JPH01234537A - Copper-based material for vacuum deposition - Google Patents
Copper-based material for vacuum depositionInfo
- Publication number
- JPH01234537A JPH01234537A JP5894988A JP5894988A JPH01234537A JP H01234537 A JPH01234537 A JP H01234537A JP 5894988 A JP5894988 A JP 5894988A JP 5894988 A JP5894988 A JP 5894988A JP H01234537 A JPH01234537 A JP H01234537A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- thin film
- base material
- contents
- vacuum deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010949 copper Substances 0.000 title claims abstract description 57
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 56
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 239000000463 material Substances 0.000 title claims abstract description 31
- 238000001771 vacuum deposition Methods 0.000 title claims abstract description 16
- 239000010409 thin film Substances 0.000 abstract description 21
- 230000000694 effects Effects 0.000 abstract description 4
- 230000001105 regulatory effect Effects 0.000 abstract description 4
- 239000000758 substrate Substances 0.000 abstract description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 239000001301 oxygen Substances 0.000 abstract description 2
- 238000007740 vapor deposition Methods 0.000 abstract 2
- 230000007547 defect Effects 0.000 description 20
- 238000007738 vacuum evaporation Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、真空蒸着による銅薄膜の形成に使用する真空
蒸着用銅基材に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a copper base material for vacuum deposition, which is used for forming a copper thin film by vacuum deposition.
[従来の技術]
近時、電子デバイスの電極として銅薄膜を使用する傾向
が増加しつつある。この銅薄膜は銅基材を使用して真空
蒸着により基板上に形成されることが多い。[Prior Art] Recently, there has been an increasing trend to use copper thin films as electrodes in electronic devices. This copper thin film is often formed on a substrate by vacuum deposition using a copper base material.
[発明が解決しようとする課題]
しかしながら、電子デバイスの製造プロセスにおいて、
従来、市販されている純度が99.99重量%以下の銅
基材を使用して真空蒸着により銅薄膜を形成すると、こ
の蒸着銅薄膜に種々の表面欠陥が発生する。特に、突起
状の欠陥が銅薄膜表面に多発し、銅薄膜形成工程におけ
る補修率を増加させると共に、歩留を著しく低下させて
しまうという問題点があった。[Problem to be solved by the invention] However, in the manufacturing process of electronic devices,
Conventionally, when a copper thin film is formed by vacuum deposition using a commercially available copper base material with a purity of 99.99% by weight or less, various surface defects occur in the deposited copper thin film. In particular, there is a problem in that protruding defects frequently occur on the surface of the copper thin film, increasing the repair rate in the copper thin film forming process and significantly reducing the yield.
ところで、純度か99.999重量%以上の高純度銅基
材を使用して、同様に真空蒸着によって銅薄膜を形成す
ると、この銅蒸着面には殆ど表面欠陥が見られず、良好
な銅薄膜が得られる。しかしながら、この高純度銅基材
は高価であるため、電子デバイスの製造コストを著しく
上昇させてしまうという問題点があった。By the way, when a copper thin film is similarly formed by vacuum evaporation using a high-purity copper base material with a purity of 99.999% by weight or more, almost no surface defects are observed on the copper evaporation surface, and a good copper thin film is obtained. is obtained. However, since this high-purity copper base material is expensive, there has been a problem in that it significantly increases the manufacturing cost of electronic devices.
本発明はかかる問題点に鑑みてなされたものであって、
低廉であると共に、蒸着膜表面に欠陥を生じさせない真
空蒸着用銅基材を提供することを目的とする。The present invention has been made in view of such problems, and includes:
An object of the present invention is to provide a copper base material for vacuum deposition that is inexpensive and does not cause defects on the surface of the deposited film.
[課題を解決するための手段]
本発明に係る真空蒸着用鋼基材は、0の含有量が5乃至
200 ppmであると共に、Zr及び/又はA、&を
総量で10乃至250 ppm含有することを特徴とす
る。[Means for Solving the Problems] The steel base material for vacuum deposition according to the present invention has a content of Zr of 5 to 200 ppm and a total amount of Zr and/or A, & of 10 to 250 ppm. It is characterized by
[作用]
本願発明者等は、種々の銅基材について真空蒸着により
銅薄膜を形成し、その膜表面を観察する実験を繰り返し
たところ、銅基材中のO(酸素)含有量が減少するほど
、蒸着膜の表面欠陥か少なくなるという知見を得た。[Function] The inventors of the present application formed copper thin films by vacuum evaporation on various copper base materials, and repeated experiments in which the film surfaces were observed, and found that the O (oxygen) content in the copper base materials decreased. We obtained the knowledge that the more surface defects the deposited film has, the fewer surface defects there will be.
また、Oを含有していても、それが後述する適当量の範
囲では、Zr又は八ρを適当量含有させることによって
銅蒸着膜表面の突起状の欠陥が生じなくなる。この添加
成分のZr又はAlは、Cuの融点以上の温度でその酸
化物の平衡解離圧が極めて小さいものである。Further, even if O is contained, as long as it is within the appropriate amount range described later, protruding defects on the surface of the copper vapor deposited film will not occur by containing an appropriate amount of Zr or 8ρ. The additive component Zr or Al has an extremely low equilibrium dissociation pressure of its oxide at a temperature equal to or higher than the melting point of Cu.
本発明はこのような実験結果に基いて完成されたもので
ある。即ち、純度が99.99重量%以下の銅を真空蒸
着用基材として使用しても、0の含有量と、Zr及び/
又はAβの含有量とを適切な範囲に規制することにより
、真空蒸着によって得られる銅薄膜面上に表面欠陥が発
生することを防止することができる。The present invention was completed based on such experimental results. That is, even if copper with a purity of 99.99% by weight or less is used as a substrate for vacuum deposition, the content of Zr and/or
Alternatively, by regulating the content of Aβ within an appropriate range, it is possible to prevent surface defects from occurring on the surface of a copper thin film obtained by vacuum evaporation.
本発明において、銅基材中のO含有量を5乃至200
ppmに規制したのは、O含有量が5 ppmより低い
銅基材を作製しようとすると製造コストが著しく上昇し
、純度が99.9.99重量%以上の高純度銅基材と同
程度の価格となって、低廉な真空蒸着用銅基材を提供す
るという本発明の目的に反するからである。また、○含
有量が200 ppmを超えると、Zr及び/又はA℃
を適当含有させても真空蒸着後のvI薄膜面」−に突起
状の表面欠陥が生してしまうためである。In the present invention, the O content in the copper base material is 5 to 200%.
The reason for restricting the O content to 5 ppm is that the manufacturing cost increases significantly when trying to produce a copper base material with an O content lower than 5 ppm, and it is difficult to produce a copper base material with a purity of 99.9.99% by weight or higher. This is because the cost increases, which goes against the purpose of the present invention, which is to provide an inexpensive copper base material for vacuum deposition. In addition, if the ○ content exceeds 200 ppm, Zr and/or A℃
This is because, even if a suitable amount of VI is contained, protruding surface defects will occur on the surface of the VI thin film after vacuum deposition.
このO含有量か上述の範囲の銅基材に対して、Zr若し
くはA!2を夫ノ?単独で10乃至250ppm含有さ
せるか、又はZr及びAlを総量で10乃至250 p
pm含有させる。これにより、銅蒸着面の表面欠陥の発
生を防止するが、このZr及び/又はA(の含有量が1
0ppmより低いと、表面欠陥の防止効果がなく、O含
有量が200ppm以下の場合であっても真空蒸着後の
銅蒸着面に表面欠陥が発生してしまう。For a copper base material with an O content in the above range, Zr or A! 2 for husband? Either 10 to 250 ppm of Zr and Al are contained alone, or the total amount of Zr and Al is 10 to 250 ppm.
Contain pm. This prevents the occurrence of surface defects on the copper-deposited surface, but if the content of Zr and/or A is 1
If it is lower than 0 ppm, there is no effect of preventing surface defects, and even if the O content is 200 ppm or less, surface defects will occur on the copper-deposited surface after vacuum deposition.
また、逆に、Zr及び/又はA、Rを250 ppmを
超えて添加しても、銅蒸着面上の表面欠陥の防止効果上
、実効が得られないのに加え、真空蒸着後の銅薄膜にお
いて、導電性等の物性に悪影響がある。このため、銅基
材のO含有量を5乃至200 ppmにすると共に、z
l−及び/又はAlの含有量総計も10乃至250 p
pmにする。Conversely, even if Zr and/or A and R are added in amounts exceeding 250 ppm, it is not effective in preventing surface defects on the copper evaporated surface, and the copper thin film after vacuum evaporation is , it has an adverse effect on physical properties such as conductivity. For this reason, the O content of the copper base material is set to 5 to 200 ppm, and z
The total content of l- and/or Al is also 10 to 250 p.
Make it pm.
前記元素を所定範囲に規制した銅基材は、純度が99.
99重量%以下の銅を出発原料として作製しても銅薄膜
の表面欠陥を防止することができるため、純度が99.
999重量%以上の高純度銅基材に比較して低廉な真空
蒸着用銅基材を得ることができる。The copper base material in which the above elements are regulated within a predetermined range has a purity of 99.
Even if the copper thin film is produced using 99% by weight or less of copper as a starting material, surface defects can be prevented, so the purity is 99%.
A copper base material for vacuum deposition can be obtained which is cheaper than a high purity copper base material of 999% by weight or more.
しかしながら、表面欠陥の発生を確実に回避するために
は、可及的に純度が高い銅基材を出発銅原料とした方が
良く、好ましくは、純度が99゜9重量%以上の銅を出
発原料として銅基材を作製した方が所望の真空蒸着用銅
基材が得られやすい。However, in order to reliably avoid the occurrence of surface defects, it is better to use a copper base material with as high a purity as possible as a starting copper raw material, preferably a starting copper material with a purity of 99.9% by weight or higher. It is easier to obtain a desired copper base material for vacuum deposition by producing a copper base material as a raw material.
[実施例]
次に、本発明の実施例について説明する。純度が999
5重量%のタフピッチ銅を出発原料として、還元若しく
は真空雰囲気での鋳造又は電解精製等によって、Zr−
Alの含有量が下記第1表に示ずような銅基材を作製し
た。[Example] Next, an example of the present invention will be described. Purity is 999
Using 5% by weight of tough pitch copper as a starting material, Zr-
Copper base materials having Al contents shown in Table 1 below were prepared.
第1表
この各実施例及び比較例に係る銅基材を使用して、Al
203基板上に、到達真空度か1 X 10 ’To
rrの条件下で、真空蒸着による銅薄膜を形成し、この
薄膜表面を顕微鏡観察して、突起状(1μm以上の凸部
)の表面欠陥の有無を調べた。この表面欠陥の有無を前
記第1表に併せて示す。Table 1 Using the copper base materials according to each of the Examples and Comparative Examples, Al
On the 203 substrate, the ultimate vacuum level is 1 x 10'To
A copper thin film was formed by vacuum evaporation under rr conditions, and the surface of this thin film was observed under a microscope to examine the presence or absence of surface defects in the form of protrusions (projections of 1 μm or more). The presence or absence of surface defects is also shown in Table 1 above.
この第1表かられかるように、本発明の実施例1乃至4
に係る銅基材を使用した場合は銅蒸着面に表面欠陥は存
在しない。これに対し、比較例1乃至5の場合は表面欠
陥が発生している。As can be seen from Table 1, Examples 1 to 4 of the present invention
When the copper base material according to the above is used, there are no surface defects on the copper-deposited surface. On the other hand, in Comparative Examples 1 to 5, surface defects occurred.
[発明の効果]
以上説明したように本発明によれば、Oの含有量を5乃
至200 ppmにすると共に、Zr及び/又はAff
lを10乃至250 ppmの範囲で添加したから、純
度か99.999重量%より低い場合であっても、真空
蒸着により形成される銅薄膜に表面欠陥か発生ずること
を防止することかでき、高品質な銅薄膜の形成を可能に
する低廉な銅基材を得ることができる。[Effects of the Invention] As explained above, according to the present invention, the O content is set to 5 to 200 ppm, and Zr and/or Af
Since L is added in the range of 10 to 250 ppm, surface defects can be prevented from occurring in the copper thin film formed by vacuum deposition even if the purity is lower than 99.999% by weight. It is possible to obtain an inexpensive copper base material that enables the formation of a high-quality copper thin film.
Claims (1)
Zr及び/又はAlを総量で10乃至250ppm含有
することを特徴とする真空蒸着用銅基材。(1) The content of O is 5 to 200 ppm, and
A copper base material for vacuum deposition, characterized in that it contains Zr and/or Al in a total amount of 10 to 250 ppm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5894988A JPH01234537A (en) | 1988-03-12 | 1988-03-12 | Copper-based material for vacuum deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5894988A JPH01234537A (en) | 1988-03-12 | 1988-03-12 | Copper-based material for vacuum deposition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01234537A true JPH01234537A (en) | 1989-09-19 |
Family
ID=13099080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5894988A Pending JPH01234537A (en) | 1988-03-12 | 1988-03-12 | Copper-based material for vacuum deposition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01234537A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5077005A (en) * | 1989-03-06 | 1991-12-31 | Nippon Mining Co., Ltd. | High-conductivity copper alloys with excellent workability and heat resistance |
EP2276070A1 (en) * | 2008-04-25 | 2011-01-19 | Mitsubishi Materials Corporation | Solar cell interconnector material and solar cell interconnector |
-
1988
- 1988-03-12 JP JP5894988A patent/JPH01234537A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5077005A (en) * | 1989-03-06 | 1991-12-31 | Nippon Mining Co., Ltd. | High-conductivity copper alloys with excellent workability and heat resistance |
EP2276070A1 (en) * | 2008-04-25 | 2011-01-19 | Mitsubishi Materials Corporation | Solar cell interconnector material and solar cell interconnector |
EP2276070A4 (en) * | 2008-04-25 | 2011-10-19 | Mitsubishi Materials Corp | SOLAR CELL INTERCONNECTOR MATERIAL AND SOLAR CELL INTERCONNECTOR |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100317091B1 (en) | Process for producing high-purity ruthenium, high-purity ruthenium material for thin film deposition, and thin film of semiconductor | |
US20180226472A1 (en) | Semiconductor device and manufacturing method for same, crystal, and manufacturing method for same | |
JP2015017027A (en) | Semiconductor device and method of producing the same, and crystal and method of producing the same | |
Murr et al. | Effects of vacuum environment on the sub-structure of evaporated FCC metal films | |
JPH03197640A (en) | High purity tantalum material and its production and tantalum target using the same | |
JPH01234537A (en) | Copper-based material for vacuum deposition | |
US3551312A (en) | Vacuum evaporation deposition of group iii-a metal nitrides | |
US3916041A (en) | Method of depositing titanium dioxide films by chemical vapor deposition | |
JPS58197314A (en) | Fibrous carbon | |
JPH01290728A (en) | Copper substrate for vacuum vapor deposition | |
JPH01205068A (en) | Copper base material for vacuum vapor deposition | |
JPH0534319B2 (en) | ||
US3285716A (en) | Etched tantalum foil | |
JPH06279992A (en) | High purity ag for vapor deposition | |
JPS58191421A (en) | Substrate for growing compound semiconductor and manufacture of compound semiconductor | |
JPH053439B2 (en) | ||
JPH02244622A (en) | Manufacturing method of semiconductor device | |
KR20030008299A (en) | Zn-added magnesium oxide thin films and process for preparing same | |
JPS5878418A (en) | Preparation of indium-antimony system compound crystal thin film | |
JP2601712B2 (en) | Material-saving method for producing mixed crystals | |
JPH01198471A (en) | Target material for sputtering for forming thin film as gate electrode of semiconductor device | |
JPH0254742A (en) | Manufacture of copper base material for vacuum vapor deposition | |
JPS61147870A (en) | Formation of al film by sputtering | |
JPS6355195A (en) | Method for growing inorganic compound single crystal | |
RU2005103C1 (en) | Method of making of films based on chalcogenide glass-like semiconductors |