[go: up one dir, main page]

JPH0123447B2 - - Google Patents

Info

Publication number
JPH0123447B2
JPH0123447B2 JP57103777A JP10377782A JPH0123447B2 JP H0123447 B2 JPH0123447 B2 JP H0123447B2 JP 57103777 A JP57103777 A JP 57103777A JP 10377782 A JP10377782 A JP 10377782A JP H0123447 B2 JPH0123447 B2 JP H0123447B2
Authority
JP
Japan
Prior art keywords
lpf
activity
pertussis
subunit
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57103777A
Other languages
Japanese (ja)
Other versions
JPS58222032A (en
Inventor
Shoji Ono
Yoji Suzuki
Atsushi Imaizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP57103777A priority Critical patent/JPS58222032A/en
Publication of JPS58222032A publication Critical patent/JPS58222032A/en
Publication of JPH0123447B2 publication Critical patent/JPH0123447B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、百日咳毒素のサブユニツト蛋白に関
する。 更に詳しくは、本発明は、百日咳菌の培養液か
ら分離・精製される毒素、LPE−HAを、その構
成要素(サブユニツト)に分離して得られるとこ
ろの、百日咳感染防御抗原活性を有する蛋白、及
びそれと組合せてインスリン分泌促進活性を発現
しうる蛋白に関するものである。 百日咳は、百日咳菌(Bordetella pertussis)
の感染によつておこる伝染性疾患であり、その予
防のために百日咳ワクチンが使用されている(通
常はジフテリアと破傷風の予防も目的として三種
混合ワクチンとして使用される。)しかし、百日
咳ワクチンは従来死菌全菌体ワクチンとして使用
されており、その有効性は十分に認められている
ものの、接種局所の発赤、腫張、疼通あるいは発
熱、下痢、嘔吐、まれにはシヨツク症状等の副作
用も少なくないという問題がある。そこで、かか
る問題点を解決するために、精製ワクチンすなわ
ち百日咳防御抗原分画ワクチン(コンポーネント
ワクチン)の開発が試みられている(例えば、特
公昭57−5203号、特開昭57−50925号参照)。 百日咳菌の産生する毒素、LPF−HAは分子量
約107000の蛋白であり、これは、生体に白血球増
多症をひきおこす白血球増多活性(LPA)、生体
にヒスタミンに対する感受性を増強させる作用を
示すヒスタミン増感活性(HSA)、生体のインス
リン分泌を促進するインスリン分泌促進活性
(IAA)あるいは赤血球凝進活性(HA活性)を
有している。そして、百日咳菌の培養液から、副
作用に関与する内毒素や易熱性毒素を除去して
HA活性を有する画分を得、これにホルマリンを
作用させてこれまた副作用の原因と考えられてい
るLPAやHSAを失活(トキソイド化)させるこ
とによつて、前述のコンポーネントワクチンが調
製されている。かくして得られたコンポーネント
ワクチンの内毒素やLPAは、全菌体ワクチンの
1/10〜1/25以下に低下しており、ワクチン接種時
の副作用も非常に改良されていることが臨床的に
も確められている。しかしながら、このコンポー
ネントワクチンにおいてもLPAの低下は必ずし
も十分ではなく、特にHSAの減弱は不十分であ
り、その改良が望まれていた。 本発明者らは、百日咳毒素の分子構造と種々の
活性発現との関係を鋭意研究した結果、特定のサ
ブユニツトのみが百日咳感染防御抗原活性を有し
ており、このサブユニツト蛋白を用いれば、副作
用の全くない百日咳ワクチンが得られることを知
見すると共に、このサブユニツト蛋白と他のサブ
ユニツト蛋白を組合せると、インスリン分泌促進
活性が発現することを知見し、本発明に到達し
た。 即ち、本発明は、蔗糖密度勾配法による分子量
が約32000で、アミノ酸組成及び組成比(重量%)
がAsp7.0,Thr5.6Ser11.1,Glu13.6,Gly8.4,
Ala6.0,Cys2.8,Val5.7,Met3.5,Ile4.0,
Leu7.0,Tyr5.0,Phe5.1,Lys4.0,His3.4,
Arg4.6,Pro3.2であり、ポリアクリルアミドゲ
ル電気泳動において単一のバンドを与え、白血球
増多活性、ヒスタミン増感活性、インスリン分泌
促進活性は共に有せず、百日咳感染防御抗原活性
を有するところの百日咳毒素のサブユニツト蛋白
T234である。その他にサブユニツト蛋白とし
ては、ポリアクリルアミドゲル電気泳動及びSDS
ポリアクリルアミドゲル電気泳動において共に単
一のバンドを与え、単独では、白血球増多活性、
ヒスタミン増感活性、インスリン分泌促進活性の
いずれも有しないが、サブユニツト蛋白T234
と組合せることによつてインスリン分泌促進活性
を発現しうるところの百日咳毒素のサブユニツト
蛋白T100とT500がある。T100は、
SDSポリアクリルアミドゲル電気泳動法による分
子量が約25000で、アミノ酸組成及び組成比(重
量%)がAsp8.5,Thr4.9,Ser14.0,Glu15.6,
Gly10.7,Ala5.7,Cys2.5,Val4.8,Met3.0,
Ile4.0,Leu5.1,Tyr4.2,Phe4.5,Lys3.3,
His3.7,Arg5.4のサブユニツト蛋白であり、T5
00は、SDSポリアクリルアミドゲル電気泳動法
による分子量が約10000で、アミノ酸組成及び組
成比(重量%)が、Asp9.0,Thr4.7,Ser13.0,
Glu16.5,Gly10.9,Ala5.2,Cys2.6,Val4.4,
Met3.0,Ile3.6,Leu6.8,Tyr3.6,Phe4.8,
Lys4.0,His3.8,Arg4.0のサブユニツト蛋白であ
る。 本発明の百日咳毒素のサブユニツト蛋白は、百
日咳菌の培養液から分離・精製される毒素、
LPF−HAから得られる。培養の容易さという点
から、百日咳菌の中でも、百日咳I相菌を用いる
のが好ましい。培養手段としては公知のいかなる
手段を採用しても良いが、いわゆる、ステナー・
シヨルテー培地(SS培地と称する)(ジヤーナル
オブ ジエネラル マイクロバイロジー(J.
gen.Microbiol)63巻、211−220頁、1971年参照)
が、近年、百日咳菌の大量培養のために広く用い
られている。本発明者らが提案したシクロデキス
トリン又はその誘導体を含有する培地、例えば、
メチルβ−シクロデキストリン(Meβ.CD)を含
有するSS培地は特に好ましいものである(例え
ば、特願昭56−163478号参照)。培養方法及び条
件は特に限定されるものではなく、従来公知の方
法及び条件を採用できるが、静置培養よりは振と
う培養の方が好ましく、培養温度は35℃前後、培
養時間は10〜100時間が適当である。 培養物(培養培地と菌体)から、生成された
LPF−HAを採取する方法、手段も特に限定され
るものではなく、公知の方法、手段を利用でき
る。例えば、百日咳I相菌(ボルデテラ・パタシ
ス東浜株)を300μg/mlのMeβ−CDを含むSS培
地にて35℃で18時間培養し、得られる培養液の遠
心上清(PH8.6)を、PH8.0の0.01Mリン酸緩衝液
で平衡化したハイドロキシアパタイトカラムに通
過せしめる。そして、得られる通過液をPH6.0に
調整した後、今度は、PH6.0の0.01Mリン酸緩衝
液で平衡化したハイドロキシアパタイトカラムに
吸着させ、これを0.5M塩化ナトリウムを含む
0.1Mリン酸緩衝液(PH7.0)で溶出して蛋白分画
を得る。この蛋白分画をハプトグロビン−セフア
ロースを支持体とするアフイニテイ−クロマトグ
ラフイーに吸着させ、0.5MNaCl及び3Mのチオ
シアン化カリウムを含む0.1Mリン酸緩衝液で脱
着してLPF−HAを得ることができる。 上記の如くして分離・精製されたLPF−HAか
ら、そのサブユニツト蛋白T234,T100及
びT500を分離し採取する方法も特に限定され
るものではなく、公知の方法及び手段を適当に組
合せて行なうことができる。例えば、精製LPF
−HAを、8Mの尿素を含むPH7.5の0.015Mのリン
酸緩衝液中で各サブユニツトに分離させ、得られ
た溶液を同じ緩衝液で平衡化たCMセフアロース
CL−6Bのカラムにかける。そして、未吸着画分
を集め、これを透析膜を用いて濃縮し、その後セ
フアクリルS−200を用いてゲル過を行な
う。かかるゲル過によつてサブユニツト蛋白T
100とT500が分離される。上記CMセフア
ロースCL−6Bのカラムにおいて、吸着された
蛋白を4Mの尿素と0.5MのNaclを含むPH7.5の
0.1Mのリン酸緩衝液を用いて流出させ蛋白の含
まれるフラクシヨンを集め、これを前記と同様に
濃縮とゲル過を行なう。かかる処理によつて、
少量の未解離LPF−HAとサブユニツト蛋白T2
34が分離される。 本発明のサブユニツト蛋白T234は、蔗糖密
度勾配法で測定した分子量が約32000(32000±
3000)である。また、アミノ酸組成と組成比(重
量%)は第1表に示した通りである。そして、ポ
リアクリルアミドゲル(ポリアクリルアミド濃度
7.5%、1N KOH−氷酢酸緩衝液(PH4.3))電気
泳動(デイスク電気泳動)において単一のバンド
を与える。 各種生物学的活性の測定法の詳細は後述する
が、その概略は次の通りである。即ち、マウスに
サブユニツト蛋白を静注し、3日後に白血球数を
測定することによりLPAを、4日後にグルコー
スを負荷し、血中のインスリンレベルを測定する
ことによりIAAを、6日後にヒスタミンを腹腔
に注射し、30分後の体温によつてHSAを調べる。
本発明のサブユニツト蛋白T234は、前記3種
類の活性はいずれも実質的に有しない。百日咳感
染防御抗原活性は次の様にして測定される。即
ち、まず抗原(トキソイド化したLPF−HA又は
サブユニツト蛋白)を不完全フロイントアジユバ
ントにて家兎に免疫し、免疫血清から硫安分画等
により抗体(IgG画分)を得る。次に、抗体と
LPF−HAとを37℃、1時間インキユベートし、
マウスに静注し、各種抗体の中和能を調べると共
に、上記の抗体をマウスの腹腔内に投与し、百日
咳I相菌を脳内接種することによる感染実験から
百日咳感染防御抗原活性を検討する。本発明のサ
ブユニツト蛋白T234は、LPH−HAと同様の
百日咳感染防御抗原活性を有している。 以上の如く、本発明のサブユニツト蛋白T23
4は、百日咳ワクチンの副作用の原因である
LPAやHSAを有せず、感染防御抗原活性は十分
に有しているので、副作用のほとんどない百日咳
ワクチンを製造するために用いることができる。 本発明のサブユニツト蛋白T100とT500
は、SDSポリアクリルアミドゲル電気泳動法で測
定した分子量が、それぞれ約25000(25000±2000)
と約10000(10000±1000)である。アミノ酸組成
と組成比(重量%)は、それぞれ第1表に示した
通りである(6N塩酸で、110℃、24時間加水分解
を行ない、日立−835高速アミノ酸分析機にて
分析した)。そして、いずれも、ポリアクリルア
ミドゲル電気
The present invention relates to subunit proteins of pertussis toxin. More specifically, the present invention relates to a protein having antigenic activity for protecting against pertussis infection, which is obtained by separating LPE-HA, a toxin isolated and purified from a culture solution of Bordetella pertussis, into its constituent components (subunits). The present invention also relates to a protein that can exhibit insulin secretagogue activity in combination with the same. Whooping cough is caused by Bordetella pertussis.
Pertussis is a contagious disease caused by infection, and pertussis vaccine is used to prevent it (usually used as a triple vaccine to prevent diphtheria and tetanus). It is used as a killed whole bacteria vaccine, and although its effectiveness is well recognized, side effects such as redness, swelling, tingling or fever at the vaccination site, diarrhea, vomiting, and in rare cases, symptoms of shock may also occur. There are many problems. Therefore, in order to solve this problem, attempts have been made to develop a purified vaccine, that is, a pertussis protective antigen fractionated vaccine (component vaccine) (see, for example, Japanese Patent Publication No. 57-5203 and Japanese Patent Application Laid-open No. 57-50925). . LPF-HA, a toxin produced by Bordetella pertussis, is a protein with a molecular weight of approximately 107,000. It has sensitizing activity (HSA), insulin secretagogue activity (IAA) that promotes insulin secretion in the body, or hemagglutinating activity (HA activity). Then, endotoxins and heat-labile toxins that are involved in side effects are removed from the B. pertussis culture solution.
The above-mentioned component vaccine is prepared by obtaining a fraction with HA activity and treating it with formalin to inactivate (toxoidize) LPA and HSA, which are also thought to be the cause of side effects. There is. The endotoxin and LPA of the component vaccine obtained in this way are reduced to 1/10 to 1/25 of that of the whole-cell vaccine, and clinical evidence shows that the side effects during vaccination are also greatly improved. It's confirmed. However, even in this component vaccine, the reduction in LPA is not necessarily sufficient, and in particular, the reduction in HSA is insufficient, and improvements have been desired. As a result of intensive research into the relationship between the molecular structure of pertussis toxin and the expression of various activities, the present inventors found that only a specific subunit has antigenic activity that protects against pertussis infection.Using this subunit protein can reduce side effects. It was discovered that a vaccine containing no pertussis can be obtained, and also that when this subunit protein is combined with another subunit protein, insulin secretagogue activity is expressed, leading to the present invention. That is, the present invention has a molecular weight of approximately 32,000 determined by the sucrose density gradient method, and an amino acid composition and composition ratio (wt%).
are Asp7.0, Thr5.6Ser11.1, Glu13.6, Gly8.4,
Ala6.0, Cys2.8, Val5.7, Met3.5, Ile4.0,
Leu7.0, Tyr5.0, Phe5.1, Lys4.0, His3.4,
Arg4.6, Pro3.2, gives a single band in polyacrylamide gel electrophoresis, does not have leukocytosis activity, histamine sensitizing activity, insulin secretagogue activity, and has pertussis infection protective antigen activity. However, it is a subunit protein of pertussis toxin, T234. In addition, for subunit proteins, polyacrylamide gel electrophoresis and SDS
Together give a single band in polyacrylamide gel electrophoresis; alone, leukocytosis activity,
It has neither histamine sensitizing activity nor insulin secretagogue activity, but subunit protein T234
There are two subunit proteins of pertussis toxin, T100 and T500, which can exhibit insulin secretagogue activity when combined with pertussis toxin. T100 is
The molecular weight as determined by SDS polyacrylamide gel electrophoresis is approximately 25,000, and the amino acid composition and composition ratio (weight%) are Asp8.5, Thr4.9, Ser14.0, Glu15.6,
Gly10.7, Ala5.7, Cys2.5, Val4.8, Met3.0,
Ile4.0, Leu5.1, Tyr4.2, Phe4.5, Lys3.3,
It is a subunit protein of His3.7, Arg5.4, and T5
00 has a molecular weight of about 10,000 as determined by SDS polyacrylamide gel electrophoresis, and the amino acid composition and composition ratio (wt%) are Asp9.0, Thr4.7, Ser13.0,
Glu16.5, Gly10.9, Ala5.2, Cys2.6, Val4.4,
Met3.0, Ile3.6, Leu6.8, Tyr3.6, Phe4.8,
It is a subunit protein of Lys4.0, His3.8, and Arg4.0. The pertussis toxin subunit protein of the present invention is a toxin isolated and purified from a culture solution of Bordetella pertussis,
Obtained from LPF-HA. From the viewpoint of ease of culturing, it is preferable to use Pertussis I phase bacteria among Bordetella pertussis. Any known culture method may be used, but the so-called stainer
Scholte medium (referred to as SS medium) (Journal of General Microbiology (J.
gen.Microbiol) volume 63, pages 211-220, 1971)
However, in recent years, it has been widely used for mass culture of Bordetella pertussis. A medium containing cyclodextrin or its derivative proposed by the present inventors, for example,
SS medium containing methyl β-cyclodextrin (Meβ.CD) is particularly preferred (see, for example, Japanese Patent Application No. 163478/1983). The culture method and conditions are not particularly limited, and conventionally known methods and conditions can be adopted, but shaking culture is preferable to static culture, the culture temperature is around 35 ° C, and the culture time is 10 to 100 °C. The time is appropriate. produced from the culture (culture medium and bacterial cells)
The method and means for collecting LPF-HA are not particularly limited, and known methods and means can be used. For example, pertussis I phase bacteria (Bordetella patassis Higashihama strain) is cultured in SS medium containing 300 μg/ml Meβ-CD at 35°C for 18 hours, and the centrifuged supernatant (PH8.6) of the resulting culture is Pass through a hydroxyapatite column equilibrated with 0.01M phosphate buffer at pH 8.0. After adjusting the resulting permeate to pH 6.0, this time it was adsorbed onto a hydroxyapatite column equilibrated with 0.01M phosphate buffer at pH 6.0, and this was adsorbed onto a hydroxyapatite column containing 0.5M sodium chloride.
Elute with 0.1M phosphate buffer (PH7.0) to obtain protein fraction. LPF-HA can be obtained by adsorbing this protein fraction on affinity chromatography using haptoglobin-Sepharose as a support and desorbing it with a 0.1M phosphate buffer containing 0.5M NaCl and 3M potassium thiocyanide. The method for separating and collecting subunit proteins T234, T100, and T500 from LPF-HA separated and purified as described above is not particularly limited, and may be carried out by appropriately combining known methods and means. Can be done. For example, purified LPF
- HA was separated into its subunits in a 0.015M phosphate buffer at pH 7.5 containing 8M urea, and the resulting solution was mixed with CM sepharose equilibrated in the same buffer.
Apply to CL-6B column. Then, the unadsorbed fractions are collected, concentrated using a dialysis membrane, and then subjected to gel filtration using Sephacryl S-200. By such gel filtration, subunit protein T
100 and T500 are separated. In the above CM Sepharose CL-6B column, the adsorbed proteins were washed in a pH 7.5 solution containing 4M urea and 0.5M NaCl.
Effluent is performed using 0.1M phosphate buffer to collect a fraction containing protein, which is concentrated and gel-filtered in the same manner as above. Through such processing,
A small amount of undissociated LPF-HA and subunit protein T2
34 are separated. The subunit protein T234 of the present invention has a molecular weight of about 32,000 (32,000±
3000). Further, the amino acid composition and composition ratio (wt%) are as shown in Table 1. And polyacrylamide gel (polyacrylamide concentration
Gives a single band in 7.5%, 1N KOH-glacial acetic acid buffer (PH4.3) electrophoresis (disk electrophoresis). Details of the methods for measuring various biological activities will be described later, but the outline thereof is as follows. Specifically, subunit proteins were intravenously injected into mice, LPA was administered by measuring white blood cell counts 3 days later, IAA was administered by glucose loading and blood insulin levels were measured 4 days later, and histamine was administered 6 days later. Inject into the peritoneal cavity and check HSA by measuring body temperature 30 minutes later.
The subunit protein T234 of the present invention substantially does not have any of the above three types of activities. Pertussis infection protective antigen activity is measured as follows. That is, first, a rabbit is immunized with an antigen (toxoidized LPF-HA or subunit protein) in incomplete Freund's adjuvant, and an antibody (IgG fraction) is obtained from the immune serum by ammonium sulfate fractionation or the like. Next, with the antibody
Incubate LPF-HA at 37℃ for 1 hour,
In addition to examining the neutralizing ability of various antibodies by intravenously injecting them into mice, we will examine the antigenic activity that protects against pertussis infection through infection experiments by intraperitoneally administering the above antibodies to mice and intracerebral inoculation with pertussis I phase bacteria. . The subunit protein T234 of the present invention has the same antigenic activity for protecting against pertussis infection as LPH-HA. As described above, the subunit protein T23 of the present invention
4 is the cause of side effects of pertussis vaccine
Since it does not contain LPA or HSA and has sufficient antigenic activity to protect against infection, it can be used to produce a whooping cough vaccine with almost no side effects. Subunit proteins T100 and T500 of the present invention
The molecular weight measured by SDS polyacrylamide gel electrophoresis is approximately 25000 (25000±2000).
and about 10000 (10000±1000). The amino acid composition and composition ratio (wt%) are as shown in Table 1 (hydrolysis was performed with 6N hydrochloric acid at 110°C for 24 hours and analyzed using a Hitachi-835 high-speed amino acid analyzer). And both polyacrylamide gel electric

【表】【table】

【表】 泳動とSDSポリアクリルアミドゲル電気泳動
(ポリアクリルアミドゲル濃度10%、SDS0.1%、
0.1Mリン酸緩衝液(PH7.2))において共に単一
のバンドを得える。そして、いずれも、単独で
は、LPA,HSA,IAA及び百日咳感染防御抗原
活性を実質的に有しない。しかしながら、いずれ
も、サブユニツト蛋白T234と組合せる(併存
させる)ことによつて、ほぼ同程度のIAAを発
現するという特徴を有する。本発明のサブユニツ
ト蛋白T100又はT500は、副作用の原因で
あるLPAやHSAを実質的に有せず、T234と
組合せるとIAAを有する様になるので、T23
4と組合せて糖尿病の治療薬として利用できる可
能性がある。 なお、本発明において採用した各種の測定法は
以下の通りである。 (1) 蔗糖密度勾配法 10%から20%迄の密度勾配をもつた蔗糖溶液
に、試料溶液をのせ、4℃、毎分65000回転で超
遠心を20時間行ない試料の沈降位置から対照物質
(ウシ血清アルブミン、キモトリプシノーゲン)
を基にして分子量を測定した。 (2) ポリアクリルアミドゲル電気泳動 ポリアクリルアミド濃度7.5%、1N KOH−氷
酢酸緩衝液(PH4.3)を用い、Davisの方法に従つ
て行なつた(B.J.Davis,Amr.N.Y.Acad.Sci.,
Nol.121,P404,1964参照)。 (3) SDSポリアクリルアミドゲル電気泳動 ポリアクリルアミド濃度10%、SDS0.1%、
0.1Mリン酸緩衝液(PH7.2)を用い、Fairbanks
らの方法に従つて行なつた(G.T.Fairbanks
etal,Biochem.,Vol.10,p2606,1971参照)。 (4) 生物活性 (i) 白血球増多活性 マウス(ddY,SPF,4W,♀)に試料を尾
静脈より静注し、3日後に、尾静脈より5μl採
血し、市販希釈液にて2000倍に希釈し、セルカ
ウンター(東亜電波K.K.製)にて白血球数を
測定した。白血球増多活性は、試料群の白血球
数と対照群の白血球数との差(A)を、基準LPF
−HAを用いた場合の白血球数と対照群の白血
球数との差(B)に対する相対的な力価として表わ
した。 (ii) インシユリン分泌促進活性 白血球増多活性を測定した後、即ち、3日目
に絶食し、4日目に50%グルコースを腹腔内投
与し、15分後に尾静脈より20μl採血し10倍希釈
した血清を得、ダイナテツク社製ラジオイムノ
アツセイキツトにより、IRI(Lmmuno
Reactive Insulin)を測定した。そして(i)の場
合と同様な方法により相対的な力価を求めた。 (iii) ヒスタミン増感活性 インシユリン分泌促進活性を測定した後、即
ち、6日目にマウス腹腔内にヒスタミン塩酸塩
を0.8mg/mouse投与し、30分後の直腸内体温
の低下を測定した。そして(i)の場合と同様な方
法により相対的な力価を求めた。 (5) 抗サブユニツト抗体のLPF−HAに対する結
合能 LPF−HA、T100,T234,T500を
それぞれコートしたマイクロプレートに、抗サブ
ユニツト抗体を入れ、室温で30分間反応させ、抗
体の結合能をMICRO ELISA法により測定した。
各抗体の結合能は、LPF−HAに対する抗LPF−
HA抗体の結合能を100としたときの相対値で示
した。 なお、抗体としては、抗原(LPF−HAはトキ
ソイド化し、サブユニツト蛋白はそのまゝ)を不
完全フロイントアジユバントにて家兎に免疫し、
その血清から硫安分画法により得られたIgG画
分を用いた。 (6) 抗サブユニツト抗体のLPF−HAに対する中
和能 LPF−HAと濃度を一定にした各抗体とを混
ぜ、37℃、1時間インキユベートした後マウスに
静注し、LPA,HSA,IAAの中和能をみた。中
和能の値は、各活性を50%中和するのに必要な抗
体の希釈倍率を、任意にきめた基準LPF−HAを
用いた場合の抗体の50%中和希釈倍率に対する相
対的値として求めた。以下、実施例により本発明
を詳述する。 実施例 1 (1) LPF−HAの分離・精製 ボルデテラ パタシス(Bordetella pertussis)
(百日咳菌)東浜株I相菌の凍結乾燥菌体を1%
カザミノ酸溶液に懸濁させ、脱繊維馬血液を20%
含むボルデ・ジヤングー(Bordet Gengou)培
地(以下BG培地という)で35℃、3日間培養し
た。この菌を1白金耳かき取り、更にBG培地で
24時間リフレツシユした菌をSS培地に懸濁し、
接種菌懸濁液を得た。この接種菌懸濁液を、
Meβ−CDを500μg/ml含むSS培地に107コロニ
ー/mlとなる様に懸濁させ、振とう条件下、35℃
で18時間培養を行つた。 培養後、以下の如き方法で産生されたLPF−
HAを採取した。培養液の遠心上清(PH8.6)を、
PH8.0の0.01Mリン酸緩衝液で平衡化したハイド
ロキシアパタイトカラムに通過させ(赤血球凝集
能を持つ他の蛋白F−HAをカラムに吸着させて
除く)、LPF−HAを含む通過液をPH6.0に調整し
た後、今度はPH6.0の0.01Mリン酸緩衝液で平衡
化したハイドロキシアパタイトカラムに通し
LPF−HAをカラムに吸着させ、これを0.5M塩化
ナトリウムを含む0.1Mリン酸緩衝液(PH7.0)で
溶出してLPF−HAを含む蛋白分画を得た。この
蛋白分画をハプトグロビン−セフアロース4Bを
支持体とするアフイニテイ−クロマトのカラムに
通し、ハプトグロビンにLPF−HAを選択的に吸
着させ、これを0.5MNaCl及び3Mのチオシアン
化カリウムを含む0.1Mリン酸緩衝液(PH7.0)で
脱着してLPF−HAを含む分画を得た。得られた
分画を0.1Mのリン酸緩衝液に対し透析し、チオ
シアン化カリウムを除き純粋なLPF−HAを得
た。 (2) LPF−HAのサブユツニツト蛋白の分離・精
製 前記(1)で得られた精製LPF−HAの0.5M食塩を
含む0.1Mリン酸緩衝液(PH7)溶液を、4M尿素
を含むPH7.5の0.015Mリン酸緩衝液に対し透析
し、得られた溶液(14.8ml、蛋白濃度0.2mg/ml)
に尿素5.7gを加え8M尿素溶液にし、30分間室温
に放置した。当量のPH7.5の0.015Mリン酸緩衝液
を加え、4M尿素溶液にした後、4M尿素を含むPH
7.5の0.015Mリン酸緩衝液で平衡化したCMセフ
アロースCL−6Bのカラムにかけた。流出パタ
ーンは第1図に示した如くであつた。蛋白の含ま
れるフラクシヨン4から30までを集め、透析膜
を用いて濃縮し、セフアクリルS−200を用い
てゲル過を行つた。流出パターンは第2図に示
した如くであつた。かゝるゲル過によつてサブ
ユニツト蛋白T100(フラクシヨン65〜7
2)とT500(フラクシヨン75〜78)が分
離された。 上記CMセフアロースCL−6Bのカラムにお
いて、フラクシヨン40以降は4M尿素と0.5M食
塩を含むPH7.5の0.1Mリン酸緩衝液を用い、蛋白
が含まれるフラクシヨン51から55までを集
め、前記と同様に濃縮とゲル過を行なつた(第
3図)。かかる処理によつて少量の未解離LPF−
HAとサブユニツト蛋白T234(フラクシヨン
62〜72)が分離された。 (3) サブユニツトの分子量および電気泳動 (2)によつて得られたサブユニツト蛋白T10
0,T500,T234およびLPF−HAを1%
ドデシル硫酸ナトリウム、1%2−メルカプトエ
タノールで100℃2分間処理し、0.1%ドデシル硫
酸ナトリウムを含む10%ポリアクリルアミドゲル
で電気泳動し、第4図の如き結果を得た。ウシ血
清アルブミン、卵白アルブミン、キモトリプシノ
ーゲン等の基準物質を用いて、第4図からサブユ
ニツト蛋白T100とT500の分子量をそれぞ
れ25000±2000と10000±1000と算出した。一方、
T234は、SDSポリアクリルアミド電気泳動で
は3本のバンドに分離するが、PH4.3の7.5%ポリ
アクリルアミド電気泳動(第5図)では単一のバ
ンドを示した。このものの分子量は、10%から20
%迄の蔗糖密度勾配法により32000±3000と算出
した。 (4) 生物活生等の性質 サブユニツト蛋白T100,T234及びT
500のLPA,HSA及びIAAは、第2表に示
した通りである。
[Table] Electrophoresis and SDS polyacrylamide gel electrophoresis (polyacrylamide gel concentration 10%, SDS 0.1%,
A single band can be obtained in both cases (0.1M phosphate buffer (PH7.2)). In addition, none of them, when used alone, has substantially no protective antigen activity against LPA, HSA, IAA, or pertussis infection. However, both have the characteristic that they express approximately the same level of IAA when combined (coexisting) with the subunit protein T234. The subunit protein T100 or T500 of the present invention does not substantially have LPA or HSA, which causes side effects, and when combined with T234, it comes to have IAA.
It may be possible to use it in combination with 4 as a therapeutic drug for diabetes. The various measurement methods adopted in the present invention are as follows. (1) Sucrose density gradient method A sample solution is placed on a sucrose solution with a density gradient from 10% to 20%, and ultracentrifuged at 65,000 revolutions per minute at 4°C for 20 hours. bovine serum albumin, chymotrypsinogen)
Molecular weight was measured based on. (2) Polyacrylamide gel electrophoresis Using polyacrylamide concentration 7.5% and 1N KOH-glacial acetic acid buffer (PH4.3), it was performed according to the method of Davis (BJ Davis, Amr. NYAcad. Sci.,
(See No. 121, P404, 1964). (3) SDS polyacrylamide gel electrophoresis Polyacrylamide concentration 10%, SDS 0.1%,
Fairbanks using 0.1M phosphate buffer (PH7.2)
(GTFairbanks)
etal, Biochem., Vol. 10, p2606, 1971). (4) Biological activity (i) Leukocytosis activity The sample was injected intravenously into mice (ddY, SPF, 4W, ♀) through the tail vein, and 3 days later, 5 μl of blood was collected from the tail vein and diluted 2000 times with a commercially available diluent. The number of white blood cells was measured using a cell counter (manufactured by Toa Denpa KK). Leukocytosis activity is calculated by calculating the difference (A) between the number of white blood cells in the sample group and the number of white blood cells in the control group.
- It was expressed as a relative titer to the difference (B) between the number of leukocytes when using HA and the number of leukocytes in the control group. (ii) Insulin secretion promoting activity After measuring the leukocytosis activity, that is, fasting on the 3rd day, intraperitoneal administration of 50% glucose on the 4th day, and 15 minutes later, 20 μl of blood was collected from the tail vein and diluted 10 times. IRI (Lmmuno) was obtained using a radioimmunoassay kit manufactured by Dynatec.
Reactive Insulin) was measured. The relative potency was then determined using the same method as in (i). (iii) Histamine sensitizing activity After measuring the insulin secretagogue activity, that is, on the 6th day, 0.8 mg/mouse of histamine hydrochloride was intraperitoneally administered to the mouse, and the decrease in rectal body temperature was measured 30 minutes later. The relative potency was then determined using the same method as in (i). (5) Binding ability of anti-subunit antibody to LPF-HA Add anti-subunit antibody to a microplate coated with LPF-HA, T100, T234, and T500, react for 30 minutes at room temperature, and evaluate the binding ability of the antibody using MICRO ELISA. It was measured by the method.
The binding ability of each antibody was determined by the binding ability of anti-LPF-HA to LPF-HA.
It is expressed as a relative value when the binding ability of the HA antibody is set as 100. As for the antibody, rabbits were immunized with the antigen (LPF-HA was toxoidized and the subunit protein was intact) in incomplete Freund's adjuvant.
An IgG fraction obtained from the serum by ammonium sulfate fractionation was used. (6) Neutralizing ability of anti-subunit antibodies against LPF-HA LPF-HA and each antibody at a constant concentration were mixed, incubated at 37°C for 1 hour, and then intravenously injected into mice. I saw Kazuno. The value of neutralization ability is the relative value of the antibody dilution required to neutralize each activity by 50% using the arbitrarily determined standard LPF-HA. I asked for it as. Hereinafter, the present invention will be explained in detail with reference to Examples. Example 1 (1) Separation and purification of LPF-HA Bordetella pertussis
(Bacillus pertussis) 1% freeze-dried bacterial cells of Higashihama strain I phase bacteria
20% defibrinated horse blood suspended in casamino acid solution
The cells were cultured in Bordet Gengou medium (hereinafter referred to as BG medium) at 35°C for 3 days. Scrape off one platinum loop of this bacteria and add it to BG medium.
Suspend the bacteria refreshed for 24 hours in SS medium,
An inoculum suspension was obtained. This inoculum suspension was
Meβ-CD was suspended in SS medium containing 500 μg/ml to a concentration of 10 7 colonies/ml, and was incubated at 35°C under shaking conditions.
Culture was performed for 18 hours. After culturing, LPF- produced by the following method
HA was collected. Centrifuged culture supernatant (PH8.6),
Pass through a hydroxyapatite column equilibrated with 0.01M phosphate buffer at pH 8.0 (other proteins F-HA with red blood cell agglutination ability are removed by adsorption to the column), and the flow-through containing LPF-HA is filtered to pH 6. After adjusting to
LPF-HA was adsorbed onto the column and eluted with 0.1M phosphate buffer (PH7.0) containing 0.5M sodium chloride to obtain a protein fraction containing LPF-HA. This protein fraction was passed through an affinity chromatography column with haptoglobin-Sepharose 4B as a support, LPF-HA was selectively adsorbed onto haptoglobin, and this was transferred to a 0.1M phosphate buffer containing 0.5M NaCl and 3M potassium thiocyanide. A fraction containing LPF-HA was obtained by desorption using a liquid (PH7.0). The obtained fraction was dialyzed against 0.1M phosphate buffer to remove potassium thiocyanide to obtain pure LPF-HA. (2) Separation and purification of subunit proteins of LPF-HA A solution of the purified LPF-HA obtained in (1) above in 0.1M phosphate buffer (PH7) containing 0.5M salt was added to a solution of 0.1M phosphate buffer (PH7) containing 4M urea. The resulting solution (14.8 ml, protein concentration 0.2 mg/ml) was dialyzed against 0.015 M phosphate buffer.
5.7 g of urea was added to make an 8M urea solution, and the solution was left at room temperature for 30 minutes. Add an equivalent amount of 0.015M phosphate buffer with pH 7.5 to make a 4M urea solution, then add 4M urea to the pH containing 4M urea.
It was applied to a column of CM Sepharose CL-6B equilibrated with 0.015M phosphate buffer at 7.5. The outflow pattern was as shown in FIG. Fractions 4 to 30 containing protein were collected, concentrated using a dialysis membrane, and subjected to gel filtration using Sephacryl S-200. The outflow pattern was as shown in FIG. By such gel filtration, subunit protein T100 (fraction 65-7
2) and T500 (fractions 75-78) were separated. In the above CM Sepharose CL-6B column, for fractions 40 onwards, a 0.1M phosphate buffer with a pH of 7.5 containing 4M urea and 0.5M salt was used, and fractions 51 to 55 containing protein were collected, and the same procedure as above was carried out. Then, concentration and gel filtration were performed (Figure 3). Through such treatment, a small amount of undissociated LPF-
HA and subunit protein T234 (fractions 62-72) were separated. (3) Subunit molecular weight and subunit protein T10 obtained by electrophoresis (2)
0, T500, T234 and LPF-HA 1%
The mixture was treated with sodium dodecyl sulfate and 1% 2-mercaptoethanol at 100°C for 2 minutes, and electrophoresed on a 10% polyacrylamide gel containing 0.1% sodium dodecyl sulfate, yielding the results shown in FIG. Using standard substances such as bovine serum albumin, ovalbumin, and chymotrypsinogen, the molecular weights of subunit proteins T100 and T500 were calculated from FIG. 4 to be 25,000±2,000 and 10,000±1,000, respectively. on the other hand,
T234 was separated into three bands in SDS polyacrylamide electrophoresis, but showed a single band in 7.5% polyacrylamide electrophoresis at PH4.3 (Figure 5). The molecular weight of this stuff is 10% to 20
It was calculated to be 32000±3000 by the sucrose density gradient method up to %. (4) Properties of biological life, etc. Subunit proteins T100, T234 and T
500 LPA, HSA and IAA are as shown in Table 2.

【表】 第2表から、T100,T234,T500
はいずれも、LPA,HSA,IAAを有しないこ
とがわかる。一方、T100とT234を組合
せると、または、T500とT234を組合せ
ると、IAAが発現することがわかる。 抗サブユニツト抗体等のLPF−HAに対する
結合能は、第3表に示した通りである。
[Table] From Table 2, T100, T234, T500
It can be seen that none of them have LPA, HSA, and IAA. On the other hand, it can be seen that when T100 and T234 are combined, or when T500 and T234 are combined, IAA is expressed. The binding ability of anti-subunit antibodies and the like to LPF-HA is shown in Table 3.

【表】 第3表から、抗T234抗体は、抗LPF−
HA抗体の約6割に相当するLPF−HAに対す
る結合能を有していることがわかる。この結果
は、in vitroにおいて、T234がLPF−HA
と同様の抗原としての活性を有していることを
示している。 抗サブユニツト抗体等のLPF−HAに対する
中和能は第4表に示した通りである。
[Table] From Table 3, anti-T234 antibody is anti-LPF-
It can be seen that it has a binding ability to LPF-HA that is equivalent to about 60% of that of the HA antibody. This result indicates that T234 is LPF-HA in vitro.
This indicates that it has the same activity as an antigen. The neutralizing ability of anti-subunit antibodies and the like against LPF-HA is shown in Table 4.

【表】 抗T234は、LPA,HSA,IAAのいずれ
の活性においても、LPF−HAに対する相当な
中和能を有していることがわかる。 感染防御実験 マウス(4W,SPF,♀)1群10〜15匹を用い、
抗LPF−HA抗体又は抗T234抗体を腹腔内に
0.5mlずつ受動免疫し、30分後に百日咳I相菌を
5×104個脳内に接種し、14日後の生残率を求め
た。抗LPF−HA抗体を用いた場合の生残率は50
%で、抗T234抗体を用いた場合の生残率は60
%であり、抗T234抗体は抗LPF−HA抗体と
ほぼ同じ感染防御能を有していることが確認され
た。 なお、対照群(抗体を用いない群)の生残率は
0%であつた。
[Table] It can be seen that anti-T234 has a considerable ability to neutralize LPF-HA in terms of LPA, HSA, and IAA activities. Infection protection experiment: Using 10 to 15 mice per group (4W, SPF, female),
Anti-LPF-HA antibody or anti-T234 antibody intraperitoneally
Passive immunization was carried out in 0.5 ml doses, and 30 minutes later, 5 x 104 pertussis phase I bacteria were inoculated into the brain, and the survival rate after 14 days was determined. Survival rate when using anti-LPF-HA antibody is 50
%, and the survival rate when using anti-T234 antibody is 60%.
%, and it was confirmed that the anti-T234 antibody has almost the same ability to protect against infection as the anti-LPF-HA antibody. The survival rate of the control group (group without antibody) was 0%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は実施例1の(2)に関す
るグラフであり、第1図はCMセフアローズCL
−6Bカラムクロマトグラフイーであり、第2図、
第3図は、セフアクリルS−200ゲル過クロ
マトグラフイーである。蛋白濃度はLowry法に
よつた。第4図は、LPF−HAおよび各サブユニ
ツト蛋白のSDSポリアクリルアミド電気泳動図で
あり、第5図は、LPF−HAおよびT−234の
PH4.3のポリアクリルアミド電気泳動図である。
Figures 1, 2, and 3 are graphs related to (2) of Example 1, and Figure 1 is a graph of CM Cef Arrows CL.
-6B column chromatography, Figure 2,
Figure 3 is Sephacryl S-200 gel perchromatography. Protein concentration was determined by the Lowry method. Figure 4 is an SDS polyacrylamide electropherogram of LPF-HA and each subunit protein, and Figure 5 is an SDS polyacrylamide electropherogram of LPF-HA and T-234.
It is a polyacrylamide electropherogram of PH4.3.

Claims (1)

【特許請求の範囲】[Claims] 1 蔗糖密度勾配法による分子量が約32000で、
アミノ酸組成及び組成比(重量%)がAsp7.0,
Thr5.6,Ser11.1,Glu13.6,Gly8.4,Ala6.0,
Cys2.8,Val5.7,Met3.5,Ile4.0,Leu7.0,
Tyr5.0,Phe5.1,Lys4.0,His3.4,Arg4.6,
Pro3.2であり、ポリアクリルアミドゲル電気泳動
において単一のバンドを与え、白血球増多活性、
ヒスタミン増感活性、インスリン分泌促進活性は
共に有せず、百日咳感染防御抗原活性を有すると
ころの百日咳毒素のサブユニツト蛋白T234。
1 The molecular weight as determined by the sucrose density gradient method is approximately 32,000,
Amino acid composition and composition ratio (weight%) are Asp7.0,
Thr5.6, Ser11.1, Glu13.6, Gly8.4, Ala6.0,
Cys2.8, Val5.7, Met3.5, Ile4.0, Leu7.0,
Tyr5.0, Phe5.1, Lys4.0, His3.4, Arg4.6,
Pro3.2, giving a single band in polyacrylamide gel electrophoresis, leukocytosis activity,
T234, a subunit protein of pertussis toxin, which has neither histamine sensitizing activity nor insulin secretagogue activity, but has pertussis infection protective antigen activity.
JP57103777A 1982-06-18 1982-06-18 Subunit protein in pertussal toxin Granted JPS58222032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57103777A JPS58222032A (en) 1982-06-18 1982-06-18 Subunit protein in pertussal toxin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57103777A JPS58222032A (en) 1982-06-18 1982-06-18 Subunit protein in pertussal toxin

Publications (2)

Publication Number Publication Date
JPS58222032A JPS58222032A (en) 1983-12-23
JPH0123447B2 true JPH0123447B2 (en) 1989-05-02

Family

ID=14362860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57103777A Granted JPS58222032A (en) 1982-06-18 1982-06-18 Subunit protein in pertussal toxin

Country Status (1)

Country Link
JP (1) JPS58222032A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE455946B (en) * 1986-10-20 1988-08-22 Trion Forskning & Utveckling NEW PERTUSSISTOXIN POLYPEPTIDES AND ANTIGENS AND TEST KITS, VACCINES AND INTRADERMAL SKIN TEST COMPOSITIONS
DE3785664T2 (en) * 1986-12-22 1993-08-12 Trion Forskning & Utveckling PERTUSSIS TOXIN POLYPEPTIDE AND ITS APPLICATIONS.
CA1337859C (en) * 1987-04-24 1996-01-02 Masashi Chazono Method for culturing bordetella pertussis, a pertussis toxoid and a pertussis vaccine
EP0296765B1 (en) * 1987-06-24 1994-06-08 Teijin Limited Bordetella pertussis variants
JPS6485926A (en) * 1987-06-24 1989-03-30 Teijin Ltd Mutant of bordetella pertussis
GB8910570D0 (en) 1989-05-08 1989-06-21 Wellcome Found Acellular vaccine

Also Published As

Publication number Publication date
JPS58222032A (en) 1983-12-23

Similar Documents

Publication Publication Date Title
CA2163032C (en) Antibody fragments in therapy
Berken et al. Properties of antibodies cytophilic for macrophages
AU681573B2 (en) Type I and type II surface antigens associated with (staphylococcus epidermidis)
Reiser et al. Purification and some physicochemical properties of toxic-shock toxin
CA1231643A (en) Composition of intravenous immune globulin
EP0336736B1 (en) Purification of pertussis toxins and production of vaccine
Kim et al. MODIFICATION OF HOST RESPONSES TO BACTERIAL ENDOTOXINS II. PASSIVE TRANSFER OF IMMUNITY TO BACTERIAL ENDOTOXIN WITH FRACTIONS CONTAINING 19S ANTIBODIES
US5667787A (en) Purification of a pertussis outer membrane protein
EP2487186A1 (en) Immunoregulatory structures from normally occuring proteins
Amino et al. Human lymphotoxin obtained from established lymphoid lines: purification characteristics and inhibition by anti-immunoglobulin
JP2950970B2 (en) Method for purifying a 69000 dalton antigenic protein from B. pertussis
JPH0123447B2 (en)
Cunningham et al. Immunochemical properties of streptococcal M protein purified by isoelectric focusing
Rubin et al. Specific heterologous enhancement of immune responses: V. Isolation of a soluble enhancing factor from supernatants of specifically stimulated and allogeneically induced lymphoid cells
JPH0723398B2 (en) Colostrum-derived polypeptide factor
Geczy et al. Antibodies to Guinea Pig Lymphokines: IV. Suppression of the Mixed Leukocyte Culture Reaction by anti-Lymphokine Globulin
JPH10505356A (en) Compositions and methods for administration to humans, peptides capable of down-regulating an antigen-specific immune response
Chaudhry et al. Shared and specific allergenic and antigenic components in the two sexes of American cockroach—Periplaneta americana
Gislason et al. Intravenous γ-globulin infusions in patients with hypo-γ-globulinemia
JPH0453848B2 (en)
Maurer et al. Immunological studies with plasma expanders derived from human plasma
US6444211B2 (en) Purification of a pertussis outer membrane protein
Hall et al. Soluble antigens of the bovine cornea
Pesce et al. Modulation of the immune response to allergens: phospholipase A degradation products suppress IgG and IgE response in mice
US5324511A (en) Vaccines and immunoglobulin G-containing preparations active against pseudomonas aeruginosa