JPH01233367A - Detection of accumulation state for deposit for slurry tank - Google Patents
Detection of accumulation state for deposit for slurry tankInfo
- Publication number
- JPH01233367A JPH01233367A JP63061307A JP6130788A JPH01233367A JP H01233367 A JPH01233367 A JP H01233367A JP 63061307 A JP63061307 A JP 63061307A JP 6130788 A JP6130788 A JP 6130788A JP H01233367 A JPH01233367 A JP H01233367A
- Authority
- JP
- Japan
- Prior art keywords
- slurry
- tank
- ultrasonic
- receiver
- transmitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、スラリタンク内堆積物の堆積状況検出方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting the accumulation status of deposits in a slurry tank.
スラリ(固体粒子s81液)をタンク内に貯蔵す゛ると
、通常、固体粒子の比重は液の比重より大きいことから
、タンク底部に固体粒子が堆積し、タンク内スラリの濃
度の不均一、タンクの有効貯蔵容量の減少を引き起こす
。When slurry (solid particle S81 liquid) is stored in a tank, the specific gravity of the solid particles is usually greater than the specific gravity of the liquid, so solid particles accumulate at the bottom of the tank, causing uneven concentration of the slurry in the tank and causing a decrease in effective storage capacity.
このため、スラリタンク内堆積物の堆積状況を常に監視
する必要があるが、従来は、タンク上部から重錘の付い
たワイヤを投下して、流動性のない堆積層上に重錘が着
座したときのワイヤの長さを測定し、これから堆積物の
堆積状況を検出する方法が、主として採られていよ(例
えば特開昭59−62486号参照)。For this reason, it is necessary to constantly monitor the deposition status of sediment in the slurry tank, but conventionally, a wire with a weight attached to it was dropped from the top of the tank, and the weight was placed on the non-flowing sediment layer. The most commonly used method is to measure the length of the wire and detect the deposition status from this (see, for example, Japanese Patent Laid-Open No. 59-62486).
しかしながら、上述した従来の検出方法では、重錘が堆
積層上に着座する必要があることから、スラリと堆積層
との間に明確に流動性の差が生じる場合にしか、適用で
きない。高濃度石炭スラリのように、第3図に示す如く
、タンク内で連続的な固体粒子濃度勾配をもった堆積層
を形成するスラリでは、堆積状況を検出することができ
ない。However, the conventional detection method described above requires the weight to be seated on the deposited layer, so it can only be applied when there is a clear difference in fluidity between the slurry and the deposited layer. In the case of slurry such as high-concentration coal slurry that forms a deposited layer with a continuous solid particle concentration gradient in the tank as shown in FIG. 3, the state of deposition cannot be detected.
また、上述した従来の検出方法では、重錘の昇降機構な
ど機械的な機構を有するために、その故障によって検出
作業が妨げられ易い。さらに、タンク内の同じ箇所を定
期的に測定していると、重錘の上下による堆積層の掻き
乱しによって、その箇所の堆積状況がタンク全体の堆積
状況とは変ってくるなどの問題点もある。Further, since the above-described conventional detection method includes a mechanical mechanism such as a lifting mechanism for a weight, the detection work is likely to be hindered due to a failure of the mechanical mechanism. Furthermore, if the same point in the tank is measured regularly, the sedimentation layer at that point is disturbed by the vertical movement of the weight, which causes problems such as the sedimentation condition at that point being different from the sedimentation condition in the tank as a whole. There is also.
この発明は、上述の現状に鑑み、タンク内で連続的な固
体粒子濃度勾配をもった堆積層を形成するスラリについ
ても、その堆積状況を検出することができ、然も頻繁に
測定しても堆積層を掻き乱すこともなく、機械的な機構
の故障によって検出作業が妨げられ易いという問題自体
を生じることもない、スラリタンク内堆積物の堆積状況
検出方法を提供することを目的とするものである。In view of the above-mentioned current situation, the present invention is capable of detecting the deposition status of slurry that forms a deposited layer with a continuous solid particle concentration gradient in a tank, and even with frequent measurements. An object of the present invention is to provide a method for detecting the state of deposits in a slurry tank, which does not disturb the deposited layer and does not cause the problem that detection work is easily hindered by failure of a mechanical mechanism. It is.
この発明のスラリタンク内堆積物の堆積状況検出方法は
、スラリか貯蔵されたスラリタンク内下部に、互いに水
平方向に間隔をあけて位置させた超音波送波器および超
音波受波器を少なくとも1組設置し、前記送波器から超
音波を送波して、前記スラリ中を伝播させて前記受波器
に受波させ、そのとき受波された超音波の伝播特性から
、前記タンク内に堆積した堆積物の堆積状況を検出する
ことに特徴を有するものである。A method for detecting the accumulation status of deposits in a slurry tank according to the present invention includes at least an ultrasonic transmitter and an ultrasonic receiver located at a lower part of a slurry tank in which slurry is stored, with an interval in the horizontal direction from each other. One set is installed, and ultrasonic waves are transmitted from the transmitter, propagated through the slurry, and received by the receiver, and from the propagation characteristics of the received ultrasonic waves, it is determined that This method is characterized in that it detects the accumulation status of sediments deposited on the ground.
以下、この発明のスラリタンク内堆積物の堆積状況検出
方法について詳述する。Hereinafter, the method for detecting the accumulation state of deposits in a slurry tank according to the present invention will be described in detail.
第1図は、この発明の検出方法の一実施態様を示す説明
図である。FIG. 1 is an explanatory diagram showing one embodiment of the detection method of the present invention.
第1図において、1はスラリ2が貯蔵されたスラリタン
ク、3.4は互いに水平方向に間隔をあけて位置させた
超音波送波器、超音波受波器である。この発明では、こ
のような送波器3および受波器4をタンク1内下部に設
置し、送波器3から超音波を送波して、スラリ2中を伝
播させて受波器4に受波させ、これによって、タンク1
内に堆積した堆積物の堆積状況を検出するものである。In FIG. 1, reference numeral 1 indicates a slurry tank in which slurry 2 is stored, and reference numerals 3 and 4 indicate an ultrasonic transmitter and an ultrasonic receiver, which are spaced apart from each other in the horizontal direction. In this invention, such a transmitter 3 and a receiver 4 are installed in the lower part of the tank 1, and ultrasonic waves are transmitted from the transmitter 3, propagated through the slurry 2, and sent to the receiver 4. By this, tank 1
This is to detect the accumulation status of sediments deposited inside.
送波器3および受波器4は、−組設置するだけでもよい
が、堆積層の高さ方向の状況をも検出できるようにする
ために、高さ方向に間隔をあけて複数組、例えば図に示
すように3組設置することが好ましい。送波器3から送
波させる超音波の最適周波数は、スラリ2の性状によっ
て異なるが、一般的にはl OKHz〜l OMHz程
度が好ましい。The transmitter 3 and the receiver 4 may be installed in one set, but in order to be able to detect the situation in the height direction of the deposited layer, multiple sets of the transmitter 3 and the receiver 4 may be installed at intervals in the height direction, for example. It is preferable to install three sets as shown in the figure. The optimum frequency of the ultrasonic waves transmitted from the transmitter 3 varies depending on the properties of the slurry 2, but is generally preferably about 1 0 Hz to 1 0 MHz.
また、その超音波の形態は、連続波でもパルス波でもよ
い。Moreover, the form of the ultrasonic wave may be a continuous wave or a pulse wave.
送波器3から超音波を送波してスラリ2中を伝播させた
場合、その伝播特性たる強度減衰率および伝播速度は、
スラリ2の固体粒子濃度と相関があることが知られてい
る。従って、対象とするスラリ2と同一種の濃度既知の
スラリについて、超音波の強度減衰率又は伝播速度を測
定して、スラリの固体粒子濃度と強度減衰率又は伝播速
度との関係を、例えば検量線のような形で予め求めてお
けば、スラリ2中を伝播させて受波器4に受波させた超
音波の伝播特性として、強度減衰率又は伝播速度を計測
することにより、スラリ2の固体粒子濃度が測定でき、
その堆積状況が検出できる。When ultrasonic waves are transmitted from the transmitter 3 and propagated through the slurry 2, the intensity attenuation rate and propagation speed, which are the propagation characteristics, are as follows.
It is known that there is a correlation with the solid particle concentration of slurry 2. Therefore, the intensity attenuation rate or propagation speed of ultrasonic waves is measured for a slurry of the same type as the target slurry 2 whose concentration is known, and the relationship between the solid particle concentration of the slurry and the intensity attenuation rate or propagation speed is determined by, for example, calibration. If it is determined in advance in the form of a line, the intensity attenuation rate or propagation velocity can be measured as the propagation characteristic of the ultrasonic wave propagated through the slurry 2 and received by the receiver 4. Solid particle concentration can be measured,
The accumulation status can be detected.
即ち、送波器3および受波器4を一組設置した場合には
、°設置箇所と同一高さの位置におけるスラリ2の固体
粒子濃度が測定でき、その位置において固体粒子が堆積
物として堆積層を形成しているか否かの堆積状況が検出
できる。送波器3および受波器4を複数組設置した場合
には、固体粒子が堆積物として堆積層を形成しているか
否かが判るだけでなく、堆積層の高さ方向における固体
粒子濃度分布状況をも検出できる。That is, when a set of the transmitter 3 and receiver 4 is installed, the solid particle concentration of the slurry 2 can be measured at the same height as the installation location, and the solid particles are deposited as deposits at that position. It is possible to detect whether a layer is formed or not. When multiple sets of transmitters 3 and receivers 4 are installed, it is possible to not only determine whether or not solid particles form a deposited layer, but also to determine the solid particle concentration distribution in the height direction of the deposited layer. It can also detect the situation.
但し、以上で、超音波の伝播特性はスラリ2の温度によ
って変化し、スラリ2の固体粒子濃度測定値も異なって
くるので、図に示すように、送波器3および受波器4の
設置箇所近辺に温度計5を設置して、そこのスラリ2の
温度を測定し、固体粒子濃度測定値を温度補償するよう
にしておく。However, since the propagation characteristics of ultrasonic waves change depending on the temperature of the slurry 2 and the measured solid particle concentration of the slurry 2 also differs, the installation of the transmitter 3 and the receiver 4 is as shown in the figure. A thermometer 5 is installed near the location to measure the temperature of the slurry 2 there, and the measured solid particle concentration is temperature-compensated.
内径loom、高さ500鴫の円筒容器の側壁の、底面
から50+aの高さの相対する位置に、1組の超音波送
波器と超音波受波器を水平に相対向させて設置し、また
、容器の側壁の同高さの位置にサンプリングバルブを設
置した。そして、容器内に粉石灰含有量5owt%の石
炭・水スラリを満して静置したのち、定期的に送波器か
らl MHzの超音波を送波して受波器に受波させ、超
音波の同スラリ中伝播による強度減衰率を測定した。同
時にサンプリングパルプによって石炭・水スラリを採取
し、スラリの固体粒子濃度を測定した。A pair of ultrasonic transmitter and ultrasonic receiver are installed horizontally opposite each other on the side wall of a cylindrical container with an inner diameter of room and a height of 500 m, at opposite positions at a height of 50 + a from the bottom surface, In addition, a sampling valve was installed at the same height on the side wall of the container. Then, after filling the container with a coal/water slurry with a lime powder content of 5 owt% and letting it stand still, the transmitter periodically transmits l MHz ultrasonic waves and the receiver receives the waves. The intensity attenuation rate due to the propagation of ultrasonic waves through the slurry was measured. At the same time, a coal/water slurry was sampled using a sampling pulp, and the solid particle concentration of the slurry was measured.
そのとき得られた超音波の強贋減衰率およびスラリの固
体粒子濃度の経時変化を、第2図に示す。Figure 2 shows the time-dependent changes in the ultrasonic attenuation rate and solid particle concentration of the slurry obtained at that time.
第2図から明らかなように、超音波の減衰率とスラリの
固体粒子濃度の変化は呼応しておシ、石炭・水スラリ中
での超音波の減衰率を測定することによって、その測定
位置と同一高さの位置におけるスラリの固体粒子濃度を
検知できることが判る。As is clear from Fig. 2, the attenuation rate of ultrasonic waves and the solid particle concentration of the slurry change in concert, and by measuring the attenuation rate of ultrasonic waves in the coal/water slurry, It can be seen that the solid particle concentration of the slurry at the same height position can be detected.
従って、これからその高さの位置においてスラリの粉石
灰が堆積物として堆積層を形成しているか否かを知るこ
とができる。Therefore, it can be determined from this whether or not powdered lime of the slurry is forming a deposited layer at that height.
この発明の検出方法は以上のように構成されるので、タ
ンク内で連続的な固体粒子濃度勾配をもつた堆積層を形
成するスラリについても、その堆積状況を検出すること
ができる。また、頻繁に測定しても堆積層を掻き乱すこ
ともなく、機械的な機構の故障によって検出作業が妨げ
られ易いという問題自体を生じることもない。Since the detection method of the present invention is configured as described above, it is possible to detect the deposition status of slurry that forms a deposited layer with a continuous solid particle concentration gradient in a tank. Further, even if the measurement is carried out frequently, the deposited layer is not disturbed, and the problem that the detection work is easily hindered due to failure of the mechanical mechanism does not occur.
第1図は、この発明の検出方法の一実施態様を示す説明
図、第2図は、この発明の実施例で得られた超音波の強
度減衰率およびスラリの固体粒子濃度の経時変化を示す
グラフ、第3図は、タンク内スラリの固体粒子濃度とタ
ンクの高さ方向における位置との関係を概念的に示すグ
ラフである。
図面において、
1・・・スラリタンク、 2・・・スラリ、3・・
・超音波送波器、 4・・・超音波受波器、5・・・
温度計。FIG. 1 is an explanatory diagram showing an embodiment of the detection method of the present invention, and FIG. 2 shows changes over time in the intensity attenuation rate of ultrasonic waves and the solid particle concentration of the slurry obtained in an example of the present invention. The graph in FIG. 3 is a graph conceptually showing the relationship between the solid particle concentration of the slurry in the tank and the position in the height direction of the tank. In the drawings, 1...slurry tank, 2...slurry, 3...
・Ultrasonic transmitter, 4... Ultrasonic receiver, 5...
thermometer.
Claims (1)
方向に間隔をあけて位置させた超音波璋波器および超音
波受波器を少なくとも1組設置し、前記送波器から超音
波を送波して、前記スラリ中を伝播させて前記受波器に
受波させ、そのとき受波された超音波の伝播特性から、
前記タンク内に堆積した堆積物の堆積状況を検出するこ
とを特徴とする、スラリタンク内堆積物の堆積状況検出
方法。At least one set of an ultrasonic transducer and an ultrasonic receiver are installed at the lower part of the slurry tank in which the slurry is stored, and are spaced apart from each other in the horizontal direction, and the ultrasonic wave is transmitted from the transmitter. Then, the ultrasonic waves are propagated through the slurry and received by the receiver, and from the propagation characteristics of the ultrasonic waves received at that time,
A method for detecting the accumulation status of sediment in a slurry tank, comprising detecting the accumulation status of sediment accumulated in the tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63061307A JPH01233367A (en) | 1988-03-15 | 1988-03-15 | Detection of accumulation state for deposit for slurry tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63061307A JPH01233367A (en) | 1988-03-15 | 1988-03-15 | Detection of accumulation state for deposit for slurry tank |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01233367A true JPH01233367A (en) | 1989-09-19 |
Family
ID=13167390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63061307A Pending JPH01233367A (en) | 1988-03-15 | 1988-03-15 | Detection of accumulation state for deposit for slurry tank |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01233367A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994004907A1 (en) * | 1992-08-17 | 1994-03-03 | Commonwealth Scientific And Industrial Research Organisation | A method and apparatus for determining the particle size distribution, the solids content and the solute concentration of a suspension of solids in a solution bearing a solute |
AU676846B2 (en) * | 1992-08-17 | 1997-03-27 | Commonwealth Scientific And Industrial Research Organisation | A method and apparatus for determining the particle size distribution, the solids content and the solute concentrations of a suspension of solids in a solution bearing a solute |
JP2009539111A (en) * | 2006-06-01 | 2009-11-12 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Apparatus and method for monitoring marking fluid |
-
1988
- 1988-03-15 JP JP63061307A patent/JPH01233367A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994004907A1 (en) * | 1992-08-17 | 1994-03-03 | Commonwealth Scientific And Industrial Research Organisation | A method and apparatus for determining the particle size distribution, the solids content and the solute concentration of a suspension of solids in a solution bearing a solute |
AU676846B2 (en) * | 1992-08-17 | 1997-03-27 | Commonwealth Scientific And Industrial Research Organisation | A method and apparatus for determining the particle size distribution, the solids content and the solute concentrations of a suspension of solids in a solution bearing a solute |
JP2009539111A (en) * | 2006-06-01 | 2009-11-12 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Apparatus and method for monitoring marking fluid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3752411B2 (en) | Probe mapping diagnostic method and apparatus | |
US6568271B2 (en) | Guided acoustic wave sensor for pipeline build-up monitoring and characterization | |
US20220178879A1 (en) | Multi-bounce acoustic signal material detection | |
US6192751B1 (en) | Non-invasive low frequency elastic wave fluid level sensing system for sludge laden environments | |
EP1604096B1 (en) | Method for determining a position of an object | |
US8495913B2 (en) | Level measurement system | |
WO1996007875A1 (en) | Ultrasonic probes for use in monitoring fluid in tanks | |
US9360360B2 (en) | System for measuring level of dry bulk material in container | |
GB2060883A (en) | Apparatus for detecting freezing of the surface of an asphalt road or the like | |
WO2014016801A2 (en) | Non-invasive acoustic monitoring of subsea containers | |
US5784338A (en) | Time domain reflectometry system for real-time bridge scour detection and monitoring | |
US4228530A (en) | Mud level monitor | |
JPH01233367A (en) | Detection of accumulation state for deposit for slurry tank | |
US4397191A (en) | Liquid velocity measurement system | |
US4602508A (en) | Continuous gravity gradient logging | |
EP0119790A1 (en) | Liquid level monitoring | |
CN213632314U (en) | Material level height detection device for cement bin | |
JP3307610B2 (en) | Tank liquid level measurement device | |
JPS5847219A (en) | Storage measuring device of silo for storing powder and particle | |
CA1155215A (en) | System detecting particles carried by a fluid flow | |
US11579006B2 (en) | Radar level gauge and method for detecting a cleaning process using the radar level gauge | |
Behnia et al. | Ultrasonic based device to monitor oil separation from oily water discharges | |
CN112432683A (en) | Electromagnetic wave water level monitoring system | |
JP2783006B2 (en) | Method of measuring raw material charging time in bellless blast furnace charging equipment | |
Seibt-Winckler et al. | Measurements with a three frequency echo sounder for the detection of suspended matter in a river estuary |