[go: up one dir, main page]

JPH01233316A - Revolution detector - Google Patents

Revolution detector

Info

Publication number
JPH01233316A
JPH01233316A JP5986688A JP5986688A JPH01233316A JP H01233316 A JPH01233316 A JP H01233316A JP 5986688 A JP5986688 A JP 5986688A JP 5986688 A JP5986688 A JP 5986688A JP H01233316 A JPH01233316 A JP H01233316A
Authority
JP
Japan
Prior art keywords
magnetic pole
pole plate
magnetic
rotating
peripheral edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5986688A
Other languages
Japanese (ja)
Inventor
Mitsuo Yamashita
満男 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5986688A priority Critical patent/JPH01233316A/en
Publication of JPH01233316A publication Critical patent/JPH01233316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To make the speed of response high, to exclude the effect of an ambient temperature and to make a resolution high, by a construction wherein a rotary magnetic pole plate having magnetic poles of different polarities disposed alternately along the peripheral edge thereof is fixed concentrically to a rotary shaft and elements prepared by winding detecting coils on ferromagnetic slender wires respectively are disposed in close proximity to said plate. CONSTITUTION:A rotary shaft 2 is supported rotatably by a case 1, while a rotary magnetic pole plate 3 formed of a ferromagnetic material is fixed concentrically to the shaft. On the peripheral edge part of the rotary magnetic pole plate 3, S and N poles are magnetized alternately and adjacently at prescribed intervals, and a spatial magnetic field wherein polarities of S and N vary alternately and sinusoidally substantially is formed along said peripheral edge part. Detecting elements 4 and 5 are formed by winding detecting coils on the central parts of amorphous alloy slender wires 6 and 6 bent in the shape of U respectively, and the opposite end parts thereof are made parallel substantially to the axial direction of the rotary shaft 2 through the intermediary of supporting members 10 and 11. The detecting elements 4 and 5 are set so that the phases are shifted by 90 deg. from each other in terms of a magnetic flux distribution.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、生産自動化機器(以下FA機器と略称する
)などにおいて位置決め制御に用いられる1M1気的に
回転数およびまたは回転角を検出する回転検出装置に関
する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a 1M1 mechanical system that detects the rotational speed and/or angle of rotation used for positioning control in production automation equipment (hereinafter abbreviated as FA equipment). Regarding a detection device.

〔従来の技術〕[Conventional technology]

生産設備における自動化、省力化にともなってFA機器
が急速に普及されてきているが、かがるFA機器におい
ては構成要素として位置決め制御の高速化、高精度化が
最も重視される。FA機器における位置決め制御には、
回転板の回転数および回転角を光学的あるいは磁気的に
検出する1通常ロータリエンコーダと呼ばれる回転検出
装置が主として用いられている。光学式は回転板に多数
のスリットを設け、このスリットを通過する光をa−5
i(非晶質シリコン)半導体などの受光素子で検知する
ものであり、磁気式は回転板の外周縁をS極、N極が交
互に隣接して並ぶように着磁し、周縁に沿う極性変化を
磁気センサで検出するものである。光学式はスリットな
らびに受光素子を精密加工技術によりかなり高精度に形
成することにより分解能を上げることができる反面、受
光素子の追従性の点で応答周波数に問題がある。一方、
磁気式は分解能の点では光学式には及ばないが、応答速
度が光学式よりすぐれている。そして、磁気式ロークリ
エンコーダの検出性能は、回転板の着磁技術と同時に着
磁された磁極による磁束を検出する磁気センサの特性お
よびその配置で決まる。
FA equipment is rapidly becoming popular with the automation and labor saving in production equipment, and the most important components of FA equipment are high-speed and high-precision positioning control. For positioning control in FA equipment,
A rotation detection device, usually called a rotary encoder, is mainly used to optically or magnetically detect the rotation speed and rotation angle of a rotating plate. The optical type has many slits in the rotating plate, and the light passing through the slits is
It is detected using a light-receiving element such as an i (amorphous silicon) semiconductor, and the magnetic type magnetizes the outer periphery of the rotating plate so that S and N poles are arranged adjacent to each other alternately, and the polarity along the periphery is Changes are detected using a magnetic sensor. Although the optical type can improve resolution by forming the slit and the light-receiving element with high precision using precision processing technology, there is a problem with the response frequency due to the followability of the light-receiving element. on the other hand,
The magnetic type is not as good as the optical type in terms of resolution, but its response speed is superior to the optical type. The detection performance of the magnetic rotary encoder is determined by the magnetization technique of the rotating plate, as well as the characteristics and arrangement of the magnetic sensor that detects the magnetic flux due to the magnetized magnetic poles.

この磁気センサにはホール素子、あるいは半導体もしく
は強磁性薄膜からなる磁気抵抗素子が用いられているが
、ホール素子および半導体磁気抵抗素子にはその出力が
周囲温度の影響を受けやすいという欠点があり、また強
磁性薄膜抵抗素子の場合には高精度の微細加工技術なら
びに高分解能を得るための検出方法、信号処理などに複
雑な回路設計を必要とするなどの欠点がある。
This magnetic sensor uses a Hall element or a magnetoresistive element made of a semiconductor or a ferromagnetic thin film, but the Hall element and semiconductor magnetoresistive element have the disadvantage that their output is easily affected by the ambient temperature. Further, in the case of ferromagnetic thin film resistive elements, there are drawbacks such as the need for highly accurate microfabrication techniques, detection methods for obtaining high resolution, and complex circuit designs for signal processing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、従来の回転検出装置の有する前述のごとき問
題点もしくは欠点に鑑み、高速応答性にすぐれ、周囲温
度の影響を受けにく(、さらに、着磁された磁極の極数
のみによる分解能よりも高い分解能を示す簡素な磁気式
回転検出装置の構成をその解決すべき課題とする。
In view of the above-mentioned problems and drawbacks of conventional rotation detection devices, the present invention has excellent high-speed response, is not affected by ambient temperature (and has a high resolution based only on the number of magnetized magnetic poles). The problem to be solved is the construction of a simple magnetic rotation detection device that exhibits higher resolution than the above.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明によれば、磁気式
回転検出装置の構成を、位置決めの対象となる回転体に
よって駆動される回転軸に、周縁に沿って異なる極性の
磁極が交互にかつ等間隔に配された回転磁極板を同心に
固着し、非晶質合金からなる強磁性体細線の中央部に検
出コイルを巻いてなる複数の検出素子のそれぞれの前記
細線両端部を、前記回転磁極板の周縁に沿って正弦波状
に変化する磁束分布における180°の奇数倍の間隔で
前記磁極板周縁部に近傍配置するとともに該複数の検出
素子の細線両端部中の回転磁極板回転方向かみ子側同志
またはしも子側同志を前記磁束分布の180°の幅内で
順次位相的に等間隔にずらせて配した構成とするものと
する。
In order to solve the above problems, according to the present invention, the configuration of a magnetic rotation detection device is such that a rotating shaft driven by a rotating body to be positioned has magnetic poles of different polarities alternately along the periphery. Rotating magnetic pole plates arranged at equal intervals are fixed concentrically, and a detection coil is wound around the center of a ferromagnetic thin wire made of an amorphous alloy. rotating magnetic pole plate rotation direction pins arranged near the peripheral edge of the magnetic pole plate at intervals of an odd multiple of 180° in a magnetic flux distribution that changes sinusoidally along the peripheral edge of the magnetic pole plate, and in both ends of the thin wires of the plurality of detection elements; The configuration is such that the side comrades or the subordinate side comrades are sequentially shifted at equal intervals in terms of phase within the width of 180° of the magnetic flux distribution.

〔作用〕[Effect]

回転検出装置をこのように構成することにより、回転磁
極板の周縁部に近接配置された非晶質合金からなる強磁
性体細線両端部を回転磁極板の磁極が通過するたびに細
線中を通過する磁束の極性が反転し、細線中央部に巻か
れた検出コイルに交番電圧が誘起され、この交番電圧か
ら回転数および回転角が検出されるのであるが、本発明
では非晶質合金細線の中央部に検出コイルを巻いてなる
検出素子を複数個配するとともにこの複数の検出素子の
細線両端部中の回転磁極板回転方向かみ子側同志または
しも子側同志を、回転磁極板の周縁に沿って正弦波状に
変化する磁束分布における18o0の幅内で順次位相的
に等間隔にずらせて配したため、回転数基よび回転角に
対する分解能が着磁された磁極数のみから得られる分解
能の検出素子数倍に高められる。また、非晶質合金とし
てたとえばCo基のものを用いれば、磁気ひずみすなわ
ち磁化による変形量がほぼ零となり、かつ機械強度的に
も強靭であることから検出が著しく安定に行われ、従っ
てまた細線の直径を50= 120um程度の細い線と
し、かつこの細線中央部に細い銅線を巻いて検出素子を
小形に形成することにより、この検出素子を多数配置し
て分解能をあげることが可能になる。
By configuring the rotation detection device in this way, each time the magnetic pole of the rotating magnetic pole plate passes through both ends of a thin ferromagnetic wire made of an amorphous alloy disposed close to the periphery of the rotating magnetic pole plate, the magnetic pole of the rotating magnetic pole plate passes through the thin wire. The polarity of the magnetic flux is reversed, and an alternating voltage is induced in the detection coil wound around the center of the thin wire, and the rotation speed and rotation angle are detected from this alternating voltage. A plurality of detection elements each having a detection coil wound around the center are disposed, and the comrades on the armature side or the comrades on the armature side in the direction of rotation of the rotating magnetic pole plate in both ends of the thin wires of the plurality of detection elements are placed on the periphery of the rotating magnetic pole plate. The detection element has a resolution that can be obtained only from the number of magnetized magnetic poles because the magnetic flux distribution that changes sinusoidally along the axis is sequentially shifted at equal intervals in terms of phase within a width of 18o0. be increased several times. Furthermore, if a Co-based amorphous alloy is used, for example, the amount of deformation due to magnetization, that is, the amount of deformation due to magnetization, becomes almost zero, and the mechanical strength is also strong, so detection can be performed extremely stably. By making a thin wire with a diameter of about 50 = 120 um and winding a thin copper wire around the center of this thin wire to form a small detection element, it becomes possible to increase the resolution by arranging a large number of detection elements. .

〔実施例〕〔Example〕

第1図は本発明に基づいて構成される回転検出装置の一
実施例の側面断面図であり、第2図は第1図に示す装置
における要部の構成原理を示す斜視図である。
FIG. 1 is a side sectional view of one embodiment of a rotation detection device constructed based on the present invention, and FIG. 2 is a perspective view showing the principle of construction of the main parts of the device shown in FIG.

これらの図において、1は回転検出装置のケース、2は
先端部で図示しない回転体と一体化されるための例えば
キー溝2Aを有する回転軸であり、ケース1に回転自在
に支承されるとともに強磁性材からなる回転磁極板3が
ケース1内で同心に固着されている0回転磁極板3の周
縁部は所定の等間隔でS、N極が交互に隣接して着磁さ
れており、この周縁部に沿いS、N交互にほぼ正弦波状
に極性が変化する空間磁場が形成されている。第1図。
In these figures, 1 is a case of the rotation detecting device, and 2 is a rotating shaft having, for example, a keyway 2A for being integrated with a rotating body (not shown) at its tip, and is rotatably supported by the case 1. A rotating magnetic pole plate 3 made of a ferromagnetic material is fixed concentrically within the case 1. The peripheral edge of the zero-rotating magnetic pole plate 3 is magnetized with S and N poles alternately adjacent to each other at predetermined equal intervals. Along this peripheral portion, a spatial magnetic field is formed whose polarity changes in a substantially sinusoidal manner alternately in S and N directions. Figure 1.

第2図は、回転磁極板の着磁極数の2倍の分解能を得る
場合の実施例であり、検出素子が4.5と2個用いられ
ている。検出素子4.5は、コの字形に曲げられた非晶
質合金細線6,7の中央部に、それぞれ検出コイル8.
9が巻かれて形成され、支持部材10.11を介してケ
ースlに各検出素子4.5の非晶質合金細線6.7の両
端部が回転軸2の軸方向にほぼ平行になるように固定さ
れている。この際、各検出素子4.5の両端部は、第2
図に示すように、検出素子4の各細線端部がそれぞれN
極、S極の中央位置にあるとき、もう1つの検出素子5
の各細線端部はS−N、N−3極の境界線上に、すなわ
ち着let束分布で90°位相がずれるように設置する
。12は検出コイル8.9に発生する誘起電圧を後述の
ように信号処理する機能を有する検出回路である。13
は外部へ信号を伝えるリード線である。
FIG. 2 shows an example in which a resolution twice as many as the number of magnetized poles of the rotating magnetic pole plate is obtained, and two detection elements (4.5) are used. The detection element 4.5 has a detection coil 8.5 at the center of the amorphous alloy thin wires 6, 7 bent into a U-shape.
The thin amorphous alloy wire 6.7 of each detection element 4.5 is wound onto the case l via the supporting member 10.11 so that both ends of the thin amorphous alloy wire 6.7 are approximately parallel to the axial direction of the rotating shaft 2. is fixed. At this time, both ends of each detection element 4.5 are connected to the second
As shown in the figure, each thin wire end of the detection element 4 is N
When located at the center position of the pole and south pole, another detection element 5
The ends of each of the thin wires are placed on the boundary line between the S-N and N-3 poles, that is, so that they are out of phase by 90° in the let flux distribution. 12 is a detection circuit having a function of signal processing the induced voltage generated in the detection coil 8.9 as described later. 13
is a lead wire that transmits signals to the outside.

非晶質合金細線6.7としてはCo基非晶質合金細線が
通している。Co基非晶質合金細線はすでに述べたよう
に機械的に強靭であり、かつ磁気ひずみがほぼ零なので
、直径50〜120 l111程度の細線に、細い銅線
を磁気特性に影響を及ぼすことなく巻くことが可能であ
り、検出素子を小形化できる利点があるとともに、パー
マロイ、フェライトなどの磁性材料に比べて高周波領域
における透磁率が高く、磁場に対する感応性にすぐれ、
また、ホール素子や磁気抵抗素子に比べて周囲温度依存
性が少ない特徴がある。以下、回転磁極板3の回転すな
わち磁極の通過に伴う各検出素子4.5の検出コイル8
.9に得られる出力およびその信号処理について説明す
る。
As the amorphous alloy thin wire 6.7, a Co-based amorphous alloy thin wire is passed. As mentioned above, Co-based amorphous alloy thin wires are mechanically strong and have almost zero magnetostriction, so thin copper wires can be added to thin wires with a diameter of about 50 to 120 mm without affecting the magnetic properties. It has the advantage of being able to be wound and making the detection element smaller, and has higher magnetic permeability in the high frequency range than magnetic materials such as permalloy and ferrite, and has excellent sensitivity to magnetic fields.
Also, compared to Hall elements and magnetoresistive elements, it has less dependence on ambient temperature. Hereinafter, the detection coil 8 of each detection element 4.5 will be described as the rotation of the rotating magnetic pole plate 3, that is, the passage of the magnetic pole.
.. The output obtained in Section 9 and its signal processing will be explained.

第3図の(a)は検出素子4の出力波形例である。FIG. 3(a) is an example of the output waveform of the detection element 4.

(a)の波形を検出回路12で全波整流すると(b)の
波形が得られ、その波高値の周期は回転磁極板の隣接す
る着磁極相互間の時間的間隔と同じである。検出素子5
の出力波形は、この実施例では、検出素子4より位相が
90”遅れた波形として得られ、同様に全波整流すると
(d)図のようになる。
When the waveform (a) is full-wave rectified by the detection circuit 12, the waveform (b) is obtained, and the period of the peak value is the same as the time interval between adjacent magnetized poles of the rotating magnetic pole plate. Detection element 5
In this embodiment, the output waveform of is obtained as a waveform whose phase is delayed by 90'' from that of the detection element 4, and when similarly full-wave rectified, it becomes as shown in FIG.

雨検出素子4.5の出力の全波整流波形を加算処理する
ことによって、着磁極数に対し、倍周波数の波形が得ら
れ、この波形が基準電圧■。を超過したときにパルスを
発生させるようにすれば、(f)に示す着磁極数の2倍
のデジタル出力値を得ることができ、回転角を2倍の分
解能で検出することができる。
By adding the full-wave rectified waveform of the output of the rain detection element 4.5, a waveform with a frequency doubled for the number of magnetized poles is obtained, and this waveform is the reference voltage (■). If a pulse is generated when the number of magnetized poles is exceeded, it is possible to obtain a digital output value twice as many as the number of magnetized poles shown in (f), and the rotation angle can be detected with twice the resolution.

第1図ないし第3図は2倍の分解能を得る場合の実施例
であるが、検出素子の数を増すとともに検出素子出力の
位相のずれを90°より小さ(すれば、分解能をさらに
上げることができる。
Figures 1 to 3 are examples in which double the resolution is obtained, but as the number of detection elements is increased, the phase shift of the output of the detection elements is made smaller than 90° (if this is done, the resolution can be further increased). Can be done.

〔発明の効果] 以上に述べたように、本発明によれば、回転検出装置の
構成を、検出対象の回転体によって駆動される回転軸に
、周縁に沿って異なる極性の磁極が交互にかつ等間隔に
配された回転磁極板を同心に固着し、非晶質合金からな
る強磁性体細線の中央部に検出コイルを巻いてなる複数
の検出素子のそれぞれの前記細線両端部を、前記回転磁
極板の周縁に沿って正弦波状に変化する磁束分布におけ
る180°の奇数倍の間隔で前記磁極板周縁部に近勝 肴装置するとともに該複数の検出素子の細線両端部中の
回転磁極板回転方向かみ子側同志またはしも子側同志を
前記磁束分布の180°の幅内で順次位相的に等間隔に
ずらせて配した構成としたので、回転数および回転角に
対する分解能が回転磁極板に周縁に沿って等間隔に配さ
れた磁極の数のみから得られる分解能の検出素子数倍に
高められる。
[Effects of the Invention] As described above, according to the present invention, the configuration of the rotation detection device is such that magnetic poles of different polarities are arranged alternately along the circumference of the rotating shaft driven by the rotating body to be detected. Rotating magnetic pole plates arranged at equal intervals are fixed concentrically, and a detection coil is wound around the center of a ferromagnetic thin wire made of an amorphous alloy. A magnetic flux distribution that changes in a sinusoidal manner along the circumference of the magnetic pole plate is provided at intervals of an odd multiple of 180° at intervals of an odd number of times 180°, and the rotating magnetic pole plate rotates at both ends of the thin wires of the plurality of detection elements. Since the directional armature side comrades or the directional armature side comrades are sequentially shifted at equal intervals in phase within the 180° width of the magnetic flux distribution, the resolution for the rotation speed and rotation angle can be adjusted to the peripheral edge of the rotating magnetic pole plate. The resolution obtained only from the number of magnetic poles arranged at equal intervals along the detection element is increased by a factor of two.

また、非晶質合金細線としてCo基のごとき、機械的に
強靭であって磁気ひずみがほとんど無く、かつ高周波領
域における透磁率が高<、磁場に対する感応性にすぐれ
た金属材料を用いることにより、周囲温度の影響を受け
にくく、また、磁化時の変形に基づく磁気特性変化がほ
とんどなく、従って安定した検出が可能であって高速応
答性にすぐれた0分解能の高い、簡素な構成の回転検出
装置を得ることができる。
In addition, by using a metal material such as a Co-based amorphous alloy thin wire, which is mechanically strong, has almost no magnetostriction, has high magnetic permeability in the high frequency region, and has excellent sensitivity to magnetic fields. A rotation detection device with a simple configuration that is not easily affected by ambient temperature, and has almost no change in magnetic properties due to deformation during magnetization, thus enabling stable detection, excellent high-speed response, and high zero resolution. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づいて構成される回転検出装置の一
実施例の側面断面図、第2図は第1図に示す装置におけ
る要部の構成原理を示す斜視図、第3図は本発明の装置
による回転数およびまたは回転角検出の手順を示す検出
電圧およびその処理された電圧の波形図である。 2・・・回転軸、3・・・回転磁極板、4.5・・・検
出素子、6.7・・・非晶質合金細線、8.9・・・検
出コイ第 1 図 F、25i]
FIG. 1 is a side sectional view of an embodiment of a rotation detection device constructed based on the present invention, FIG. 2 is a perspective view showing the principle of construction of the main parts of the device shown in FIG. 1, and FIG. FIG. 2 is a waveform diagram of a detected voltage and its processed voltage, showing a procedure for detecting a rotational speed and/or rotational angle by the apparatus of the invention. 2...Rotating shaft, 3...Rotating magnetic pole plate, 4.5...Detecting element, 6.7...Amorphous alloy thin wire, 8.9...Detecting coil Fig. 1 F, 25i ]

Claims (1)

【特許請求の範囲】[Claims] 1)回転体の回転数およびまたは回転角を検出する装置
であって、前記回転体によって駆動される回転軸に、周
縁に沿って異なる極性の磁極が交互にかつ等間隔に配さ
れた回転磁極板を同心に固着し、非晶質合金からなる強
磁性体細線の中央部に検出コイルを巻いてなる複数の検
出素子のそれぞれの前記細線両端部を、前記回転磁極板
の周縁に沿って正弦波状に変化する磁束分布における1
80゜の奇数倍の間隔で前記磁極板周縁部に近接配置す
るとともに該複数の検出素子の細線両端部中の回転磁極
板回転方向かみ手側同志またはしも手側同志を前記磁束
分布の180゜の幅内で順次位相的に等間隔にずらせて
配し、前記回転磁極板の磁極数の整数倍の分解能を得る
ことを特徴とする回転検出装置。
1) A device for detecting the rotation speed and/or rotation angle of a rotating body, in which a rotating shaft driven by the rotating body has a rotating magnetic pole in which magnetic poles of different polarities are arranged alternately and at equal intervals along the periphery. The plates are fixed concentrically and a detection coil is wound around the center of a thin ferromagnetic wire made of amorphous alloy. 1 in wave-like magnetic flux distribution
The plurality of detection elements are arranged close to the peripheral edge of the magnetic pole plate at intervals of an odd number multiple of 80 degrees, and the comrades on the hand side or the side on the side of the rotating magnetic pole plate in the rotation direction of the rotating magnetic pole plate at both ends of the thin wires are arranged at intervals of 180 degrees of the magnetic flux distribution. A rotation detection device characterized in that the rotation detection device is arranged so as to be sequentially shifted at equal intervals in terms of phase within a width of .degree. to obtain a resolution that is an integral multiple of the number of magnetic poles of the rotating magnetic pole plate.
JP5986688A 1988-03-14 1988-03-14 Revolution detector Pending JPH01233316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5986688A JPH01233316A (en) 1988-03-14 1988-03-14 Revolution detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5986688A JPH01233316A (en) 1988-03-14 1988-03-14 Revolution detector

Publications (1)

Publication Number Publication Date
JPH01233316A true JPH01233316A (en) 1989-09-19

Family

ID=13125524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5986688A Pending JPH01233316A (en) 1988-03-14 1988-03-14 Revolution detector

Country Status (1)

Country Link
JP (1) JPH01233316A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509666A (en) * 1999-09-15 2003-03-11 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト Tire sensor
JP2004522968A (en) * 2001-03-03 2004-07-29 ホガム テクノロジー カンパニー リミテッド Proximity sensor system with proximity sensor having bipolar signal output
US8441474B2 (en) 2008-06-25 2013-05-14 Aristocrat Technologies Australia Pty Limited Method and system for setting display resolution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509666A (en) * 1999-09-15 2003-03-11 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト Tire sensor
JP2004522968A (en) * 2001-03-03 2004-07-29 ホガム テクノロジー カンパニー リミテッド Proximity sensor system with proximity sensor having bipolar signal output
US8441474B2 (en) 2008-06-25 2013-05-14 Aristocrat Technologies Australia Pty Limited Method and system for setting display resolution

Similar Documents

Publication Publication Date Title
JP6410732B2 (en) Integrated multi-turn absolute position sensor for multi-pole count motors
KR100810784B1 (en) Sensor for the detection of the direction of a magnetic field
JPH11513797A (en) Position detection encoder
US5444368A (en) Differential reactance permanent magnet position transducer
JPH0218693Y2 (en)
JPH0495817A (en) Revolution detection apparatus
JP4319153B2 (en) Magnetic sensor
JPH01233316A (en) Revolution detector
JP2005531008A (en) Angular displacement encoder with two magnetic tracks
JP2003257738A (en) Permanent magnet, method of manufacturing permanent magnet, and position sensor
JP2550049B2 (en) Device that magnetically detects position and speed
JPH04168303A (en) Angle detecting apparatus
JP2556383B2 (en) Magnetic resolver
JPS6031005A (en) Detector of position of rotary angle
JPS63292082A (en) Magnetic sensor
JPS62293122A (en) Rotation speed/rotation angle detection device
JPH063158A (en) Detector
JPH0441332Y2 (en)
JPH0560568A (en) Magnetic sensor
JP2000352501A (en) Magnetic induction type rotational position sensor
JPH06164395A (en) Encoder for matteuci effect position detection
JPH0320779Y2 (en)
JPS63171318A (en) rotation detection device
JPH0469348B2 (en)
JPS6111982Y2 (en)