JPH01233310A - Optical method and optical probe for measuring shape of surface - Google Patents
Optical method and optical probe for measuring shape of surfaceInfo
- Publication number
- JPH01233310A JPH01233310A JP6111088A JP6111088A JPH01233310A JP H01233310 A JPH01233310 A JP H01233310A JP 6111088 A JP6111088 A JP 6111088A JP 6111088 A JP6111088 A JP 6111088A JP H01233310 A JPH01233310 A JP H01233310A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- light
- optical
- spots
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000003287 optical effect Effects 0.000 title claims description 22
- 239000000523 sample Substances 0.000 title claims description 20
- 238000005259 measurement Methods 0.000 claims description 18
- 238000001514 detection method Methods 0.000 claims description 14
- 238000006073 displacement reaction Methods 0.000 claims description 8
- 239000000284 extract Substances 0.000 claims description 2
- 238000000691 measurement method Methods 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims 2
- 230000000694 effects Effects 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract 3
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000010287 polarization Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 201000009310 astigmatism Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、粗さ、うねり、あるいは、より長い空間波長
成分をもつ面形状において、必要な高い空間周波数だけ
を取り出すため光学的に面形状を測定するための方法お
よびプローブに関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention optically modulates the surface shape in order to extract only the necessary high spatial frequencies in surface shapes that have roughness, undulations, or longer spatial wavelength components. METHODS AND PROBE FOR MEASUREMENT.
面のあらさや形状を非接触的に測定する方法として、従
来、光学式のプローブが種々考案され、実用されている
。・しかし、これらの方法は、プローブと被測定面との
相対移動のために′、プローブの分解能と同程度か、そ
れ以上の精度の機械的案内を必要としている。この難点
を緩和するために、コヒーレントなビームを2本に分け
、そのビームの反射面まで到達する光路差から、2点の
高さの差を検出し、その積分によって面形状を算出する
光学式の2点法とよばれている方法も提案されている。Conventionally, various optical probes have been devised and put into practical use as a method for non-contactly measuring the roughness and shape of a surface. -However, these methods require mechanical guidance with a precision equal to or higher than the resolution of the probe for relative movement between the probe and the surface to be measured. In order to alleviate this difficulty, an optical method was developed that divides a coherent beam into two, detects the difference in height between the two points from the optical path difference between the two beams reaching the reflecting surface, and calculates the surface shape by integrating the difference. A method called the two-point method has also been proposed.
そのほか、鏡面の形状測定には、平行なしザビームを被
測定面に垂直に入射し、その反射光の傾きから鏡面の形
状の微分情報を検出し、その積分から形状を求めるレー
ザオートコリメーションと呼ばれる方法もある。In addition, to measure the shape of a mirror surface, there is a method called laser autocollimation, in which a non-parallel beam is perpendicularly incident on the surface to be measured, differential information about the shape of the mirror surface is detected from the inclination of the reflected light, and the shape is determined from the integral. There is also.
また、プローブを3本塁べて、その出力の計算処理から
相対移動のときの並進とピッチングの誤差成分を取り除
く3点法と呼ばれる方法などが考えられている。Also, a method called the three-point method is being considered, in which error components of translation and pitching during relative movement are removed from the calculation process of the output by hitting three home bases with the probe.
レーザオートコリメーションや2点法では、プローブと
被測定面の相対移動時に生じる、面の高さ方向の並進誤
差は取り除けるが、ピッチング誤差は取り除けない。Laser autocollimation and the two-point method can remove translational errors in the surface height direction that occur when the probe and the surface to be measured are moved relative to each other, but pitching errors cannot be removed.
一方、3点法と呼ばれる方法は、3本のプローブを必要
とするため、価格の面からも、また空間的制約からも実
用的ではないし、演算処理が複雑になるという難点もあ
る。On the other hand, the so-called three-point method requires three probes, so it is not practical in terms of cost and space constraints, and it also has the disadvantage of complicating arithmetic processing.
これら、2点法と3点法では、プローブと被測定面との
相対移動時に生じるヨーイングとローリングの誤差が、
一つのプローブによる測定における測定点のずれ以上に
大きな測定誤差をもたらす可能性がある。また、走査の
方向は、−最に2点法の2本(あるいは3点法の3本)
のビームのスポットを結ぶ線に沿う方向に選ぶ必要があ
る。更にスポットを結ぶ線と直交する方向にプローブを
走査するときは、1本(3点法では2本)のビームが基
準となる正しい面上を走査されるような特別な測定面を
用意しなければならないなど種々の問題を有し、かつ現
在の技術では、原理上測定精度がもっとも高くなり得る
3点法の弱点は、プローブを3本用意し、それを−直線
上に並べなければならないと云う大きな問題を残してい
た。In these two-point and three-point methods, errors in yawing and rolling that occur during relative movement between the probe and the surface to be measured are
This may cause a larger measurement error than the deviation of the measurement point in measurement using a single probe. In addition, the direction of scanning is - two two-point methods (or three three-point methods).
The direction must be chosen along the line connecting the beam spots. Furthermore, when scanning the probe in a direction perpendicular to the line connecting the spots, a special measurement surface must be prepared so that one beam (or two in the three-point method) is scanned over the correct reference surface. However, with current technology, the weak point of the 3-point method, which in principle has the highest measurement accuracy, is that it requires preparing 3 probes and arranging them in a straight line. That left a big problem.
このため、本発明は、2本のビームの入射光軸の中心を
重ねる構造にすることにより、2本のビームだけで、移
動誤差や、振動の影響を3点法と同じかそれ以上に排除
できる構造にすることができ、しかも、3点法や2点法
のように空間的制約を受けない光学式面形状測定方法お
よび面形状測定用光学式プローブを提供することを目的
とする。Therefore, by creating a structure in which the centers of the incident optical axes of the two beams overlap, the present invention eliminates movement errors and the effects of vibration to the same extent or more than the three-point method using only two beams. It is an object of the present invention to provide an optical surface shape measuring method and an optical probe for surface shape measurement, which can have a structure that can be used for surface shape measurement, and which is not subject to spatial constraints like the three-point method or the two-point method.
〔課題を解決するための手段及び作用〕本発明は光を被
測定面に照射し、その反射光を受光して、受光面での反
射光の像の位置や形で、被測定面の高さ方向の変位ある
いは傾きを検出する光学式のプローブにおいて、被測定
面上に、大きさの違う2つのスポットをそのスポ −ツ
トの中心が、測定位置の位置決め精度以内で一致する様
に同時に照射し、それぞれの反射光の持つ、高さ方向変
位あるいは傾斜の情報の差を取り出すことにより、プロ
ーブと被測定物を相対的に移動する形式の形状測定が出
来、格別高精度の機械的基準を必要としなくなる。すな
わち移動精度は、ピッチングと高さ方向の並進誤差が取
り除けるだけでなく、移動に関するすべての自由度の誤
差の影響が著しく小さ(なる。[Means and effects for solving the problems] The present invention irradiates a surface to be measured with light, receives the reflected light, and determines the height of the surface to be measured based on the position and shape of the image of the reflected light on the light receiving surface. In an optical probe that detects displacement or inclination in the horizontal direction, two spots of different sizes are simultaneously irradiated onto the surface to be measured so that the centers of the spots coincide within the positioning accuracy of the measurement position. By extracting the difference in the height displacement or inclination information of each reflected light beam, it is possible to perform shape measurement by moving the probe and the object relative to each other, and it is possible to obtain mechanical standards with exceptionally high precision. no longer needed. In other words, in terms of movement accuracy, not only pitching and translational errors in the height direction can be removed, but also the effects of errors in all degrees of freedom regarding movement are significantly reduced.
また、振動による誤差の心配もなくなるため、迅速な走
査が可能になり、短時間に形状の測定ができ、かつ、環
境の温度変化による光軸の振れなどの影響も受けに<<
、短時間の測定が可能なため、温度変化による被測定面
の形状変化の影響、測定系のドリフトの影響も受けにく
い特徴を有するものである。Additionally, since there is no need to worry about errors caused by vibration, rapid scanning becomes possible, allowing shape measurements to be made in a short period of time, and is less susceptible to the effects of optical axis deflection caused by environmental temperature changes.
Since it is possible to perform measurements in a short period of time, it is less susceptible to changes in the shape of the surface to be measured due to temperature changes and drift in the measurement system.
以下、本発明の一実施例を図面を参照しながら説明する
。An embodiment of the present invention will be described below with reference to the drawings.
第1 (A)(B)図は、原理的構造を示す図である。FIGS. 1A and 1B are diagrams showing the basic structure.
第1図(A)は、光源lの平行光線は、偏光ビームスプ
リッタ2で二つに分けられる。In FIG. 1(A), a parallel light beam from a light source 1 is split into two by a polarizing beam splitter 2. In FIG.
偏光ビームスプリッタ3で反射された光はレンズ15、
偏光ビームスプリッタ4を通り、ハーフプリズム7で曲
げられ、レンズ17を通り、レンズ15.17の組み合
わせレンズの焦点位置Flに結像される。この光が被測
定面18で反射されて、レンズ17を通り、ハーフプリ
ズム7、偏光ビームスプリッタ6を通り、反射鏡8を経
て受光部9に達する。受光部9では、例えば非点収差法
と呼ばれる原理で被測定面と焦点Flの距離をフォトダ
イオードPdで検出する。The light reflected by the polarizing beam splitter 3 passes through a lens 15,
It passes through the polarizing beam splitter 4, is bent by the half prism 7, passes through the lens 17, and is imaged at the focal position Fl of the combination of lenses 15 and 17. This light is reflected by the surface to be measured 18, passes through the lens 17, the half prism 7, the polarizing beam splitter 6, the reflecting mirror 8, and reaches the light receiving section 9. In the light receiving section 9, the distance between the surface to be measured and the focal point Fl is detected by a photodiode Pd based on a principle called, for example, the astigmatism method.
偏光ビームスプリッタ2で分けられたもう一方の光はレ
ンズ16を通過後、偏光ビームスプリッタ5.4で曲げ
られ、ハーフプリズム7、レンズ17を通り、レンズ1
6.17を組み合わせた組み合わせレンズの焦点F2に
結像する。この結像点は先のビームの結像点とは、必要
なだけ光軸方向、(前方あるいは後方)にずれ第1図の
場合は後方にずれている。この、2番目のビームの被測
定面18からの反射光は、ハーフプリズム7を通過後偏
光ビームスプリッタ6で曲げられ、受光部10に入る。The other light split by polarizing beam splitter 2 passes through lens 16, is bent by polarizing beam splitter 5.4, passes through half prism 7, lens 17, and enters lens 1.
The image is formed at the focal point F2 of the combined lens combining 6.17. This imaging point is shifted as necessary (forward or backward) in the optical axis direction from the imaging point of the previous beam, and in the case of FIG. 1, it is shifted backward. The second beam reflected from the surface to be measured 18 passes through the half prism 7, is bent by the polarizing beam splitter 6, and enters the light receiving section 10.
受光部10では、例えば非ル
点収〆と呼ばれる原理で被測定面と焦点F2の距離をフ
ォトダイオードPd検出する。In the light receiving section 10, the distance between the surface to be measured and the focal point F2 is detected by a photodiode Pd, for example, based on a principle called non-point convergence.
なお、11−14は1/4人波長板で、ビームの偏光角
を変えるのに使う。Note that 11-14 is a 1/4 wavelength plate, which is used to change the polarization angle of the beam.
第一番目のビームがほぼ被測定面上に結像するとき、第
二番目のビームの、被測定面上でのスポットは第一番目
のそれより大きい、即ち、2つのビームスポットの大き
さの違いを第1図(B)で説明すると、偏光ビームスプ
リッタ2で分校した第1番目のビームSはレンズ17を
介して被測定面18の表面に結像(Fl)する。When the first beam is imaged approximately on the surface to be measured, the spot of the second beam on the surface to be measured is larger than that of the first beam, i.e., the size of the two beam spots is smaller than that of the first beam. To explain the difference with reference to FIG. 1(B), the first beam S split by the polarizing beam splitter 2 forms an image (Fl) on the surface of the surface to be measured 18 via the lens 17.
これに対し、直進した第2番目のビームPはレンズ17
を介して被測定面18の内部で結像(F2)するように
同じ被測定面18を照射する。On the other hand, the second beam P that has gone straight is the lens 17
The same surface to be measured 18 is irradiated so that an image (F2) is formed inside the surface to be measured 18 through the beam.
2つのビームの被測定面18における状態は、記号Tで
示す小さいスポット、即ちオプチカルスタイラスと、ス
ポットTを囲むように大きなスポットK、即ちオプチカ
ルスキッドに別れられる。小さいスポットTは、例えば
、約1.2A11mと云うようにミクロンオーダまで絞
り込み、光触針として物体表面の粗さを検出する。また
太きいスボッ1−K(例えば、0.4−程度の径を有す
る)は、粗さのような高い周波数成分が平滑され、出力
に現れないので、小さいスポットTとの出力の差を取る
ことによって、うねりや、それ以下の低い周波数成分が
除かれた粗さ情報が取り出せる。したがって、第二番目
のビームの反射光には、被測定面のより広い面積範囲の
形状情報が平均されて含まれる。したがって、2番目の
ビームから得た被測定面までの距離に関する情報には、
高い空間周波数に関する情報が含まれない。これは、機
械式のスキッド型あらさ測定器におけるスキッドと同じ
働きをする。The state of the two beams on the surface to be measured 18 is divided into a small spot indicated by the symbol T, ie, an optical stylus, and a large spot K, ie, an optical skid surrounding the spot T. The small spot T is narrowed down to the micron order, for example, about 1.2 A11 m, and is used as an optical stylus to detect the roughness of the object surface. In addition, in the case of a large spot 1-K (for example, having a diameter of about 0.4 mm), high frequency components such as roughness are smoothed and do not appear in the output, so the difference in output from the small spot T is taken. By doing this, it is possible to extract roughness information from which waviness and lower frequency components are removed. Therefore, the reflected light of the second beam contains averaged shape information of a wider area range of the surface to be measured. Therefore, the information about the distance to the measured surface obtained from the second beam is
Does not contain information about high spatial frequencies. This functions in the same way as the skid in a mechanical skid-type roughness meter.
したがって、このプローブを測定したい方向に走査し、
1番目のビームによる距離の検出結果から、2番目のビ
ームによる距離の検出結果をひけば、必要とする高い空
間周波成分だけが取り出せる。振動による外乱や、走査
時の移動真直度の誤差は両方のビームに等しく含まれる
ので、その差をとると相殺される。Therefore, scan this probe in the direction you want to measure,
By subtracting the distance detection result from the second beam from the distance detection result from the first beam, only the required high spatial frequency components can be extracted. Disturbances due to vibration and errors in the straightness of movement during scanning are equally included in both beams, so if the difference is taken, they are canceled out.
なお、光源として太さの違うビームを2本用意して、エ
アリ−ディスクの大きさを変えることも有効である。こ
のときには、レンズ15.16を省略してFlとF2を
一致させることもできる。It is also effective to prepare two beams with different thicknesses as a light source and change the size of the Airy disk. At this time, it is also possible to omit lenses 15 and 16 and make Fl and F2 coincide.
また、光学系としては、レンズ15.16の一方は省略
してもよい。Moreover, as an optical system, one of the lenses 15 and 16 may be omitted.
本発明の原理にとって、それぞれのビームによる距離検
出の機構はどんなものでも良いので、非点収差法の代わ
りに例えば、臨界角法と呼ばれる原理でFl、F2と被
測定面の距離を検出することも可能である。According to the principle of the present invention, any mechanism for distance detection using each beam may be used, so instead of the astigmatism method, for example, the distances between Fl, F2 and the surface to be measured can be detected using a principle called the critical angle method. is also possible.
また、被測定面の傾斜による検出誤差の対策として反射
光を2本に分けて、それぞれのビームを4分割のフォト
ダイオードで観察するという周知の方法などもそのまま
適用できる。Furthermore, as a measure against detection errors due to the inclination of the surface to be measured, a well-known method of dividing the reflected light into two beams and observing each beam with a four-split photodiode can be applied as is.
なお、図1に示した原理では、2本のビームはその偏光
角の違いで区別して、別々の受光系に振り分けたが、2
本のビームの強度を違った周波数で時間的に変動させ、
反射光を一つの受光系で受ける形態も可能である。その
ときは、受光部の光電変換素子の電気出力に含まれる両
方のビームの情報を、光源の変動周波数を使って分離し
、それぞれの位置情報に変えた上で差をとる。Note that in the principle shown in Figure 1, the two beams are distinguished by their different polarization angles and distributed to separate light receiving systems.
By varying the intensity of the book beam over time at different frequencies,
A configuration in which the reflected light is received by one light receiving system is also possible. In that case, the information of both beams contained in the electrical output of the photoelectric conversion element in the light receiving section is separated using the fluctuating frequency of the light source, converted into position information for each, and then the difference is taken.
また、レンズ17にアクチュエータを取り付け、大きい
スポットの方の受光系の検出した位置情報をフィト−バ
ックしてサーボ系を構成して、もう一方の検出系の出力
を直接測定値とすることも可能である。It is also possible to attach an actuator to the lens 17 and configure a servo system by phyto-backing the position information detected by the light receiving system of the larger spot, and use the output of the other detection system as a direct measurement value. It is.
第2図乃至第3図は、この発明の他の実施例を示すもの
で、先ず第2図を用いて説明する。FIGS. 2 and 3 show other embodiments of the present invention, which will first be described using FIG. 2.
光源1からの平行光線は偏光ビームスプリッタ3で2つ
に分割され、直進光はl/4人波長板I!、レンズを介
して反射鏡8に集光する。そして、拡り角の大きい点光
源1aからの光はコリメータレンズ17を通り太い光束
の平行光線となり、ハーフプリズム7で曲げられ、被測
定面18に向かう0黒光WA 1 aはレンズ17の焦
点の位置にある0反射光は、ハーフプリズム7、偏光ビ
ームスプリッタ6、収光レンズ15を通り光スポットの
位置検出部9aに達する0位置検出部9aはレンズ15
の焦点の位置におかれている。The parallel light beam from the light source 1 is split into two by the polarizing beam splitter 3, and the straight light beam is passed through the l/4 wavelength plate I! , the light is focused on a reflecting mirror 8 via a lens. Then, the light from the point light source 1a with a large divergence angle passes through the collimator lens 17 and becomes a thick parallel ray of light, is bent by the half prism 7, and the zero black light WA1a that heads toward the surface to be measured 18 is at the focal point of the lens 17. The 0 reflected light at the position passes through the half prism 7, the polarizing beam splitter 6, and the converging lens 15, and reaches the light spot position detection unit 9a.The 0 position detection unit 9a passes through the lens 15.
is placed at the focal point.
一方、偏光ビームスプリッタ3で分割された拡り角の小
さい点光源1bからの細い光束の平行光は、ビームスプ
リッタ4で反射し、ハーフプリズム7を通り被測定面(
反射面) 1Bに達する。被測定面18からの反射光は
ハーフプリズム7を通り偏光ビームスプリッタ6、反射
鏡8で曲げられ、レンズ16を通り、光スポットの位置
検出部10aに達する0位置検出部10aはレンズ16
の焦点の位置におかれている。On the other hand, the narrow beam of parallel light from the point light source 1b with a small divergence angle, which is split by the polarizing beam splitter 3, is reflected by the beam splitter 4, passes through the half prism 7, and passes through the surface to be measured (
Reflective surface) reaches 1B. The reflected light from the surface to be measured 18 passes through the half prism 7, is bent by the polarizing beam splitter 6 and the reflecting mirror 8, passes through the lens 16, and reaches the light spot position detection section 10a.The zero position detection section 10a is connected to the lens 16.
is placed at the focal point.
位置検出部9aで検出される反射面の接線の情報には、
大きなスポットの入射する広い範囲の情報が平均されて
入る。また位置検出部10aで検出される反射面の接線
の情報には、スポット径に応じた高い空間周波数成分の
情報まで含まれる。これら両者の差からは、外乱振動や
走査時の移動真直度誤差の影響の入らない傾斜情報が得
られる。この情報を積分して、求めると被測定面の面形
状を導くことができる。The information on the tangent to the reflective surface detected by the position detection unit 9a includes:
Information from a wide area where a large spot is incident is averaged and entered. Furthermore, the information on the tangent to the reflective surface detected by the position detection unit 10a includes information on high spatial frequency components corresponding to the spot diameter. From the difference between these two, inclination information that is not affected by disturbance vibration or movement straightness error during scanning can be obtained. By integrating this information and finding it, it is possible to derive the surface shape of the surface to be measured.
なお、第2図に示した原理でも、2本のビームはその偏
光角の違いで区別して、別々の受光系に振り分けたが、
二つの光源の強度を、それぞれ違った周波数で時間的に
変動させ、反射光を一つの受光系で受ける形態も可能で
ある。そのときは、受光部の光電変換素子の電気出力に
含まれる両方のビームの情報を、光源の変動周波数を使
って分離し、それぞれの位置情報に変えた上で差をとる
。Note that even in the principle shown in Figure 2, the two beams are distinguished by their different polarization angles and distributed to separate light receiving systems.
It is also possible to temporally vary the intensity of the two light sources at different frequencies and receive the reflected light with one light receiving system. In that case, the information of both beams contained in the electrical output of the photoelectric conversion element in the light receiving section is separated using the fluctuating frequency of the light source, converted into position information for each, and then the difference is taken.
第3図は被測定面上のスポットの像を充電変換素子上に
結像して高さ方向の変位情報を検出する形式の変位プロ
ーブに本発明の原理を適用器A、Bにより任意に変換さ
れた2つの光源la、lbとなる。この二つの光源1a
、lbから光束の違う平行光を作りハーフプリズム7を
介して被測定面18に入射する。このとき二つの光源の
強度は別々の周波数の時間的な変動を与えておく、被測
定面18のスポットは、レンズ17を介して位置検出用
の光電変換素子9a上に結像する。光電変換素子の電気
的出力には光源の強度変化の周波数の対応した二つの周
波数成分が含まれるので、これを分離してそれぞれ位置
情報に変換した後に両者の差を取って必要な空間周波数
成分を誤差の無い形で取り出す。Figure 3 shows how the principle of the present invention is arbitrarily converted by applicators A and B into a displacement probe that detects displacement information in the height direction by forming an image of a spot on the surface to be measured on a charging conversion element. There are two light sources la and lb. These two light sources 1a
, lb, parallel beams with different luminous fluxes are generated and are incident on the surface to be measured 18 via the half prism 7. At this time, the intensities of the two light sources are given temporal variations of different frequencies, and a spot on the surface to be measured 18 is imaged through the lens 17 on the photoelectric conversion element 9a for position detection. The electrical output of the photoelectric conversion element includes two frequency components corresponding to the frequency of the intensity change of the light source, so after separating these and converting them into position information, the difference between the two is taken to obtain the necessary spatial frequency component. Take out in a form without error.
なお、偏光角の違う2つの光束を入射光として、反射光
を偏光ビームスプリッタで二つに分離してそれぞれの位
置情報を取り出す形も可能である。Note that it is also possible to use two light fluxes with different polarization angles as incident light, and to separate the reflected light into two by a polarizing beam splitter and extract the position information of each.
以上、詳述したように、本発明によると、同一の対物レ
ンズを介して、被測定物の同じ位置に大小二つのスポッ
トを投射し、反射光に含まれる情報を分離して取り出す
ことにより、振動や温度による影響のない物体表面の粗
さや、うねりを高精度に検出することができる光学式面
形状測定方法および面形状測定用光学式プローブを提供
できる。As detailed above, according to the present invention, two large and small spots are projected at the same position on the object to be measured through the same objective lens, and the information contained in the reflected light is separated and extracted. It is possible to provide an optical surface shape measurement method and an optical probe for surface shape measurement that can detect roughness and waviness of an object surface with high precision without being affected by vibration or temperature.
第1図は(A)(B)は本発明の一実施例を示す原理的
説明図、第2図乃至第3図は本発明の他の実施例を示す
原理的説明図である。
1、la、1b−・光源
2.3,4,5.6−・−・偏光ビームスプリッタ9.
10−m−受光部
9a、10a−・スポット位置検出部
11、12.13.14−1/4人波長板15、15a
、 15b 、 16.17−−レンズ18−−被測
定面1A and 1B are principle explanatory diagrams showing one embodiment of the present invention, and FIGS. 2 and 3 are principle explanatory diagrams showing other embodiments of the present invention. 1, la, 1b--Light source 2.3, 4, 5.6--Polarizing beam splitter 9.
10-m-light receiving section 9a, 10a--spot position detection section 11, 12.13.14-1/4 wavelength plate 15, 15a
, 15b, 16.17--Lens 18--Measurement surface
Claims (1)
面での反射光の像の位置や形で、被測定面の高さ方向の
変位や傾きを検出する光学式プローブを用いるものにお
いて、被測定面上に、大きさの異る2つのスポットを照
射する際、スポットの中心が、被測定位置の位置決め精
度以内で一致する様に同時に照射し、それぞれの反射光
のもつ高さ方向の変位や傾斜の情報の差を取り出すよう
にした事を特徴とする光学式面形状測定方法。 2)上記大きさの異る2つのスポットの中、一方のスポ
ットは被測定面に焦点が合うようにしたことを特徴とす
る請求項1記載の光学式面形状測定方法。 3)光を被測定面に照射し、その反射光を受光して、受
光面での反射光の像の位置や形で、被測定面の高さ方向
の変位あるいは傾きを検出する光学式のプローブにおい
て、被測定面上に、大きさの違う2つのスポットをその
スポットの中心が、測定位置の位置決め精度以内で一致
する様に同時に照射し、それぞれの反射光の持つ、高さ
方向の変位あるいは傾斜の情報の差を取り出すようにし
たことを特徴とする面形状測定用の光学式プローブ。[Claims] 1) Irradiating light onto a surface to be measured, receiving the reflected light, and measuring the displacement or inclination of the surface to be measured in the height direction based on the position and shape of the image of the reflected light on the receiving surface. When using an optical probe for detection, when irradiating two spots of different sizes on the surface to be measured, irradiate them simultaneously so that the centers of the spots coincide within the positioning accuracy of the measured position, An optical surface shape measurement method characterized by extracting the difference in information on displacement and inclination in the height direction of each reflected light beam. 2) The optical surface shape measuring method according to claim 1, wherein one of the two spots having different sizes is focused on the surface to be measured. 3) An optical method that irradiates the surface to be measured with light, receives the reflected light, and detects the displacement or inclination of the surface to be measured in the height direction based on the position and shape of the image of the reflected light on the receiving surface. Using the probe, two spots of different sizes are simultaneously irradiated onto the surface to be measured so that the centers of the spots coincide within the positioning accuracy of the measurement position, and the displacement in the height direction of each reflected light is measured. Alternatively, an optical probe for surface shape measurement is characterized in that it extracts the difference in slope information.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6111088A JPH01233310A (en) | 1988-03-15 | 1988-03-15 | Optical method and optical probe for measuring shape of surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6111088A JPH01233310A (en) | 1988-03-15 | 1988-03-15 | Optical method and optical probe for measuring shape of surface |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01233310A true JPH01233310A (en) | 1989-09-19 |
Family
ID=13161612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6111088A Pending JPH01233310A (en) | 1988-03-15 | 1988-03-15 | Optical method and optical probe for measuring shape of surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01233310A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009092387A (en) * | 2007-10-03 | 2009-04-30 | Nagasaki Univ | Displacement measuring method and displacement measuring apparatus |
JP2011158381A (en) * | 2010-02-02 | 2011-08-18 | Waida Seisakusho:Kk | Shape measuring method, shape measuring device, and machine tool |
JP2019200205A (en) * | 2018-05-16 | 2019-11-21 | クリンゲルンベルク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングKlingelnberg GmbH | Roughness measurement probe, device having roughness measurement probe, and their use |
-
1988
- 1988-03-15 JP JP6111088A patent/JPH01233310A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009092387A (en) * | 2007-10-03 | 2009-04-30 | Nagasaki Univ | Displacement measuring method and displacement measuring apparatus |
JP2011158381A (en) * | 2010-02-02 | 2011-08-18 | Waida Seisakusho:Kk | Shape measuring method, shape measuring device, and machine tool |
JP2019200205A (en) * | 2018-05-16 | 2019-11-21 | クリンゲルンベルク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングKlingelnberg GmbH | Roughness measurement probe, device having roughness measurement probe, and their use |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2913984B2 (en) | Tilt angle measuring device | |
US4897536A (en) | Optical axis displacement sensor with cylindrical lens means | |
JPH0374763B2 (en) | ||
JPS61219805A (en) | Surface shape measuring device | |
US7804605B2 (en) | Optical multi-axis linear displacement measurement system and a method thereof | |
JPH0455243B2 (en) | ||
JPS6249562B2 (en) | ||
JPH02161332A (en) | Device and method for measuring radius of curvature | |
US5011287A (en) | Interferometer object position measuring system and device | |
US3966329A (en) | Precision optical beam divider and position detector | |
JPH01233310A (en) | Optical method and optical probe for measuring shape of surface | |
JPS63194886A (en) | Device for detecting laser optical axis | |
JPS63241407A (en) | Method and device for measuring depth of fine recessed part | |
JP2949179B2 (en) | Non-contact type shape measuring device and shape measuring method | |
JPS60211306A (en) | Adjusting method of optical system of fringe scan shearing interference measuring instrument | |
JPH07332954A (en) | Method and apparatus for measuring displacement and inclination | |
JPS62503049A (en) | Methods and apparatus for orienting, inspecting and/or measuring two-dimensional objects | |
JP2564799Y2 (en) | 3D shape measuring device | |
JP2808713B2 (en) | Optical micro displacement measuring device | |
JPH04130239A (en) | Apparatus for measuring outward position and inward position of dynamic surface | |
EP0467343A2 (en) | Optical heterodyne interferometer | |
JPS63196807A (en) | Optical displacement measuring method | |
JPH08166209A (en) | Polygon mirror evaluating device | |
JPS6117907A (en) | Three-dimensional shape measuring instrument | |
JPH05118829A (en) | Method and apparatus for measuring radius of curvature |