JPH01237122A - Optical shaping method for thick wall section - Google Patents
Optical shaping method for thick wall sectionInfo
- Publication number
- JPH01237122A JPH01237122A JP63064496A JP6449688A JPH01237122A JP H01237122 A JPH01237122 A JP H01237122A JP 63064496 A JP63064496 A JP 63064496A JP 6449688 A JP6449688 A JP 6449688A JP H01237122 A JPH01237122 A JP H01237122A
- Authority
- JP
- Japan
- Prior art keywords
- mask
- photoset
- light flux
- light
- lines
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 21
- 230000003287 optical effect Effects 0.000 title claims description 12
- 238000007493 shaping process Methods 0.000 title 1
- 230000004907 flux Effects 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 17
- 239000012530 fluid Substances 0.000 claims description 16
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 239000007788 liquid Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 101100269850 Caenorhabditis elegans mask-1 gene Proteins 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920002601 oligoester Polymers 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
- B29C64/135—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は光硬化性流動物質に光を照射して目的形状の厚
肉断面の硬化体を製造する光学的造形法に係り、特に硬
化収縮を緩和し、硬化体の製作精度を向上できるように
した光学的造形法に関する。Detailed Description of the Invention [Industrial Application Field] The present invention relates to an optical modeling method for manufacturing a cured body with a thick cross section of a desired shape by irradiating a photocurable fluid material with light, and particularly relates to an optical modeling method for manufacturing a cured body having a thick cross section of a desired shape. The present invention relates to an optical modeling method that can alleviate the above problems and improve the manufacturing accuracy of cured products.
[従来の技術]
光硬化性樹脂等の光硬化性流動物質に光束を照射して、
該照射部分を硬化させ、この硬化部分を水平方向に連続
させると共に、さらにその上側に光硬化性流動物質を供
給して同様にして硬化させることにより上下方向にも硬
化体を連続させ、これを繰り返すことにより目的形状の
硬化体を製造する光学的造形法は特開昭60−2475
15号、62−35966号、62−101408号な
どにより公知である。また、目的形状の硬化体−断面に
相当するスリットを有する造形用マスクを通して光を照
射して硬化させ、次に硬化層の上に未硬化の光硬化性流
動物質を存在させると共にこの造形用マスクを目的形状
の硬化体の高さ方向に隣接する一断面に相当するスリッ
トに有するものに交換し、再び光を照射する工程を繰り
返すことにより目的形状の硬化体を製造する光学的造形
法も公知である(例えば、上記特開昭62−35966
号)。[Prior art] A light beam is irradiated onto a photocurable fluid material such as a photocurable resin,
The irradiated part is cured, and this cured part is made to continue in the horizontal direction, and a photocurable fluid material is further supplied above it and cured in the same manner, thereby making the cured body continuous in the vertical direction. An optical modeling method for manufacturing a cured body of a desired shape by repeating the process is disclosed in Japanese Patent Application Laid-Open No. 60-2475.
No. 15, No. 62-35966, No. 62-101408, etc. In addition, light is irradiated through a modeling mask having a slit corresponding to the cross section of the cured product in the desired shape to cure it, and then an uncured photocurable fluid material is placed on the cured layer, and this modeling mask is applied. There is also a known optical modeling method in which a cured body of the desired shape is manufactured by replacing the hardened body with one having a slit corresponding to one cross section adjacent in the height direction of the cured body of the desired shape, and repeating the process of irradiating light again. (For example, the above-mentioned Japanese Patent Application Laid-Open No. 62-35966
issue).
厚肉断面体を創成するために、光束を左右に細かく連続
的に往復動させながら走査する方法が公知である(上記
特開昭62−101408号の第2図)。In order to create a thick cross-sectional body, a method is known in which scanning is performed by finely and continuously reciprocating the light beam from side to side (FIG. 2 of the above-mentioned Japanese Patent Laid-Open No. 101408/1983).
[発明が解決しようとする課題]
光硬化性樹脂は、その硬化の時収縮を起こし、樹脂によ
るモデル製作に当って収縮による精度上の問題が生じ、
これを解決することが実用上極めて重要である。また、
硬化収縮により硬化体に亀裂が生じるおそれもあった。[Problems to be Solved by the Invention] Photocurable resins shrink when cured, and when producing models using resin, shrinkage causes accuracy problems.
Solving this problem is extremely important in practice. Also,
There was also a risk that cracks would occur in the cured product due to curing shrinkage.
光束を左右に細かく往復動させる方法は、光束の走査機
構が複雑であり、制御が難しい。The method of finely reciprocating the light beam from side to side requires a complicated light beam scanning mechanism and is difficult to control.
[課題を解決するための手段]
本発明は、光束を走査することにより目的形状の硬化体
の一断面に相当する光硬化性流動物質の硬化層を形成す
る工程を有した光学的造形法において、前記硬化工程と
して、移動中の光束を断続させることにより硬化点を列
状に連続して形成すると共に、この硬化点列を複数列隣
接させて硬化点列が集合した帯状部を形成する第1の工
程と、次にこの帯状部を幅方向に被う太さの本光束を帯
状部に照射して硬化点間の未硬化部を硬化させる第2の
工程と、を備えている。[Means for Solving the Problems] The present invention provides an optical modeling method having a step of forming a cured layer of a photocurable fluid material corresponding to a cross section of a cured body having a target shape by scanning a light beam. In the curing step, a moving light beam is interrupted to continuously form a row of hardening points, and a plurality of rows of hardening points are arranged adjacent to each other to form a band-shaped part in which the rows of hardening points are gathered. The second step is to irradiate the strip-shaped portion with a main beam of light that is thick enough to cover the strip-shaped portion in the width direction to harden the uncured portion between the hardening points.
[作 用]
本発明において、光硬化性流動物質は次のようにして硬
化して目的形状の立体が創成される。[Function] In the present invention, the photocurable fluid material is cured in the following manner to create a three-dimensional object having a desired shape.
(a) 第1の工程において、光束を断続させて光硬
化性流動物質に照射すると、光が照射された点において
硬化が開始する。(a) In the first step, when the photocurable fluid material is irradiated with intermittent light flux, curing starts at the point where the light is irradiated.
(b) (a)の硬化部を核部として硬化が外へ広
がる。(b) The hardening spreads outward using the hardened portion in (a) as the core.
(C) 続いて、第2の工程において本光束を照射す
ると未硬化の光硬化性流動物質も硬化し、(a)で生じ
た核部が互いに接続して一体化する。(C) Subsequently, in the second step, when the main light beam is irradiated, the uncured photocurable fluid material is also cured, and the core portions produced in (a) are connected to each other and integrated.
このように、第1の工程でまず硬化の核部が生じるので
あるが、この核部が極めて多数であり、かつ硬化体中に
均一に分散して存在することになるので、収縮応力の分
散が図れる。また、核部を中心として硬化、収縮が進行
しているときには、その周囲は未硬化の光硬化性流動物
質によって囲まれているので、該周囲においては収縮応
力は発生せず、核部の収縮応力もほとんど発生しない。In this way, in the first step, hardening cores are first generated, but since these cores are extremely numerous and evenly distributed in the hardened product, the shrinkage stress is dispersed. can be achieved. In addition, when curing and shrinkage are progressing around the core, the surrounding area is surrounded by uncured photocurable fluid material, so no shrinkage stress is generated around the core, and the core shrinks. Almost no stress is generated.
そして、この核部の硬化が周囲に伝播するに際しても、
該周囲のさらに外周に未硬化の光硬化性流動物質が存在
しているかぎりは硬化進行領域には収縮応力はほとんど
発生しない。このように、本発明方法によれば収縮応力
の絶対値自体も極めて小さな値となる。And even when this hardening of the core spreads to the surroundings,
As long as there is an uncured photocurable fluid material on the outer periphery, almost no shrinkage stress is generated in the curing area. In this way, according to the method of the present invention, the absolute value of the shrinkage stress itself becomes an extremely small value.
本発明では、上記核部となる硬化物が列状に複数列並列
されるので、厚肉断面体を創成できる。In the present invention, since the cured material serving as the core portion is arranged in a plurality of rows, a thick cross-sectional body can be created.
[実施例] 第1図は本発明を実施するための装置の構成図である。[Example] FIG. 1 is a block diagram of an apparatus for carrying out the present invention.
第2.3図はマスク18.19の平面図である。FIG. 2.3 is a plan view of the mask 18.19.
容器11内には光硬化性流動物質12が収容され、その
液面13に向けて光束14を照射するようにレンズ15
、ミラー16.17、ミラー16を水平方向に走査する
ミラー移動装置16a、マスク1\8.19、マスク回
転装置20等よりなる光学系が設けられている。A photocurable fluid substance 12 is housed in the container 11, and a lens 15 is installed so as to irradiate a light beam 14 toward the liquid surface 13.
, mirrors 16, 17, a mirror moving device 16a for horizontally scanning the mirror 16, a mask 1\8, 19, a mask rotating device 20, and the like.
容器11内にはテーブル21が設置され、該テーブル2
1はエレベータ22により昇降可能とされている。A table 21 is installed inside the container 11, and the table 2
1 can be raised and lowered by an elevator 22.
これら移動装置16a、回転装置20、エレベータ22
はコンピュータ23により制御される。These moving device 16a, rotating device 20, elevator 22
is controlled by computer 23.
マスク18.19にはそれぞれ等半径位に大孔18a、
19aが穿設されると共に、マスク18には小孔18b
が穿設されている。The masks 18 and 19 each have large holes 18a at equal radial positions,
19a, and the mask 18 has a small hole 18b.
is drilled.
なお、マスク18は、2ケの孔数に限らす異径の多孔マ
スクとしても良い。また、マスク19も1ケ以上の大孔
を有する多孔マスクとしても良い。Note that the mask 18 may be a multi-hole mask with different diameters, but the number of holes is limited to two. Further, the mask 19 may also be a porous mask having one or more large holes.
一方のマスク18は固定マスクであり、回転装置20の
モータ20aの回転シャフト20bと同軸に配置されて
いる。このマスク18はモータ20aによって回転はさ
れないが、ステップモータ(図示略)等の適宜の駆動装
置により、シャフト20bの周回における設置姿勢を変
更し得るように回転装置20のマシンボックス20cに
枢支されている。One mask 18 is a fixed mask, and is arranged coaxially with the rotating shaft 20b of the motor 20a of the rotating device 20. This mask 18 is not rotated by the motor 20a, but is pivoted to the machine box 20c of the rotating device 20 by an appropriate drive device such as a step motor (not shown) so that the installation posture of the mask 18 around the shaft 20b can be changed. ing.
他方のマスク19はモータ回転軸20bに固着されてい
る。The other mask 19 is fixed to the motor rotating shaft 20b.
なお、本実施例ではマスク18とマスク19は、回転シ
ャフト20bの中心となるように配置されているが、以
下に説明する第4図、第5図及び第11図のようにマス
ク18を調節できれば同軸に配置する必要はなく、別軸
としても良い。In this embodiment, the masks 18 and 19 are arranged so as to be centered on the rotating shaft 20b, but the masks 18 can be adjusted as shown in FIGS. 4, 5, and 11 described below. If possible, it is not necessary to arrange them coaxially, and they may be arranged on separate axes.
光束14は光源(図示略)からの光源光束24がミラー
16.17で反射されたものであり、固定マスク18の
孔18a又は18bを通過し、さらに回転マスク19の
孔19aが該18a118bと重なり合うときには該孔
19aをも通過して液面13に到達する。The light beam 14 is a light source light beam 24 from a light source (not shown) reflected by the mirror 16.17, and passes through the hole 18a or 18b of the fixed mask 18, and the hole 19a of the rotating mask 19 overlaps with the hole 18a or 18b. Sometimes, it also passes through the hole 19a and reaches the liquid level 13.
本発明において、目的形状の立体は、それを例えば水平
方向に高さを少しずつ変えて多数の輪切りとなし、この
輪切り体を積み重ねたものとして創成されるのであるが
、本発明はこの任意の輪切り体の肉厚を大きくできるよ
うにしたものである。そして、このために、本発明では
上記光束14の断続的照射によって硬化点列を形成し、
かつこの硬化点列を複数列並列させる第1の工程を有し
ている。In the present invention, a solid object having a desired shape is created by, for example, cutting it into a large number of slices by gradually changing the height in the horizontal direction, and stacking these slices. This allows the thickness of the sliced body to be increased. For this purpose, in the present invention, a hardening point array is formed by intermittent irradiation with the light beam 14,
The method also includes a first step of arranging a plurality of rows of hardening points in parallel.
そこで、以下に上記装置によって硬化点列を3列並列さ
せる場合の光束操作方法の一例について説明する。Therefore, an example of a light flux manipulation method when three curing point arrays are arranged in parallel using the above-mentioned apparatus will be described below.
この場合、まず、第4図の如くマスク18の小孔18b
が光束14の進行方向Aから反時計方向に小角度aだけ
回った位置となるように該マスク18をセットする。そ
して、マスク19を回転させながらミラー駆動装置16
aによフて、ミラー16、マスク回転装置20.マスク
18.19を一体的に第1図の右方向に6動させる。In this case, first, as shown in FIG.
The mask 18 is set so that it is at a position rotated by a small angle a counterclockwise from the traveling direction A of the light beam 14. Then, while rotating the mask 19, the mirror drive device 16
According to a, a mirror 16, a mask rotation device 20. Masks 18 and 19 are moved 6 times to the right in FIG. 1 as one unit.
これにより、ミラー16で反射された光束14も同速度
で第1図右方向に移力するが、この際該光束14はマス
ク19によってカットされ、孔19aが孔18bの下に
入り込んできたときだけ光束14が液面13に照射され
る。As a result, the light beam 14 reflected by the mirror 16 also moves to the right in FIG. The light beam 14 is irradiated onto the liquid surface 13.
従って、光束の照射される部分は第7図の如く、点状に
なり、かつこの点は目的形状体の形成しようとする断面
50の中心51から所要距離dたけシフトしている。こ
の点状に光束14が照射された部分は硬化して硬化点6
oとなり、列状に連なることにより硬化点列61を形成
する。Therefore, the portion irradiated with the light beam becomes a point, as shown in FIG. 7, and this point is shifted by a required distance d from the center 51 of the cross section 50 where the object shape is to be formed. The part irradiated with the light beam 14 in the form of a point is hardened to a hardening point 6
o, and by continuing in a row, a hardening point row 61 is formed.
次にマスク18を時計方向に小角度aだけ回し、小孔1
8bが第5図の如くマスク18の中心に対し正確に光束
進行方向A上に位置するようにマスク18をセットする
。そして、マスク19を回転させながら光束14を第1
図の右方向に8動させる。そうすると、第8図の如く、
形成しようとする断面50の中心51上に、光束14が
点々と照射され、中央の硬化点列62が形成される。Next, turn the mask 18 clockwise by a small angle a, and
The mask 18 is set so that the light beam 8b is positioned exactly on the light flux traveling direction A with respect to the center of the mask 18, as shown in FIG. Then, while rotating the mask 19, the light beam 14 is directed to the first
Move it 8 times to the right in the figure. Then, as shown in Figure 8,
The light beam 14 is irradiated point by point on the center 51 of the cross section 50 to be formed, and a central hardening point array 62 is formed.
次に、マスク18をさらに時計方向に小角度aだけ回し
、孔18bがマスク18の中心に対し進行方向Aから時
計方向に小角度aだけずれた位置となるようにマスク1
8をセットする。この状態でマスク19の回転と光束1
4の走査を行なうことにより、第9図の如く形成しよう
とする断面50の一辺に沿って硬化点列63が形成され
る。Next, the mask 18 is further turned clockwise by a small angle a, and the mask 18 is moved so that the hole 18b is shifted from the traveling direction A by a small angle a clockwise with respect to the center of the mask 18.
Set 8. In this state, the rotation of the mask 19 and the luminous flux 1
4, a hardening point array 63 is formed along one side of the cross section 50 to be formed as shown in FIG.
しかる後、第11図の如く、マスク18の大孔18aが
マスク中心に対して正確に光束進行方向A上に位置する
ようにマスク18を回し、マスク19の回転及び光束1
4の走査を行なう。もしくは、マスク19の大孔19a
をマスク18の大孔18aと合致させて固定し、該マス
ク19を回転させないで光束14の走査を行なう。そう
すると、本光束70が硬化点列61.62.63を被う
ように走査され、硬化点列61.62.63の各硬化点
60間の未硬化部分にも光が照射されて硬化する。Thereafter, as shown in FIG. 11, the mask 18 is rotated so that the large hole 18a of the mask 18 is positioned precisely on the light flux traveling direction A with respect to the center of the mask, and the mask 19 is rotated and the light flux 1
4 scans are performed. Or the large hole 19a of the mask 19
is aligned with the large hole 18a of the mask 18 and fixed, and scanning with the light beam 14 is performed without rotating the mask 19. Then, the main light beam 70 is scanned so as to cover the hardening point arrays 61, 62, 63, and the uncured portions between the hardening points 60 of the hardening point arrays 61, 62, 63 are also irradiated with light and hardened.
以上の如くして、目的形状の立体の肉厚の大きな1断面
が形成される。In this way, one thick cross-section of the target shape is formed.
各断面(輪切り体)を積層して立体を創成する方法につ
いて次に説明する。Next, a method of creating a three-dimensional object by stacking each cross section (circular slice) will be explained.
まずテーブル21を液面13よりもわずか下方に位置さ
せ、光束14を目的形状物の水平断面に倣って走査させ
る。この走査はコンピュータ制御されたミラー8動装置
16aにより行なわれる。First, the table 21 is positioned slightly below the liquid level 13, and the light beam 14 is scanned along the horizontal cross section of the target object. This scanning is performed by a computer-controlled mirror 8 movement device 16a.
目的形状物の一つの水平断面(この場合は底面に相当す
る部分)のすべてに光を照射して、前述の如く複数列の
硬化点列61.62.63の形成及び本光束による未硬
化部への照射をなした後、テーブル21をわずかに下降
させ、硬化物26の上に未硬化の光硬化性流動物質を流
入させた後、上記と同様の光照射を行う。この手順を繰
り返すことにより、目的形状の硬化体が得られる。By irradiating the entire horizontal cross section of the target shape (in this case, the part corresponding to the bottom surface) with light, a plurality of rows of hardening points 61, 62, 63 are formed as described above, and the unhardened portion is cured by the main beam. After irradiation, the table 21 is lowered slightly to allow the uncured photocurable fluid material to flow onto the cured material 26, and then the same light irradiation as above is performed. By repeating this procedure, a cured product having the desired shape can be obtained.
このように、硬化点60が均一に分散して硬化が開始す
るので、厚肉断面体であっても前記作用の項で説明した
通り、硬化時に発生する収縮応力が小さくなり、しかも
該応力が硬化体全体に均一に分散されるようになる。In this way, the curing points 60 are uniformly distributed and curing starts, so even in the case of a thick-walled cross-section, the shrinkage stress generated during curing becomes small, as explained in the section of the above-mentioned effect. It becomes uniformly dispersed throughout the cured product.
上記実施例では、テーブル21を徐々に下降させている
が、逆に光硬化性流動物質を注ぎ足すことにより液面1
3を徐々に上昇させても良い。また、光学系は光ファイ
バを採用しても良い。さらに、光学系は静止させ、容器
11を移動させることによって光束14を液面13に対
し相対的に移動させるようにしても良い。In the above embodiment, the table 21 is gradually lowered, but conversely, by adding more photocurable fluid material, the liquid level increases.
3 may be gradually increased. Further, the optical system may employ an optical fiber. Furthermore, the optical system may be kept stationary and the light beam 14 may be moved relative to the liquid surface 13 by moving the container 11.
上記実施例は、照射光を液面に上方から照射するように
しているが、本発明においては容器11の少なくとも所
要箇所を透光部とし、該容器の底面や側面などから光を
照射するようにしても良い。この場合、テーブルは成形
過程において徐々に上方に引き上げたり、側方に駆動さ
せたりすれば良い。In the above embodiment, the irradiation light is irradiated onto the liquid surface from above, but in the present invention, at least the required portions of the container 11 are made into transparent parts, and the light is irradiated from the bottom and side surfaces of the container. You can also do it. In this case, the table may be gradually pulled upward or driven sideways during the molding process.
本発明において、前記光硬化性流動物質としては光照射
により硬化する種々の物質を用いることができ、例えば
変性ポリウレタンメタクリレート、オリゴエステルアク
リレート、ウレタンアクリレート、エポキシアクリレー
ト、感光性ポリイミド、アミノアルキドを挙げることが
できる。In the present invention, various substances that are cured by light irradiation can be used as the photocurable fluid substance, such as modified polyurethane methacrylate, oligoester acrylate, urethane acrylate, epoxy acrylate, photosensitive polyimide, and amino alkyd. Can be done.
前記光としては、使用する光硬化性物質に応じ、可視光
、紫外光等種々の光を用いることができる。該光は通常
の光としてもよいが、レーザ光とすることにより、エネ
ルギーレベルを高めて造形時間を短縮し、良好な集光性
を利用して造形精度を向上させ得るという利点を得るこ
とができる。As the light, various types of light such as visible light and ultraviolet light can be used depending on the photocurable material used. Although the light may be ordinary light, using laser light has the advantages of increasing the energy level, shortening the modeling time, and improving the modeling accuracy by utilizing good light focusing. can.
[発明の効果コ
以上の通り、本発明によれば光学的造形法において硬化
体に発生する収縮応力を減少させると共に、収縮応力を
硬化体の全体に均一に分散させることができる。したが
って、厚肉断面体であっても亀裂がなくしかも収縮によ
る寸法の誤差も殆どない高精度のモデルを製作できる。[Effects of the Invention] As described above, according to the present invention, it is possible to reduce the shrinkage stress generated in the cured body in the optical modeling method and to uniformly disperse the shrinkage stress throughout the cured body. Therefore, even if the cross section is thick, a highly accurate model without cracks and with almost no dimensional errors due to shrinkage can be manufactured.
また、装置構成が簡易であり、その制御も容易である。Furthermore, the device configuration is simple and its control is easy.
第1図は実施例方法に採用される装置の縦断面図、第2
図及び第3図はマスクの構成説明図、第4図、第5図、
第6図及び第11図はマスク18の姿勢説明図、第7図
、第8図、第9図及び第10図は光照射プロセスの説明
図である。
12・・・光硬化性流動物質、
14・・・光束、 16・・・ミラー、18
・・・多孔マスク、
21・・・テーブル、
22・・・エレベータ、
5o・・・目的形状体の断面、
60・・・硬化点、
61.62.63・・・硬化点列。
代理人 弁理士 重 野 剛
第1図
第4図
第5図
第6図
第7図
第11図Figure 1 is a longitudinal cross-sectional view of the device employed in the example method;
Figures 3 and 3 are explanatory diagrams of the structure of the mask, Figures 4 and 5,
6 and 11 are explanatory diagrams of the posture of the mask 18, and FIGS. 7, 8, 9, and 10 are explanatory diagrams of the light irradiation process. 12... Photocurable fluid substance, 14... Luminous flux, 16... Mirror, 18
...Porous mask, 21...Table, 22...Elevator, 5o...Cross section of target shaped body, 60...Curing point, 61.62.63...Curing point array. Agent Patent Attorney Tsuyoshi Shigeno Figure 1 Figure 4 Figure 5 Figure 6 Figure 7 Figure 11
Claims (1)
光束を移動させながら照射し、該光束の照射された部分
を硬化させる工程を有する光学的造形法において、 前記硬化工程は、 移動中の光束を断続させることにより硬化点を列状に連
続して形成すると共に、この硬化点列を複数列隣接させ
て硬化点列が集合した帯状部を形成する第1の工程と、 次にこの帯状部を幅方向に被う太さの本光束を帯状部に
照射して硬化点間の未硬化部を硬化させる第2の工程と
、を備えたことを特徴とする厚肉断面体の光学的造形法
。(1) In an optical modeling method that includes a step of irradiating a photocurable fluid material with a moving light beam so as to draw a cross section of a desired shape, and curing the portion irradiated with the light beam, the curing step includes: moving. a first step of forming a continuous row of hardening points by intermittent light flux therein, and forming a band-shaped part in which the hardening point rows are assembled by adjoining a plurality of hardening point rows; a second step of irradiating the strip-shaped portion with a main beam having a thickness that covers the strip-shaped portion in the width direction to harden the uncured portion between the hardening points. Optical modeling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63064496A JPH01237122A (en) | 1988-03-17 | 1988-03-17 | Optical shaping method for thick wall section |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63064496A JPH01237122A (en) | 1988-03-17 | 1988-03-17 | Optical shaping method for thick wall section |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01237122A true JPH01237122A (en) | 1989-09-21 |
Family
ID=13259870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63064496A Pending JPH01237122A (en) | 1988-03-17 | 1988-03-17 | Optical shaping method for thick wall section |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01237122A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2703945A1 (en) * | 1993-04-12 | 1994-10-21 | Du Pont | Exposure method for reducing the distortion of models manufactured by three-dimensional imaging |
EP0681906A3 (en) * | 1989-10-30 | 1996-02-07 | 3D Systems Inc | Stereolithographic construction techniques. |
EP0747203A3 (en) * | 1988-04-18 | 1997-04-02 | 3D Systems Inc | Stereolithographic curl reduction |
US6048188A (en) * | 1988-04-18 | 2000-04-11 | 3D Systems, Inc. | Stereolithographic curl reduction |
-
1988
- 1988-03-17 JP JP63064496A patent/JPH01237122A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0747203A3 (en) * | 1988-04-18 | 1997-04-02 | 3D Systems Inc | Stereolithographic curl reduction |
US6048188A (en) * | 1988-04-18 | 2000-04-11 | 3D Systems, Inc. | Stereolithographic curl reduction |
EP0681906A3 (en) * | 1989-10-30 | 1996-02-07 | 3D Systems Inc | Stereolithographic construction techniques. |
EP1157807A1 (en) * | 1989-10-30 | 2001-11-28 | 3D Systems, Inc. | Stereolithographic construction techniques |
FR2703945A1 (en) * | 1993-04-12 | 1994-10-21 | Du Pont | Exposure method for reducing the distortion of models manufactured by three-dimensional imaging |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0140699B1 (en) | Three-dimensional shape forming method and apparatus | |
US5217653A (en) | Method and apparatus for producing a stepless 3-dimensional object by stereolithography | |
JPH0624773B2 (en) | Optical modeling method | |
JPS6340650B2 (en) | ||
JP2000263650A (en) | Stereolithography | |
JPH01237122A (en) | Optical shaping method for thick wall section | |
JPH0834063A (en) | Optical shaping method and apparatus and resin molded object | |
JPH0224121A (en) | Optical shaping method | |
JPH0596631A (en) | Method and apparatus for optical shaping | |
JP2558355B2 (en) | Three-dimensional shape forming method | |
JPH02188228A (en) | Optical shaping method | |
JP2919982B2 (en) | 3D shape forming method | |
JPH02108519A (en) | Formation of three-dimensional shape and device therefor | |
JPH08238678A (en) | Stereolithography device | |
JP2671534B2 (en) | 3D shape forming method | |
JPS63145016A (en) | Device for forming solid shape | |
JPH01237123A (en) | Light flux scanning method in optical shaping method | |
JPH06246837A (en) | Stereolithography method and stereolithography apparatus | |
JP2970300B2 (en) | 3D modeling method | |
JP3170832B2 (en) | Optical molding method | |
JPH0224124A (en) | Optical shaping method | |
KR100236566B1 (en) | Multi-optical molding device and method | |
JP6841017B2 (en) | Modeling equipment and manufacturing method of modeled objects | |
JPH01232026A (en) | Optical modeling method using a porous mask | |
JP4079544B2 (en) | Stereolithography and apparatus therefor |