFFAOYSA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical compound C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- MKYQPGPNVYRMHI-UHFFFAOYSA-N Triphenylethylene Chemical class C=1C=CC=CC=1C=C(C=1C=CC=CC=1)C1=CC=CC=C1 MKYQPGPNVYRMHI-UHFFFAOYSA-N 0.000 description 1
- 229920002433 Vinyl chloride-vinyl acetate copolymer Polymers 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- IYYZUPMFVPLQIF-ALWQSETLSA-N dibenzothiophene Chemical group C1=CC=CC=2[34S]C3=C(C=21)C=CC=C3 IYYZUPMFVPLQIF-ALWQSETLSA-N 0.000 description 1
- 235000016693 dipotassium tartrate Nutrition 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical group C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002102 polyvinyl toluene Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 150000004032 porphyrins Chemical group 0.000 description 1
- AVTYONGGKAJVTE-OLXYHTOASA-L potassium L-tartrate Chemical compound [K+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O AVTYONGGKAJVTE-OLXYHTOASA-L 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- RCYFOPUXRMOLQM-UHFFFAOYSA-N pyrene-1-carbaldehyde Chemical compound C1=C2C(C=O)=CC=C(C=C3)C2=C2C3=CC=CC2=C1 RCYFOPUXRMOLQM-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 150000001651 triphenylamine derivatives Chemical class 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Discharging, Photosensitive Material Shape In Electrophotography (AREA)
- Photoreceptors In Electrophotography (AREA)
- Control Or Security For Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
14分見
本発明は有機系電子写真感光体を用いる電子写真法の改
良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in electrophotography using organic electrophotographic photoreceptors.
従来技監
カールソンプロセスで代表される電子写真法は周知のよ
うに、同一の電子写真感光体に対して帯電、露光、現像
、必要あれば転写及びクリーニング、並びに除電の工程
を繰返し行なう画像形成法である。この方法で使用され
る電子写真感光体は基本的には導電性支持体上に光導電
物質を含む感光層を設けたもので、光導電物質が無機物
か有機物かによって無機系感光体と有機系感光体として
大別される。更に無機系感光体は感光層がSs又はその
合金の蒸着層(非晶質)からなるセレン系感光体と感光
層が非セレン系無機光導電物質(ZnO,TiO2,C
dS等)を樹脂バインダー中に分散した分散層からなる
無機光導電物質分散系感光体とに分類できる。一方、有
機系感光体の場合は有機光導電物質(例えばフタロシア
ニン顔料、アゾ顔料、多環キノン顔料、ポリビニルカル
バゾール類、ヒドラゾン化合物、スチルベン化合物等)
の種類として、露光により主として電荷を発生するもの
(電荷発生物質)と主として電荷を輸送するもの(’1
荷輸送物質)の2種類が知られていることから、無機系
感光体とは使用形態が若干異なり、感光層は一般にこれ
ら2種の材料を併用した単層又は積層の機能分離型構造
になっている。即ち単層型は電荷発生物質及び電荷輸送
物質を樹脂バインダー中に分散ないし相溶した分散層か
らなり、また積層型は電荷発生物質を主成分とする電荷
発生層と電荷輸送物質を樹脂バインダー中に分散した電
荷輸送層との2層からなっている。As is well known, the electrophotographic method typified by the conventional Carlson process is an image forming method in which the steps of charging, exposing, developing, transferring if necessary, cleaning, and removing static electricity are repeated on the same electrophotographic photoreceptor. It is. The electrophotographic photoreceptor used in this method basically has a photosensitive layer containing a photoconductive substance on a conductive support. It is broadly classified as a photoreceptor. Furthermore, inorganic photoreceptors include a selenium-based photoreceptor in which the photosensitive layer is made of a vapor-deposited layer (amorphous) of Ss or its alloy, and a selenium-based photoreceptor in which the photosensitive layer is made of a non-selenium-based inorganic photoconductive material (ZnO, TiO2, C
dS, etc.) can be classified into an inorganic photoconductive material-dispersed photoreceptor consisting of a dispersed layer dispersed in a resin binder. On the other hand, in the case of organic photoreceptors, organic photoconductive substances (e.g. phthalocyanine pigments, azo pigments, polycyclic quinone pigments, polyvinyl carbazoles, hydrazone compounds, stilbene compounds, etc.) are used.
There are two types of substances: those that mainly generate charges upon exposure to light (charge-generating substances) and those that mainly transport charges ('1
Since two types of photoreceptors (cargo transport substances) are known, the usage pattern is slightly different from that of inorganic photoreceptors, and the photosensitive layer generally has a single-layer or laminated functionally separated structure using a combination of these two types of materials. ing. That is, the single layer type consists of a dispersed layer in which a charge generating substance and a charge transporting substance are dispersed or compatible with each other in a resin binder, while the laminated type consists of a charge generating layer mainly composed of a charge generating substance and a charge transporting substance in a resin binder. It consists of two layers: a charge transport layer and a charge transport layer dispersed in the charge transport layer.
以上のような電子写真感光体のうち、セレン系感光体は
比較的高感度であり、また感光層の形成も真空蒸着法の
工業的量産技術が確立されていることから容易であるが
、非晶質Se系蒸着層は熱、応力等の外部エネルギーに
より結晶化され易く、結晶化されるとその部分の電子写
真特性が消滅するという欠点を有している。従ってセレ
ン系感光体の場合は実質上、非晶質層が結晶化する迄の
時間が寿命となる。なおこの結晶化は温度の上昇に伴な
って加速されることもよく知られている。その他、セレ
ン系感光体は可撓性に劣るため、ベルト状にすることが
困難で(ベルト状にすると、装置設計上の自由度が広が
る。フラッシュ露光の採用により高速複写が可能となる
等の利点がある。)、また耐摩耗性に劣るため・繰返し
使用すると、表面が粗面化により活性化され易く、温湿
度変化等で結露した際、水分を吸着して画像ボケを生じ
るという欠点もある。但し吸着水分による画像ボケを防
ぐため、セレン系感光体の表面を60℃以下に加熱する
こと(特開昭58−72160号、同58−90650
号、同5g−117578号、同58−118689号
、同52−129434号、同57−56855号)は
知られている。Among the electrophotographic photoreceptors mentioned above, selenium-based photoreceptors have relatively high sensitivity, and the formation of a photosensitive layer is easy because the industrial mass production technology of vacuum evaporation has been established. A crystalline Se-based vapor deposited layer has the disadvantage that it is easily crystallized by external energy such as heat and stress, and when crystallized, the electrophotographic characteristics of that portion disappear. Therefore, in the case of a selenium-based photoreceptor, the time until the amorphous layer crystallizes is essentially the lifetime. It is also well known that this crystallization is accelerated as the temperature increases. In addition, selenium-based photoreceptors have poor flexibility, so it is difficult to make them into a belt. It also has the disadvantage that it has poor abrasion resistance and is easily activated by roughening the surface after repeated use, and when condensation occurs due to changes in temperature and humidity, it adsorbs moisture and causes image blurring. be. However, in order to prevent image blur due to adsorbed moisture, the surface of the selenium-based photoreceptor must be heated to below 60°C (Japanese Patent Application Laid-open Nos. 58-72160 and 58-90650).
No. 5g-117578, No. 58-118689, No. 52-129434, No. 57-56855) are known.
一方、無機光導電物質分散系感光体の場合は感光層は加
熱乾燥工程を含む塗布法により形成されるので、耐熱性
の点ではセレン系感光体に比べてはるかに優れ、また樹
脂を含むため耐摩耗性も良く、可撓性も備えているが、
電子写真の基本特性、特に感度、及び繰返し使用時の特
性(安定性)が不充分で、また透明性もなく、更にいく
つかの材料は毒性が強いため、現在殆んど使用されてい
ない。On the other hand, in the case of an inorganic photoconductive material-dispersed photoreceptor, the photosensitive layer is formed by a coating method that includes a heating drying process, so it has much better heat resistance than a selenium-based photoreceptor, and because it contains resin, It has good abrasion resistance and flexibility, but
The basic characteristics of electrophotography, particularly sensitivity and characteristics upon repeated use (stability), are insufficient, there is no transparency, and some materials are highly toxic, so they are hardly used at present.
以上のような無機系感光体に対し、有機系感光体の場合
は感光層は無機光導電体分散系と同様、加熱乾燥工程を
含む塗布法により形成されるので、耐熱性は勿論、耐摩
耗性も優れている上、可撓性もあり、また透明性が良い
ため、透明支持体を用いた場合は支持体側からの効率的
な除電(全面露光による)が可能であり、更に工業製品
に要求される一般的に望ましい条件。In contrast to the above-mentioned inorganic photoconductors, in the case of organic photoconductors, the photosensitive layer is formed by a coating method that includes a heating and drying process, similar to the inorganic photoconductor dispersion system, so it is not only heat resistant but also wear resistant. In addition to being flexible, it also has good transparency, so when a transparent support is used, it is possible to efficiently remove static electricity from the support side (by exposing the entire surface to light), and it is also suitable for industrial products. Required and generally desirable conditions.
即ち高品質、高性能、安定性、安全性、量産性、経済性
等の利点を備えていることから、近年特に注目され、電
子写真感光体の主流となりつつあるが、繰返し使用によ
りいったん残留電位が上昇すると(特に高温高湿下で著
しい)、残留電位の回復(低下)がきわめて困難(常温
では3ケ月で半減する程度)であるという欠点があった
。In other words, it has the advantages of high quality, high performance, stability, safety, mass production, economic efficiency, etc., so it has attracted particular attention in recent years and has become the mainstream of electrophotographic photoreceptors. When the residual potential increases (particularly markedly under high temperature and high humidity conditions), it is extremely difficult to recover (reduce) the residual potential (at room temperature, it is reduced by half in three months), which is a drawback.
且−一匁
本発明の目的は有機系感光体に生じた残留電位を極めて
効果的に容易に、迅速に、且つ本来の電子写真特性に対
する副作用もなく低減する電子写真法を提供することで
ある。An object of the present invention is to provide an electrophotographic method that reduces the residual potential generated in an organic photoreceptor very effectively, easily, quickly, and without any side effects on the original electrophotographic properties. .
監−一玖
本発明の電子写真法は有機系電子写真感光体に少くとも
帯電、露光、現像及び除電の工程を繰返し行なう電子写
真プロセスにおいて、除電工程後、感光体の残留電位を
検知し、この電位に応じて感光体を90℃以上、好まし
くは100℃以上に加熱することを特徴とするものであ
る。Supervisor - Ikku The electrophotographic method of the present invention involves detecting the residual potential of the photoreceptor after the static elimination process in an electrophotographic process in which at least the steps of charging, exposing, developing, and eliminating static electricity are repeatedly performed on an organic electrophotographic photoreceptor. The method is characterized in that the photoreceptor is heated to 90° C. or higher, preferably 100° C. or higher depending on this potential.
なお加熱温度の上限は感光体を構成する材料によって変
化するが、通常は乾燥温度の上限である150℃以下で
ある。The upper limit of the heating temperature varies depending on the material constituting the photoreceptor, but is usually 150° C. or lower, which is the upper limit of the drying temperature.
有機系電子写真感光体に生じる残留電位は感光体が置か
れる通常の環境温度(室温で10〜30℃程度、電子写
真複写機内で室温〜50℃程度)では前述のように長時
間経過しても殆ど回復しない、このため従来、有機系感
光体の残留電位は非可逆的な化学反応1例えば感光層内
でのイオン反応;構成成分の分解等による失活等に起因
するものと考えられ、このため有機系感光体の場合は専
ら残留電位の程度を低減する材料上及び構成又は構造上
の開発に力点が置かれて来た。しかし本発明者らは有機
系感光体における残留電位について詳細に検討した結果
、感光体の疲労に伴なう非可逆的な化学反応は殆ど認め
られないか、たとえ他の原因との比較では認められたと
しても実用上無視し得る程、きわめて軽微であることを
見出した。この事は有機系感光体における残留電位は非
可逆的な化学反応を伴なわない限り回復は可能であるこ
とを意味する。そこでこれらの知見に基づいて本発明者
らはこの残留電位について更に詳細に検討した結果、前
述のような機能分離型有機系感光体の場合、残留電位は
単層型では感光層中、また積層型では電荷輸送層中のエ
ネルギーレベルのきわめて深いトラップに起因すること
を見出し、更にこのトラップを解放するには感光体をあ
る温度以上に加熱することが有効であることを見出した
0本発明はこれらの知見に基づくものである。As mentioned above, the residual potential generated in an organic electrophotographic photoreceptor increases over a long period of time at the normal environmental temperature in which the photoreceptor is placed (about 10 to 30 degrees Celsius at room temperature, and about 50 degrees Celsius in an electrophotographic copying machine). Conventionally, the residual potential of organic photoreceptors is thought to be caused by irreversible chemical reactions (e.g., ionic reactions within the photosensitive layer; deactivation due to decomposition of constituent components, etc.). For this reason, in the case of organic photoreceptors, emphasis has been placed on developing materials and structures that reduce the degree of residual potential. However, as a result of a detailed study by the present inventors on the residual potential in organic photoreceptors, it has been found that irreversible chemical reactions associated with photoreceptor fatigue are hardly recognized, or even if compared with other causes. It has been found that even if there is a difference, it is so slight that it can be ignored in practical terms. This means that the residual potential in the organic photoreceptor can be recovered as long as an irreversible chemical reaction is not involved. Based on these findings, the present inventors investigated this residual potential in more detail and found that in the case of the functionally separated organic photoreceptor described above, the residual potential is in the photosensitive layer in the case of a single layer type, or in the laminated layer. In the present invention, we have discovered that this is caused by extremely deep energy level traps in the charge transport layer, and that it is effective to heat the photoreceptor above a certain temperature in order to release these traps. This is based on these findings.
前述のようなセレン系感光体については結露による画像
ボケの防止のため、感光体表面を60℃以下程度の低温
で加熱する方法が知られている。しかしセレン系感光体
の場合はこの程度の低温でも結晶化が促進されるので好
ましくない。For the selenium-based photoreceptor described above, a method is known in which the surface of the photoreceptor is heated at a low temperature of about 60° C. or lower in order to prevent image blurring due to dew condensation. However, in the case of a selenium-based photoreceptor, crystallization is promoted even at such a low temperature, which is not preferable.
これに対し本発明方法では有機系感光体に生じた残留電
位を除去するためこの感光体を前記従来法よりも高い9
0℃以上の温度に加熱する点に特徴がある。しかしこの
ように高温加熱を行なっても有機系感光体の場合は前述
のように加熱乾燥工程(加熱温度は通常80〜150℃
程度)を含む塗布法によって製造されるので、全く問題
なく、むしろ所期の目的である残留電位の迅速な除去に
よって、感光体の疲労を速やかに回復できる上、電子写
真特性の安定化に寄与することができる。On the other hand, in the method of the present invention, in order to remove the residual potential generated in the organic photoreceptor, the photoreceptor is
It is characterized by heating to a temperature of 0°C or higher. However, even if high-temperature heating is performed in this way, in the case of organic photoreceptors, the heating temperature is usually 80 to 150°C.
Since it is manufactured using a coating method that includes (degrees of can do.
本発明方法で使用される有機系感光体としては前述のよ
うな機能分離型のものが好ましい。The organic photoreceptor used in the method of the present invention is preferably of the functionally separated type as described above.
即ちこの種の有機系感光体は導電性支持体上に電荷発生
物質、電荷輸送物質及び樹脂バインダーを主成分とする
単層型感光層を設けたもの及び導電性支持体上に電荷発
生物質を主成分とする電荷発生層と電荷輸送物質及び樹
脂バインダーを主成分とする電荷輸送層とを設けたもの
である。In other words, this type of organic photoreceptor is one in which a single-layer photosensitive layer containing a charge generating substance, a charge transporting substance and a resin binder as main components is provided on a conductive support, and one in which a charge generating substance is provided on a conductive support. It is provided with a charge generation layer whose main components are a charge generation layer and a charge transport layer whose main components are a charge transport substance and a resin binder.
導電性支持体としては電気抵抗が10”Ωl以下の材料
、例えばAQ、Ni、Cr、NiCr、ステンレス等の
金属又は合金のドラム又は板;AQ、Ni、Cr、Ni
Cr。As the conductive support, a material having an electrical resistance of 10" Ωl or less, such as a drum or plate of metal or alloy such as AQ, Ni, Cr, NiCr, stainless steel; AQ, Ni, Cr, Ni
Cr.
Cu、Ag、Au、Pt等の金属又は合金、カーボン、
酸化錫、酸化インジウム等の金属酸化物からなる導電性
物質を真空蒸着、スパッタリング、塗布等の方法でポリ
エステル、ポリイミド、ポリカーボネート等のプラスチ
ックフィルム、紙、加工紙等の表面に被覆したもの(形
状はシート状又はベルト状)等が挙げられる。Metals or alloys such as Cu, Ag, Au, Pt, carbon,
Conductive substances made of metal oxides such as tin oxide and indium oxide are coated on the surface of plastic films such as polyester, polyimide, polycarbonate, paper, processed paper, etc. by vacuum deposition, sputtering, coating, etc. (the shape is sheet-like or belt-like).
電荷発生物質としては、例えばシーアイピグメントブル
ー25[カラーインデックス(CI)211803 、
シーアイピグメントレッド41 (CI21200)等
のベンジン誘導体系ジスアゾ顔料;シーアイアシッドレ
ッド52(CI 45100)、シーアイベーシックレ
ッド3 (CI 45210)等のキサンチン染料;ポ
ルフィリン骨格を有するフタロシアニン系顔料;アズレ
ニウム塩顔料;スクアリック塩原料;カルバゾール骨格
を有するジスアゾ顔料(特開昭53−95033号公報
に記載)、スチリルスチルベン骨格を有するジスアゾ顔
料(特開昭53−138229号報に記載)、トリフェ
ニルアミン骨格を有するトリスアゾ顔料(特開昭53−
132547号公報に記載)、ジベンゾチオフェン骨格
を有するジスアゾ顔料(特開昭54−21728号公報
に記載)、オキサジアゾール骨格を有するジスアゾ顔料
(特開昭54−12742号公報に記載)、フルオレノ
ン骨格を有するジスアゾ顔料(特開昭54−22834
号公報に記載)、ビススチルベン骨格を有するジスアゾ
顔料(特開昭54−17733号公報に記載)、ジスチ
リルオキサジアゾール骨格を有するジスアゾ顔料(特開
昭54−2129号公報に記載)、ジスチリルカルバゾ
ール骨格を有するジスアゾ顔料(特開昭54−1773
4号公報に記載)、カルバゾール骨格を有するトリスア
ゾ顔料(特開昭57−195767号公報、同57−1
95768号公報に記載)等のアゾ顔料;シーアイピグ
メントブルー16 (CI 74100)等のフタロシ
アニン顔料;シーアイバットブラウン5 (CI734
10) 、シーアイバットダイ(CI 73030)等
のインジゴ顔料;アルゴールスカーレットB、インダス
レンスカーレットR(/(イニル社製)等のペリレン系
顔料等の有機顔料が挙げられる。Examples of the charge generating substance include CI Pigment Blue 25 [Color Index (CI) 211803,
Benzine derivative disazo pigments such as C.I. Pigment Red 41 (CI21200); xanthine dyes such as C.I. Acid Red 52 (CI 45100) and C.I. Basic Red 3 (CI 45210); phthalocyanine pigments having a porphyrin skeleton; azulenium salt pigments; Squaric Salt raw materials: disazo pigments having a carbazole skeleton (described in JP-A No. 53-95033), disazo pigments having a styrylstilbene skeleton (described in JP-A-53-138229), trisazo pigments having a triphenylamine skeleton (Unexamined Japanese Patent Publication No. 53-
132547), disazo pigments having a dibenzothiophene skeleton (described in JP-A-54-21728), disazo pigments having an oxadiazole skeleton (described in JP-A-54-12742), fluorenone skeleton disazo pigment having (JP-A-54-22834
Disazo pigments having a bisstilbene skeleton (described in JP-A-54-17733), disazo pigments having a distyryloxadiazole skeleton (described in JP-A-54-2129), Disazo pigment with styrylcarbazole skeleton (Japanese Patent Application Laid-Open No. 54-1773
4), trisazo pigments having a carbazole skeleton (JP-A-57-195767, JP-A-57-1)
Azo pigments such as CI Pigment Blue 16 (CI 74100); CI Bat Brown 5 (CI 734);
10) Indigo pigments such as CI Bat Dye (CI 73030); organic pigments such as perylene pigments such as Argol Scarlet B and Indus Thread Scarlet R (/(manufactured by Inil)).
これら電荷発生物質の中でも特にアゾ顔料が好適であり
、更にアゾ顔料の中でも以下に示すようなジスアゾ顔料
及びトリスアゾ顔料が最も好ましい。Among these charge-generating substances, azo pigments are particularly preferred, and among the azo pigments, disazo pigments and trisazo pigments as shown below are most preferred.
(1)フルオレノン骨格を有するジスアゾ顔料鳳JH帆
A
(2)トリフェニルアミン骨格を有するトリスアゾ顔料
141組 A
しU
(以下余白)
(3)スチリルスチルベン骨格を有するジスアゾ顔料(
A−N=N+■c=HCeor=co十N=N−A)次
に電荷輸送物質としては、ポリ−N−ビニルカルバゾー
ルおよびその誘導体、ポリ−チーカルバゾリルエチルグ
ルタメートおよびその誘導体、ピレン−ホルムアルデヒ
ド縮金物およびその誘導体、ポリビニルピレン、ポリビ
ニルフェナントレン、オキサゾール誘導体、オキサジア
ゾール誘導体、イミダゾール誘導体、トリフェニルアミ
ン誘導体、9−(P−ジエチルアミノスチリル)アント
ラセン、1,1−ビス−(4−ジベンジルアミノフェニ
ル)プロパン、スチリルアントラセン、スチリルピラゾ
リン、フェニルヒドラゾン類、α−フェニルスチルベン
誘導体等の電子供与性物質が挙げられる。(1) Disazo pigments with a fluorenone skeleton A (2) 141 sets of trisazo pigments with a triphenylamine skeleton (blank below) (3) Disazo pigments with a styrylstilbene skeleton (
A−N=N+■c=HCeor=co×N=NA) Next, as charge transport substances, poly-N-vinylcarbazole and its derivatives, poly-carbazolylethyl glutamate and its derivatives, pyrene- Formaldehyde condensates and their derivatives, polyvinylpyrene, polyvinylphenanthrene, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, triphenylamine derivatives, 9-(P-diethylaminostyryl)anthracene, 1,1-bis-(4-dibenzyl) Examples include electron-donating substances such as aminophenyl)propane, styryl anthracene, styryl pyrazoline, phenylhydrazones, and α-phenylstilbene derivatives.
樹脂バインダーとしては、ポリスチレン、スチレン−ア
クリロニトリル共重合体、スチレン−ブタジェン共重合
体、スチレン−無水マレイン酸共重合体、ポリエステル
。ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、
ポリ酢酸ビニル、ポリ塩化ビニリデン、アクリル樹脂、
フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹
脂、エチルセルロース樹脂、ポリビニルブチラール、ポ
リビニルホルマール、ポリビニルトルエン、ポリ−N−
ビニルカルバゾールクリル樹脂,シリコン樹脂、エポキ
シ樹脂,メラミン樹脂,ウレタン樹脂、フェノール樹脂
、アルキッド樹脂等の熱可塑性または熱硬化性樹脂が挙
げられる。Examples of the resin binder include polystyrene, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer, and polyester. Polyvinyl chloride, vinyl chloride-vinyl acetate copolymer,
Polyvinyl acetate, polyvinylidene chloride, acrylic resin,
Phenoxy resin, polycarbonate, cellulose acetate resin, ethyl cellulose resin, polyvinyl butyral, polyvinyl formal, polyvinyltoluene, poly-N-
Examples include thermoplastic or thermosetting resins such as vinyl carbazole acrylic resin, silicone resin, epoxy resin, melamine resin, urethane resin, phenol resin, and alkyd resin.
なお電荷発生層には通常、以上のような樹脂バインダー
が併用される.また単層型感光層及び積層型感光層,特
に電荷輸送層には必要に応じて可塑剤、レベリング剤等
の添加物を添加することができる。Note that resin binders such as those mentioned above are usually used in combination with the charge generation layer. Furthermore, additives such as plasticizers and leveling agents may be added to the single-layer type photosensitive layer and the laminated type photosensitive layer, especially the charge transport layer, if necessary.
一般に単層型感光層も積層型感光層(電荷発生層及び電
荷輸送層)も塗布法で形成されるが。Generally, both the single-layer type photosensitive layer and the laminated type photosensitive layer (charge generation layer and charge transport layer) are formed by a coating method.
電荷発生層については樹脂バインダーを用いない場合は
蒸着法で形成することができる。The charge generation layer can be formed by vapor deposition when a resin binder is not used.
なお単層型感光層中の電荷発生物質及び電荷輸送物質量
は樹脂バインダー100重量部に対し夫々1!5〜25
0重量部、25〜200重量部程度が置部である.また
電荷輸送層中の電荷輸送物質量は樹脂バインダー100
重量部に対し25〜300重量部程度が置部である.一
方、単層型感光層の厚さは5〜1004m程度が適当で
あり、積層型感光層の厚さは電荷発生層については0.
01〜5μm程度、電荷輸送層については5〜100μ
鴎程度が適当である。The amount of the charge generating substance and the charge transporting substance in the single-layer photosensitive layer is 1.5 to 25 parts by weight, respectively, per 100 parts by weight of the resin binder.
0 parts by weight, and about 25 to 200 parts by weight. In addition, the amount of charge transport material in the charge transport layer is 100% of the resin binder.
Approximately 25 to 300 parts by weight is the weight part. On the other hand, the appropriate thickness of the single-layer type photosensitive layer is about 5 to 1004 m, and the thickness of the laminated type photosensitive layer is 0.0 m for the charge generation layer.
01-5μm, about 5-100μm for charge transport layer
A seaweed level is appropriate.
本発明では以上のような機能分離型感光体の他,特に機
能分離しないタイプの感光体も使用できる.このような
非機能分離型感光体は導電性支持体上に前述のような電
荷輸送物質(電子供与性物質)及び樹脂バインダーを主
成分とする感光層を設けたものである。このような感光
層の形成法,厚さ、添加物質等については機能分離型感
光体の単層増感光層の場合とほぼ同様でよい。In the present invention, in addition to the functionally separated photoconductor described above, a type of photoconductor that does not have any functional separation can also be used. Such a non-functionally separated type photoreceptor is one in which a photosensitive layer containing the above-mentioned charge transporting substance (electron donating substance) and a resin binder as main components is provided on a conductive support. The formation method, thickness, additives, etc. of such a photosensitive layer may be substantially the same as those for a single-layer sensitized photosensitive layer of a functionally separated photoreceptor.
なお以上のような有機系感光体には導電性支持体と感光
層との間に樹脂下引層を設けることができる。下引層の
樹脂としてはポリビニルアルコール、ポリビニルブチラ
ール、メチルセルロース、ポリアミド、カゼイン、フェ
ノール樹脂、エポキシ樹脂等が挙げられる。下引層には
更に酸化錫、酸化アンチモン等の導電性粉体;酸化亜鉛
、硫化亜鉛、酸化チタン等の白色顔料;カーボン、各種
金属粉、有機顔料等の光吸収性顔料等を添加することが
できる.なおこれらの粉体及び顔料は前述のようなプラ
スチック支持体に添加してもよい。Note that in the organic photoreceptor as described above, a resin subbing layer can be provided between the conductive support and the photosensitive layer. Examples of the resin for the undercoat layer include polyvinyl alcohol, polyvinyl butyral, methyl cellulose, polyamide, casein, phenol resin, and epoxy resin. Further, conductive powders such as tin oxide and antimony oxide; white pigments such as zinc oxide, zinc sulfide, and titanium oxide; and light-absorbing pigments such as carbon, various metal powders, and organic pigments may be added to the undercoat layer. Can be done. Note that these powders and pigments may be added to the plastic support as described above.
次に本発明方法で用いられる加熱手段としてはニクロム
線、セラミック等の抵抗体を熱源とする電気ヒーター、
赤外線ランプ、熱風装置等が挙げられる.これらは感光
体の表面側(感光層側)に設けても,或いは裏面側(支
持体側)に設けてもよい.電気ヒーターの場合は抵抗体
を支持体内に設けてもよい.また感光体の支持体として
プラスチックを用いた場合はこれに適当な抵抗物質を添
加し、通電により発熱させるようにしてもよい。Next, the heating means used in the method of the present invention include an electric heater using a resistor such as a nichrome wire or ceramic as a heat source;
Examples include infrared lamps and hot air devices. These may be provided on the front side (photosensitive layer side) or the back side (support side) of the photoreceptor. In the case of electric heaters, a resistor may be provided within the support. Furthermore, when plastic is used as the support for the photoreceptor, a suitable resistive substance may be added to the plastic to generate heat when energized.
本発明の帯電,露光,現像及び除電の工程は従来と全く
同じでよい.即ち有機系感光体に対し−4〜−10にV
で帯電を施し、画像露光後.乾式現像剤で現像し、必要
あれば得られた画像を転写用紙に転写定着し、及び/又
は感光体クリーニング後、感光体に全面露光を施して除
電を行なう0本発明では除電工程後、感光体の残留電位
を検知し、所定電位以上(帯電々圧や感光体の種類によ
って各々異なる)に達した時は感光体を前述のようにし
て90℃以上に加熱する。90℃未満の加熱では実施例
から明らかなように残留電位を現像バイアスで補正でき
るレベル(通常100V前後)まで減少させることは実
用上困難である。The steps of charging, exposing, developing, and eliminating static electricity in the present invention may be exactly the same as those in the conventional method. That is, V is between -4 and -10 for an organic photoreceptor.
After applying electrical charge and exposing the image. The image is developed with a dry developer, and if necessary, the resulting image is transferred and fixed onto a transfer paper, and/or after the photoreceptor is cleaned, the entire surface of the photoreceptor is exposed to light to eliminate static electricity.In the present invention, after the static elimination step, the photoreceptor is The residual potential of the body is detected, and when it reaches a predetermined potential or higher (varies depending on charging pressure and type of photoreceptor), the photoreceptor is heated to 90° C. or higher as described above. As is clear from the examples, it is practically difficult to reduce the residual potential to a level (usually around 100 V) that can be corrected by a developing bias when heating at a temperature lower than 90°C.
以下に本発明を実施例により更に詳しく説明する。なお
部は全て重量部である。The present invention will be explained in more detail below with reference to Examples. Note that all parts are parts by weight.
実施例
塵mい(社)」巌
100μ−厚のポリエステルフィルムの表面に、マグネ
トロンスパッタリング法によりNi基耐熱合金[Ni、
56%、Cr16.5%、 Fe5%、14.2%、M
nO,6%。Example A Ni-based heat-resistant alloy [Ni,
56%, Cr16.5%, Fe5%, 14.2%, M
nO, 6%.
Goo、5%、SiO,2%(%はいずれもvtg)コ
のターゲットを用い、可視域での平均透過率が35%に
なるようスパッタリングして約200入庫の半透明導電
層を設け、導電性支持体とした0次にこの導電層表面に
ポリアミド樹脂(東し社製CM−8000)の6wt%
溶液[溶媒はメチルアルコール10〜ポリスチレンスル
ホンfiNa(三洋化成社製ケミスタットC6120)
含有水(含有量はポリアミド樹脂に対し6wt%)2〜
ブチルアルコール1(重量比)の混合液]をロールコー
タ−で塗布し、115℃で10分間乾燥して1μI厚の
下引層を設けた6次に顔料&1のジスアゾ顔料2.5部
、ポリビニルブチラール樹脂(ユニオンカーバイド社製
XYI(L)1部、テトラヒドロフラン39部及びエチ
ルセロソルブ58部を72時間ボールミリングし、この
液を前記下引層表面に、波長580nmでの光透過率が
0.7%となるようにロールコータ−で塗布し、110
℃で10分間乾燥して約0.5μI厚の電荷発生層を設
けた。更にこの電荷発生層上に、電荷輸送物質として
9部、ポリカーボネート(余人化成社製C−1400)
10部及びレベリング剤としてシリコンオイル(信越化
学社製KF−50) 0.002部よりなる溶液をブレ
ードで塗布し、120℃で15分間乾燥して28μm厚
の電荷輸送層を設け、有機系電子写真感光体を作った。Using Goo, 5%, SiO, 2% (all percentages are VTG) targets, a semi-transparent conductive layer of about 200 layers was formed by sputtering so that the average transmittance in the visible range was 35%. 6wt% of polyamide resin (CM-8000 manufactured by Toshisha Co., Ltd.) was applied to the surface of this conductive layer, which was used as a conductive support.
Solution [Solvent is methyl alcohol 10 to polystyrene sulfone fiNa (Chemistat C6120 manufactured by Sanyo Chemical Co., Ltd.)
Water content (content is 6wt% based on polyamide resin) 2~
Butyl alcohol 1 (weight ratio) mixture was coated with a roll coater and dried at 115°C for 10 minutes to form a 1μI thick subbing layer.2.5 parts of 6th pigment & 1 disazo pigment, polyvinyl Butyral resin (1 part of XYI (L) manufactured by Union Carbide, 39 parts of tetrahydrofuran, and 58 parts of ethyl cellosolve) was ball-milled for 72 hours, and this liquid was applied to the surface of the undercoat layer so that the light transmittance at a wavelength of 580 nm was 0.7. % with a roll coater, 110%
It was dried for 10 minutes at .degree. C. to provide a charge generation layer with a thickness of about 0.5 .mu.I. Further, on this charge generation layer, 9 parts of polycarbonate (C-1400 manufactured by Yojin Kasei Co., Ltd.) was added as a charge transport material.
A solution consisting of 10 parts and 0.002 parts of silicone oil (KF-50, manufactured by Shin-Etsu Chemical Co., Ltd.) as a leveling agent was applied with a blade and dried at 120°C for 15 minutes to form a charge transport layer with a thickness of 28 μm. I made a photoreceptor.
■光生且勿災遺
導電層をAQの真空蒸着によって約600入庫に形成し
、下引層を設けず、且つ電荷輸送物質として
を用いた他は感光体Aの場合と同じ方法で有機系電子写
真感光体Bを作った。■A photogenic and natural conductive layer was formed by vacuum evaporation of AQ to about 600 ml, and an organic electron layer was formed using the same method as in the case of photoreceptor A, except that no subbing layer was provided and a charge transporting material was used. Photographic photoreceptor B was made.
直光本立立聚遺
下引層形成液からC6120を除いた他は感光体Aの場
合と同じ方法で有機系電子写真感光体Cを作った。Organic electrophotographic photoreceptor C was prepared in the same manner as photoreceptor A except that C6120 was removed from the Naoko Hondachi underlayer forming solution.
型置」」B贋4遭
可視域での平均透過率が30%になるようにAJII導
電層の厚さを約200人μ閣とした他は感光体Bの場合
と同様にして有機系電子写真感光体りを作った。 次に
以上の各感光体をエンドレスベルト状に加工し、これを
第1図に示す普通紙用電子写真複写機(図中1は感光体
ベルト、2はフラッシュランプ、3はミラー、4はレン
ズ。Organic electronics were prepared in the same manner as in the case of photoreceptor B, except that the thickness of the AJII conductive layer was set to approximately 200 mm so that the average transmittance in the visible range was 30%. I made a photoreceptor. Next, each of the photoreceptors described above is processed into an endless belt shape, and this is used in an electrophotographic copying machine for plain paper as shown in Fig. 1 (in the figure, 1 is a photoreceptor belt, 2 is a flash lamp, 3 is a mirror, and 4 is a lens). .
5は帯電用チャージャー、6は現像装置、7aは転写用
チャージャー、7bは分離用チャージャー、8aは除電
用ランプ、8bはライトガイド、9はクリーニング装置
、 10は定着装置、11は排紙トレイ、12は転写用
紙収納用カセット、13はレジストローラ、14は電気
ヒーター、15は電位センサー、16はタイミングセン
サー、]7は除電用ランプ)にセットし、30℃、90
%RHの雰囲気下で帯電、露光、現像(但し現像剤は供
給せず)、転写(但し転写用紙は通紙せず)、クリーニ
ング及び除電の工程を5000回繰返した。なお高温高
湿下で操作したのは短時間で残留電位を上昇させるため
である。この時の操作条件は帯電器放電々圧−8KV(
感光体への帯電4位−1300V) 。5 is a charging charger, 6 is a developing device, 7a is a transfer charger, 7b is a separation charger, 8a is a static elimination lamp, 8b is a light guide, 9 is a cleaning device, 10 is a fixing device, 11 is a paper discharge tray, 12 is a cassette for storing transfer paper, 13 is a registration roller, 14 is an electric heater, 15 is a potential sensor, 16 is a timing sensor, ] 7 is a static elimination lamp), and heated at 30°C at 90°C.
%RH atmosphere, the steps of charging, exposure, development (however, no developer was supplied), transfer (however, the transfer paper was not passed), cleaning, and static elimination were repeated 5000 times. The reason for operating under high temperature and high humidity was to increase the residual potential in a short time. The operating conditions at this time are charger discharge voltage -8KV (
Charge to photoreceptor 4-1300V).
感光体線速37ax/sec、露光量1 nux−sa
c、転写チャージャー放電々圧−8KV(−230μA
)、除電ランプ露光量3.5Qux−secである。な
お除電、露光、イレーズの各照射光はY48フィルター
により480n■以下の波長成分を除去しである。Photoreceptor linear speed 37ax/sec, exposure amount 1 nux-sa
c. Transfer charger discharge voltage -8KV (-230μA
), and the static elimination lamp exposure amount was 3.5 Qux-sec. Incidentally, each of the irradiation lights for charge removal, exposure, and erasing is filtered by a Y48 filter to remove wavelength components of 480 nm or less.
その後、常温(20℃)常湿(65%R1()に戻して
残留電位vRを測定し、更に一昼夜放置して再び残留電
位を測定した0次に電気ヒーター(セラミックヒータ−
と反射鏡よりなる)に通電して表−1〜4に示す温度及
び時間、加熱した後、常温常温に戻して残留電位を測定
した。なお疲労後の感光体を一昼夜放置したのは残留電
位の回復速度がいかに遅いかを示すと共に、単に一時的
な水分の吸着とは無関係であることを示すためである。After that, the temperature was returned to normal temperature (20°C) and normal humidity (65% R1 ()), the residual potential vR was measured, and the residual potential was measured again after being left overnight.
(consisting of a reflecting mirror) was heated for the temperature and time shown in Tables 1 to 4, and then returned to room temperature and the residual potential was measured. The reason why the photoreceptor after fatigue was left for a day and night was to show how slow the recovery speed of the residual potential is, and also to show that it is unrelated to mere temporary adsorption of moisture.
一方、以上のようにして残留電位を測定する各段階で各
感光体の一部を切取り、ペーパーアナライザー(川口電
機社製5P−428)で他の電子写真特性を測定した。On the other hand, a part of each photoreceptor was cut out at each step of measuring the residual potential as described above, and other electrophotographic characteristics were measured using a paper analyzer (manufactured by Kawaguchi Electric Co., Ltd., 5P-428).
その結果も下記表−1〜4に示す、なお測定条件はダイ
ナミックモードで、放電々流−2、47!A、光量4,
5Qux、帯電時間30秒、暗減衰時間20秒、露光時
間30秒とした。The results are also shown in Tables 1 to 4 below. The measurement conditions were dynamic mode, and the discharge flow was -2, 47! A, light amount 4,
5Qux, charging time 30 seconds, dark decay time 20 seconds, and exposure time 30 seconds.
また帯1112秒後をv2、同30秒後をV+wax、
Vmaxから20秒間の暗減衰をDDとした。また初
期電位を−aoov トし、更ニコノ電位が1/2.1
15及びl/10に減衰するに要する露光量(感度に相
当)を夫々El/2. E115. El/10 (Q
ux−sec)で示した。Also, v2 after 1112 seconds, V+wax after 30 seconds,
The dark decay for 20 seconds from Vmax was defined as DD. In addition, the initial potential is -aoov, and the new potential is 1/2.1
The exposure amount (corresponding to sensitivity) required to attenuate to El/2.15 and El/10, respectively. E115. El/10 (Q
ux-sec).
感光体A及びCについては表−4及び5に参考データと
してC6120の効果を示すため、低温低湿(10℃、
15%R1りの雰囲気下で前記帯電、露光等の工程を5
000回繰り返した場合のデータを、加熱による残留電
位の低減データに併せて示した。Regarding photoreceptors A and C, in order to show the effect of C6120 as reference data in Tables 4 and 5, low temperature and low humidity (10℃,
The steps of charging, exposure, etc. are carried out in an atmosphere of 15% R1.
The data obtained when the test was repeated 000 times are shown together with the data on the reduction in residual potential due to heating.
(以下余白) 表−1憾光体A) *5000回繰返しく30℃、90ZRI+)後。(Margin below) Table-1 Opaque body A) *After 5000 repetitions at 30°C, 90ZRI+).
*(資)■回繰返しく30℃、匍窟■)これらの表から
有機系感光体の残留電位は常温は勿論、90℃未満の加
熱では実用上1回復したとは認め難いのに対し、本実施
例のように90℃以上に加熱した場合は残留電位は急激
にしかも実用上問題にならない低レベルまで低減できる
ことが判る。同時に有機系感光体は残留電位(従ってま
たEl/2. [E115. El/loの感度)以外
では殆んど疲労が認められないこと、及び加熱処理が本
来の電子写真特性に何ら副作用を及ぼさないことが理解
されよう。*Repeatedly at 30°C twice) From these tables, it is difficult to recognize that the residual potential of the organic photoreceptor has recovered to 1 level in practice when heated to less than 90°C, let alone at room temperature. It can be seen that when heated to 90° C. or higher as in this example, the residual potential can be rapidly reduced to a low level that does not pose a problem in practice. At the same time, organic photoreceptors show almost no fatigue other than residual potential (and therefore sensitivity of El/2. It will be understood that there is no.
また以上の表から判るように機能分離型有機系感光体に
おける残留電位の減少効果に関しては導電層の種類、電
荷発生剤及び電荷輸送物質の種類、下引層(イオン性物
質C6120を添加したもの及び添加しないもの)の有
無は無関係である。因みに、残留電位のレベル及び電荷
発生層の膜厚を考え合わせれば、積層型の機能分離型有
機系感光体において残留電位が電荷発生層と関わる程度
も極めて小さいことが推測できる。As can be seen from the above table, the effect of reducing residual potential in a functionally separated organic photoreceptor depends on the type of conductive layer, the type of charge generating agent and charge transport material, and the type of undercoat layer (added with ionic substance C6120). The presence or absence of (and non-added) is irrelevant. Incidentally, if the level of the residual potential and the film thickness of the charge generation layer are taken into consideration, it can be inferred that the extent to which the residual potential is related to the charge generation layer in a stacked functionally separated organic photoreceptor is extremely small.
更に以上の実験結果は、有機系感光体の残留電位は積層
型の場合電荷輸送層中ののエネルギーレベルの極めて深
い電荷トラップに起因することを示唆区している。Furthermore, the above experimental results suggest that the residual potential of an organic photoreceptor is caused by charge traps at an extremely deep energy level in the charge transport layer in the case of a laminated type photoreceptor.
なお感光体りだけは、5000回の帯電露光反復を1単
位として同様にテストしたところ、5回以後から加熱で
も回復しない残留電位が現われ、15回と途中で光減衰
を示さなくなった(表−4)。When the photoreceptor was similarly tested using 5,000 charge-exposure repetitions as one unit, a residual potential that did not recover even with heating appeared after the 5th time, and it stopped showing light attenuation halfway through the 15th time (Table 1). 4).
これは、陽極酸化でAQの薄層が絶縁化したためで、こ
のような導電層を有する有機系感光体に対しては、本発
明の効果を半永久的に持続し得るものではない、従って
耐酸化性の導電層を備えた有機系感光体に対しては本発
明方法は特に有効である。This is because the thin layer of AQ becomes insulated during anodization, and the effect of the present invention cannot be maintained semi-permanently on organic photoreceptors having such a conductive layer. The method of the present invention is particularly effective for organic photoreceptors having a conductive layer.
豊−一困
本発明方法によれば、残留電位を生じた有機系感光体を
90℃以上に加熱することにより、本来の電子写真特性
に何の副作用も及ぼすことなく、残留電位を殆んど初期
の低レベルまで減少させることができるので、有機系感
光体の実質寿命は飛躍的に高められ、従って本発明の加
熱処理の意識が極めて大きいことは明らかである。According to the method of the present invention, by heating an organic photoreceptor that has generated a residual potential to 90°C or higher, the residual potential can be almost completely eliminated without any side effects on the original electrophotographic characteristics. Since the heat treatment can be reduced to an initial low level, the practical life of the organic photoreceptor can be dramatically increased, and it is therefore clear that the heat treatment of the present invention has great significance.
【図面の簡単な説明】
第1図は実施例で使用した電子写真複写機の概略図であ
る。
1・・・有機系感光体ベルト
2・・・フラッシュランプ3・・・ミラー4・・・レン
ズ 5・・・帯電用チャージャー6・・・現像装
W 7a・・・転写用チャージャー7b・・・分離用
チャージャー
88・・・除電用ランプ 8b・・・ライトガイド9・
・・残留トナー回収装置
10・・・定着装置 11・・・排紙トレイ12・・・
転写用紙収納カセット
13・・・レジストローラー
14・・・加熱ヒーター 15・・・電位センサー16
・・・タイミングセンサー
17・・・除電用ランプ
特許出願人 株式会社 リ コ −BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of an electrophotographic copying machine used in Examples. 1...Organic photoreceptor belt 2...Flash lamp 3...Mirror 4...Lens 5...Charging charger 6...Developing device W 7a...Transfer charger 7b... Separation charger 88... Static elimination lamp 8b... Light guide 9.
...Residual toner collection device 10...Fixing device 11...Output tray 12...
Transfer paper storage cassette 13... Registration roller 14... Heater 15... Potential sensor 16
... Timing sensor 17 ... Static elimination lamp Patent applicant Rico Co., Ltd. -
Claims (1)
及び除電の工程を繰返し行なう電子写真法において、除
電工程後、感光体の残留電位を検知し、この電位に応じ
て感光体を90℃以上に加熱することを特徴とする電子
写真法。1. In an electrophotographic method in which an organic electrophotographic photoreceptor is repeatedly subjected to at least the steps of charging, exposure, development, and charge removal, the residual potential of the photoreceptor is detected after the charge removal step, and the photoreceptor is heated to 90% according to this potential. An electrophotographic method characterized by heating above ℃.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63065244A JPH01237587A (en) | 1988-03-17 | 1988-03-17 | Electrophotographic method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63065244A JPH01237587A (en) | 1988-03-17 | 1988-03-17 | Electrophotographic method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01237587A true JPH01237587A (en) | 1989-09-22 |
Family
ID=13281304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63065244A Pending JPH01237587A (en) | 1988-03-17 | 1988-03-17 | Electrophotographic method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01237587A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7398031B2 (en) | 2004-12-28 | 2008-07-08 | Canon Kabushiki Kaisha | Image forming apparatus with heat control of image bearing member |
-
1988
- 1988-03-17 JP JP63065244A patent/JPH01237587A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7398031B2 (en) | 2004-12-28 | 2008-07-08 | Canon Kabushiki Kaisha | Image forming apparatus with heat control of image bearing member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62196665A (en) | Electrophotographic sensitive body | |
JPS63220161A (en) | Electrophotographic sensitive body | |
JPH01237587A (en) | Electrophotographic method | |
JPS61129648A (en) | Laminate type electrophotographic sensitive body | |
JP3780316B2 (en) | Photoconductor and image forming apparatus | |
JPH0689038A (en) | Electrophotographic sensitive body | |
JP4389349B2 (en) | Electrophotographic photoreceptor | |
JP3309305B2 (en) | Electrophotographic photoreceptor | |
JPS61107248A (en) | Laminate type electrophotographic sensitive body | |
JP2657238B2 (en) | Electrophotographic photoreceptor | |
JPH05265232A (en) | Electrophotographic photoreceptor | |
JP2001272802A (en) | Electrophotographic photoreceptor | |
JP3574779B2 (en) | Photoconductor and image forming apparatus | |
JP2810377B2 (en) | Electrophotographic photoreceptor fatigue recovery method | |
JPS63291063A (en) | Electrophotographic sensitive body | |
JPH03132765A (en) | Surface-roughened electrophotographic sensitive body and electrophotographic device mounted therewith | |
JPS61129650A (en) | Laminate type electrophotographic sensitive body | |
JPS61117557A (en) | Laminate type electrophotographic sensitive body | |
JPH01180550A (en) | Electrophotographic sensitive body for positive electrostatic charge | |
JPH02146550A (en) | Electrophotographic sensitive body | |
JPH04326356A (en) | Laminated electrophotographic sensitive body | |
JPH01223467A (en) | Flexible electrophotographic sensitive body | |
JP2001235887A (en) | Electrophotographic photoreceptor and method for producing the same | |
JPH0396980A (en) | Electrophotographic device | |
JPH04253062A (en) | Electrophotographic sensitive body |