[go: up one dir, main page]

JPH01233257A - Production of 2-chloropropionic acid - Google Patents

Production of 2-chloropropionic acid

Info

Publication number
JPH01233257A
JPH01233257A JP63059426A JP5942688A JPH01233257A JP H01233257 A JPH01233257 A JP H01233257A JP 63059426 A JP63059426 A JP 63059426A JP 5942688 A JP5942688 A JP 5942688A JP H01233257 A JPH01233257 A JP H01233257A
Authority
JP
Japan
Prior art keywords
compound
chloropropionaldehyde
oxygen
chromium
chloropropionic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63059426A
Other languages
Japanese (ja)
Other versions
JPH07107014B2 (en
Inventor
Takaharu Kasuga
春日 隆晴
Yoshihiro Fujita
藤田 義博
Hiroshi Ono
博司 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63059426A priority Critical patent/JPH07107014B2/en
Publication of JPH01233257A publication Critical patent/JPH01233257A/en
Publication of JPH07107014B2 publication Critical patent/JPH07107014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the title compound useful as an industrial chemical at relatively low temperature in short time and high purity under circumference of reduced corrosion, by oxidizing 2-chloropropionaldehyde with oxygen in the presence of a specific amount of metal compounds in liquid phase. CONSTITUTION:For example, 2-chloropropionaldehyde expressed by formula I is oxidized with oxygen or oxygen-containing gas in the presence of an iron compound (e.g., iron (II) chloride or iron (III) chloride) of 0.01-100mg based on 1mol of the above-mentioned compound and vanadium compound (e.g., vanadium trioxide), cobalt compound [e.g., cobalt (II) acetate (4 hydrate)] or chromium compound [e.g., chromium (III) oxide ] of 0.01-1times mol based on atomic ratio in a liquid phase to provide 2-chloropropionic acid expressed by formula II. The oxidation reaction is preferably carried out in the range of 20-120 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は次の反応式(1) %式%(1) に従って2−クロロプロピオンアルデヒドを酸化して2
−クロロプロピオン酸を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to the production of 2-chloropropionaldehyde by oxidizing 2-chloropropionaldehyde according to the following reaction formula (1).
- A method for producing chloropropionic acid.

2−クロロプロピオン酸は工業薬品および農薬製造用中
間体として広範囲な用途を有する化合物である。
2-Chloropropionic acid is a compound that has a wide range of uses as an intermediate for the production of industrial chemicals and pesticides.

(従来の技術および発明が解決しようとする課題)2−
クロロプロピオン酸は、工業的には次の反応式(2) %式%(2) に従ったプロピオン酸の塩素化によって製造されている
。しかし、この方法では、式から明らかなように消費す
る塩素の半分は塩化水素の副生に向けられており、塩素
の利用率の面において経済的に好ましくない上に、副生
ずる塩イヒ水素は未反応塩素や各種の不純物を含むため
に利用価値が低く、また、廃棄するに際しても中和用の
アルカリを必要とするという不利益を有する。また、こ
の方法で得られる2−クロロプロピオン酸には、不純物
として未反応のプロピオン酸のほかに塩素化の更に進ん
だ2.2−ジクロロプロピオン酸等のジクロル体が通常
数%含まれるために純度95%以上とすることが難しい
、特に、これらのジクロル体は単なる蒸留では2−クロ
ロプロピオン酸との分離が困難なために、高純度の2−
クロロプロピオン酸を必要とする場合には、例えば−旦
メチルエステルにしてから精密蒸留にかけ、次いで加水
分解の後にメタノールを分離するといった煩雑な操作を
必要とするという欠点を有している。更に、このプロピ
オン酸の塩素化反応は、腐食性の強い塩化水素を取り扱
うために装置に高価な材料を必要としたり装置の維持に
大きな負担をかける等の問題点も有している。
(Problems to be solved by conventional technology and invention) 2-
Chloropropionic acid is industrially produced by chlorination of propionic acid according to the following reaction formula (2). However, in this method, as is clear from the equation, half of the chlorine consumed is directed to the by-product of hydrogen chloride, which is economically unfavorable in terms of the utilization rate of chlorine. Since it contains unreacted chlorine and various impurities, its utility value is low, and it also has the disadvantage of requiring alkali for neutralization when disposed of. In addition, the 2-chloropropionic acid obtained by this method usually contains several percent of dichloro compounds such as 2,2-dichloropropionic acid, which is further chlorinated, in addition to unreacted propionic acid as impurities. It is difficult to achieve a purity of 95% or higher, especially since these dichlor compounds are difficult to separate from 2-chloropropionic acid by simple distillation.
When chloropropionic acid is required, it has the disadvantage of requiring complicated operations such as, for example, first converting it into methyl ester, subjecting it to precision distillation, and then separating methanol after hydrolysis. Furthermore, this chlorination reaction of propionic acid has other problems, such as requiring expensive materials for the equipment to handle highly corrosive hydrogen chloride and placing a heavy burden on the maintenance of the equipment.

これらの問題点を解決する方法の一つとして、2−クロ
ロプロピオンアルデヒドの酸化によって2−クロロプロ
ピオン酸を製造する次に示す方法が本発明者等によって
提案されている。即ち、特開昭62−96446号に示
した、2−クロロプロピオンアルデヒドを、鉄化合物、
コバルト化合物、ニッケル化合物、マンガン化合物、銅
化合物およびセリウム化合物から成る群から選ばれた少
なくとも一種の金属化合物の存在下、液相において酸素
もしくは酸素含有ガスにより酸化することによる2−ク
ロロプロピオン酸の製造方法である。
As one method for solving these problems, the present inventors have proposed the following method of producing 2-chloropropionic acid by oxidizing 2-chloropropionaldehyde. That is, 2-chloropropionaldehyde shown in JP-A No. 62-96446 was converted into an iron compound,
Production of 2-chloropropionic acid by oxidation with oxygen or oxygen-containing gas in the liquid phase in the presence of at least one metal compound selected from the group consisting of cobalt compounds, nickel compounds, manganese compounds, copper compounds and cerium compounds. It's a method.

原料の2−クロロプロピオンアルデヒドは例えば本発明
者等が特開昭61−126046号において開示したよ
うにロジウムおよび塩基の存在下において塩化ビニルと
合成ガスとの反応によって製造することが可能である。
The raw material 2-chloropropionaldehyde can be produced, for example, by the reaction of vinyl chloride and synthesis gas in the presence of rhodium and a base, as disclosed by the present inventors in JP-A-61-126046.

この方法は先に述べた従来の2−クロロプロピオン酸の
製造方法における各問題点を解決するのに有力な方法で
あり、特に、従来法よりも純度の高い2−クロロプロピ
オン酸を効率よく製造するのに適した方法である。しか
し、更に高純度の2−クロロプロピオン酸を必要とする
場合、これらの方法では少量ではあるが酢酸やプロピオ
ン酸、またはモノクロロ酢酸等の不純物が副反応によっ
て生成するために、これらの副生物を除去する工程を必
要とする。しかし、これらの副生物のなかでも、特にモ
ノクロロ酢酸は沸点が2−クロロプロピオン酸に近く、
蒸留によって分離するには段数の極めて多い蒸留塔を必
要とし、コストのかかる製造法となってしまうという欠
点を有していることがわかった。このような高純度の2
−クロロプロピオン酸は、生化学工業の分野や、2−ク
ロロプロピオン酸の光学分割用原料等に用いられる。
This method is an effective method for solving the problems in the conventional method for producing 2-chloropropionic acid mentioned above, and is particularly effective in producing 2-chloropropionic acid with higher purity than the conventional method. This is a suitable way to do so. However, if even higher purity 2-chloropropionic acid is required, these methods produce small amounts of impurities such as acetic acid, propionic acid, or monochloroacetic acid through side reactions, so these byproducts must be removed. Requires a removal process. However, among these by-products, monochloroacetic acid in particular has a boiling point close to that of 2-chloropropionic acid;
It has been found that separation by distillation requires a distillation column with an extremely large number of plates, resulting in an expensive production method. Such high purity 2
-Chloropropionic acid is used in the biochemical industry and as a raw material for optical resolution of 2-chloropropionic acid.

(課題を解決するための手段) 本発明者等は、この問題について解決法を研究してきた
ところ、2−クロロプロピオンアルデヒドの酸化を、適
切な量の鉄化合物触媒に、適切な比率のバナジウム化合
物、コバルト化合物、またはクロム化合物を組合せた多
元系触媒の存在下において行えば、反応が比較的低温で
進行し、その結果モノクロロ酢酸等の不純物の副生が極
めて少なくなるということを見い出し本発明を完成させ
るに至った。
(Means for Solving the Problem) The present inventors have researched a solution to this problem and found that the oxidation of 2-chloropropionaldehyde is carried out using an appropriate amount of an iron compound catalyst and an appropriate ratio of a vanadium compound. The present invention was based on the discovery that when carried out in the presence of a multi-component catalyst containing a combination of chromium, cobalt compounds, or chromium compounds, the reaction proceeds at a relatively low temperature, resulting in extremely low by-products of impurities such as monochloroacetic acid. I ended up completing it.

即ち、本発明は、 2−クロロプロピオンアルデヒドを (1)2−クロロプロピオンアルデヒド1モル当り0.
01ag原子ないし1oomg原子の鉄化合物と、 (2)鉄化合物に対して原子比で0.001ないし1倍
の量のバナジウム化合物、コバルト化合物、またはクロ
ム化合物、 の存在下、液相において酸素もしくは酸素含有ガスによ
り酸化することを特徴とする2−クロロプロピオン酸の
製造方法である。
That is, in the present invention, 2-chloropropionaldehyde is (1) 0.2-chloropropionaldehyde per mole of 2-chloropropionaldehyde.
Oxygen or oxygen in the liquid phase in the presence of an iron compound containing 01ag atoms to 1oomg atoms, and (2) a vanadium compound, cobalt compound, or chromium compound in an amount of 0.001 to 1 times the atomic ratio to the iron compound. This is a method for producing 2-chloropropionic acid, which is characterized by oxidizing with a contained gas.

本発明の方法において用いる鉄化合物としては、塩化第
一鉄、塩化第二鉄、硫酸第一鉄、硫酸第二鉄、硝酸第二
鉄等の二価または三価の鉄の鉱酸塩や酢酸第一鉄、酢酸
第二鉄、安息香酸第一鉄、蓚酸第一鉄等の二価または三
価の鉄の有機酸塩等が好ましく、また、このほか、水酸
化第二鉄や酸化第二鉄等も使用することができる。また
、二価または三価の鉄の2−クロロプロピオン酸塩も好
ましい鉄化合物の例として挙げられる。
The iron compounds used in the method of the present invention include divalent or trivalent iron mineral salts such as ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, and ferric nitrate, and acetic acid. Preferred are organic acid salts of divalent or trivalent iron such as ferrous, ferric acetate, ferrous benzoate, and ferrous oxalate. Iron etc. can also be used. Further, 2-chloropropionate of divalent or trivalent iron is also mentioned as an example of a preferable iron compound.

一方、バナジウム化合物の例としては、二酸化バナジウ
ム、五酸化バナジウム、三塩化バナジウム、オキシ三塩
化バナジウム、オキシ三塩化バナジウム、オキシ硝酸バ
ナジウム、オキシ硫酸バナジウム、オキシ蓚酸バナジウ
ム等のバナジウム化合物が挙げられる。
On the other hand, examples of vanadium compounds include vanadium compounds such as vanadium dioxide, vanadium pentoxide, vanadium trichloride, vanadium oxytrichloride, vanadium oxytrichloride, vanadium oxynitrate, vanadium oxysulfate, and vanadium oxyoxalate.

また、コバルト化合物の例としては、酢酸コバルト(■
)(四水和物)、コバルト(n)アセチルアセトネート
、コバルトCDI)アセチルアセトネート、安息香酸コ
バル) (If)、塩基性炭酸コバル)(I[)、塩化
コバル)(II)、水M化コバルト(■)、酸化コバル
ト(■)、ナフテン酸コバルト、硝酸コバルト(n)(
六水和物)、蓚酸コバル)(n)、硫酸コバル) (I
I)七水和物等のコバルト化合物が挙げられる。
In addition, as an example of a cobalt compound, cobalt acetate (■
) (tetrahydrate), cobalt (n) acetylacetonate, cobalt CDI) acetylacetonate, cobal benzoate) (If), basic cobal carbonate) (I[), cobal chloride) (II), water M Cobalt oxide (■), cobalt oxide (■), cobalt naphthenate, cobalt nitrate (n) (
hexahydrate), cobal oxalate) (n), cobal sulfate) (I
I) Cobalt compounds such as heptahydrate.

更に、クロム化合物の例としては、酸化クロム(■)、
酸化クロム(■)、ナフテン酸クロム、塩化クロム(■
)、塩化クロム(■)、クロム(I[[)アセチルアセ
トネート、塩基性炭酸クロム(■)、沃化クロム(■)
、硝酸クロム(I[[)、硫酸クロム(I[[)等のク
ロム化合物が挙げられる。
Furthermore, examples of chromium compounds include chromium oxide (■),
Chromium oxide (■), chromium naphthenate, chromium chloride (■
), chromium chloride (■), chromium (I [[) acetylacetonate, basic chromium carbonate (■), chromium iodide (■)
, chromium nitrate (I[[), and chromium sulfate (I[[)).

本発明の方法においては、これらの化合物の使用量が重
要である。鉄化合物は、通常、原料の2−クロロプロピ
オンアルデヒド1モルに対して、0.0001mg原子
〜200■g原子、特に0.01mg原子〜10kg原
子の量が好ましく用いられる。この下限以下の量でも反
応は進行するが、反応速度が遅くなる上に、過酸の副生
が増加し、選択性が悪くなる上に、保安上も好ましくな
い結果をもたらす。
In the method of the present invention, the amount of these compounds used is important. The iron compound is usually preferably used in an amount of 0.0001 mg atom to 200 g atom, particularly preferably 0.01 mg atom to 10 kg atom, per mole of 2-chloropropionaldehyde as a raw material. Although the reaction proceeds even if the amount is less than this lower limit, the reaction rate becomes slow and the by-product of peracid increases, resulting in poor selectivity and unfavorable safety results.

また、この上限以上の量の触媒を使用しても、効果はこ
れ以上よくならず、かえって取扱い上の問題等が起こり
好ましくない。また、本発明の方法において用いるバナ
ジウム化合物、コバルト化合物、またはクロム化合物の
量は、触媒として用いる鉄化合物に対して、原子比でo
、ooot〜5倍、特に好ましくはo、ooi〜1倍の
量が用いられる。この下限以下の量では効果が小さく、
本発明の特徴が生かされない、また、この上限以上の量
では、バナジウム化合物、コバルト化合物、又はクロム
化合物の所要量が大きくなり、経済上好ましくない。
Furthermore, even if an amount of the catalyst is used in an amount exceeding this upper limit, the effect will not be improved any further, and problems in handling may occur, which is not preferable. Further, the amount of vanadium compound, cobalt compound, or chromium compound used in the method of the present invention is o in atomic ratio with respect to the iron compound used as a catalyst.
, ooot ~ 5 times, particularly preferably o, ooi ~ 1 times. If the amount is below this lower limit, the effect will be small;
If the characteristics of the present invention are not utilized, and the amount exceeds this upper limit, the required amount of the vanadium compound, cobalt compound, or chromium compound becomes large, which is not economically preferable.

本発明の方法では、2−クロロプロピオンアルデヒドの
酸化を温度20〜120°Cの範囲で行う事が好ましい
、20℃以下の温度では酸化反応速度が遅く工業的には
好ましくない。又、120″C以上の温度では、2−ク
ロロプロピオンアルデヒドや2−クロロプロピオン酸の
脱塩酸等の副反応が著しくなり、2−クロロプロピオン
酸の収率が低下するとともに純度も悪くなる。これらの
理由から、用いる温度は40〜80℃が更に好ましい範
囲である。
In the method of the present invention, it is preferable to oxidize 2-chloropropionaldehyde at a temperature in the range of 20 to 120°C; temperatures below 20°C are unfavorable industrially because the oxidation reaction rate is slow. Furthermore, at temperatures above 120"C, side reactions such as dehydrochlorination of 2-chloropropionaldehyde and 2-chloropropionic acid become significant, resulting in a decrease in the yield and purity of 2-chloropropionic acid. For this reason, the temperature used is more preferably in the range of 40 to 80°C.

本発明の方法では、溶媒の不存在下でも酸化は充分進行
するが、酸化に伴う発熱を効率よく除去して良好な反応
成績を得るには溶媒の存在下で酸化を行うことが好まし
い、このような溶媒としては、酸化反応条件下で変質や
副反応を伴わないものであればいずれも使用しうる。好
ましい例としては、酢酸、プロピオン酸、酪酸等のカル
ボン酸があり、また、このほか、ジメチルスルホキシド
や、スルホラン、アセトン等も挙げられる。また、生成
物である2−クロロプロピオン酸の使用は、酸化反応の
後に生成物と溶媒とを分離する工程を省くことが可能と
なるためにさらに好ましい、これらの溶媒中の2−クロ
ロプロピオンアルデヒドの濃度は、通常1〜50重量%
、特に5〜30重量%の範囲が好ましく用いられる。
In the method of the present invention, oxidation proceeds satisfactorily even in the absence of a solvent, but in order to efficiently remove the heat generated by oxidation and obtain good reaction results, it is preferable to carry out the oxidation in the presence of a solvent. As such a solvent, any solvent can be used as long as it does not cause deterioration or side reactions under oxidation reaction conditions. Preferred examples include carboxylic acids such as acetic acid, propionic acid, butyric acid, and also dimethyl sulfoxide, sulfolane, acetone, and the like. Further, the use of the product 2-chloropropionic acid is more preferable since it makes it possible to omit the step of separating the product and the solvent after the oxidation reaction, and 2-chloropropionaldehyde in these solvents. The concentration is usually 1 to 50% by weight.
In particular, a range of 5 to 30% by weight is preferably used.

この2−クロロプロピオンアルデヒドの酸化において、
原料や溶媒に由来する水の混入がしばしば見られるが、
反応系内に水が共存すると反応速度が低下して好ましく
ない。しかし、本発明の方法においては、反応系内の水
は完全に除去する必要はなく、通常液相中に10重量%
以下、特に好ましくは3重量%以下とすれば酸化は充分
に進行する。
In this oxidation of 2-chloropropionaldehyde,
Water contamination from raw materials and solvents is often seen,
The coexistence of water in the reaction system is undesirable because the reaction rate decreases. However, in the method of the present invention, it is not necessary to completely remove water in the reaction system, and usually 10% by weight of water is added to the liquid phase.
If the amount is particularly preferably 3% by weight or less, oxidation will proceed sufficiently.

本発明の方法において、酸化剤としては酸素または酸素
含有ガスが用いられる。酸素含有ガスとしては、最も一
般的には空気が用いられる。これらの酸素含有ガスの圧
力は、反応系内の酸素分圧で0.2kg/cj以上、特
に5kg/cjが好ましい。
In the method of the invention, oxygen or an oxygen-containing gas is used as the oxidizing agent. Air is most commonly used as the oxygen-containing gas. The pressure of these oxygen-containing gases is preferably 0.2 kg/cj or more, particularly 5 kg/cj in terms of oxygen partial pressure in the reaction system.

酸素分圧には特に上限を設ける必要はないが、あまり高
圧にすることは工業的に好ましくないので、通常は酸素
分圧100 kg/aa以下の範囲で行われる。
Although it is not necessary to set a particular upper limit on the oxygen partial pressure, it is industrially undesirable to make the pressure too high, so the oxygen partial pressure is usually carried out within a range of 100 kg/aa or less.

(実施例) 以下に、実施例により本発明の方法を更に具体的に説明
する。
(Example) Below, the method of the present invention will be explained in more detail with reference to Examples.

実施例1 撹拌装置を備えた内容積70 dのステンレス製オート
クレーブに、2−クロロプロピオンアルデヒド7.4g
(80ミリモル)と、反応溶媒として酢酸50g及び酸
化触媒として硫酸第一鉄(七水和物)(FeSOa4H
zO) 50 mg(0,18ミリモル)と二酸化バナ
ジ’) ム(VzOi ) 7 mg(0,05ミリモ
ル)を装入した。これに、空気を75kg/dまで圧入
し、温水浴中、撹拌下で45°Cにおいて1.5時間反
応を行わせた0反応の進行に伴い圧力が低下したのでボ
ンベから酸素を補給し、圧力を75kg/CIiに保っ
た。
Example 1 7.4 g of 2-chloropropionaldehyde was placed in a 70 d stainless steel autoclave equipped with a stirring device.
(80 mmol), 50 g of acetic acid as a reaction solvent, and ferrous sulfate (heptahydrate) (FeSOa4H) as an oxidation catalyst.
50 mg (0.18 mmol) of vanadium dioxide (VzOi) and 7 mg (0.05 mmol) of vanadium dioxide (VzOi) were charged. Air was pressurized to 75 kg/d, and the reaction was carried out at 45°C for 1.5 hours in a hot water bath with stirring.As the reaction progressed, the pressure decreased, so oxygen was supplied from a cylinder. The pressure was kept at 75 kg/CIi.

反応終了後、オートクレーブを冷却し、圧を抜いた後に
内容物を取り出し、ガスクロマトグラフにより分析した
0分析の結果、2−クロロプロピオンアルデヒドの転化
率は98.4%で、2−クロロプロピオン酸への選択率
は99.5%以上であった。また、反応液中には酢酸や
モノクロロ酢酸等の副生は認められなかった。
After the reaction was completed, the autoclave was cooled, the pressure was released, the contents were taken out, and the results of gas chromatography analysis showed that the conversion rate of 2-chloropropionaldehyde was 98.4%, converting it to 2-chloropropionic acid. The selectivity was 99.5% or more. Further, by-products such as acetic acid and monochloroacetic acid were not observed in the reaction solution.

比較例1 実施例1の方法において、酸化触媒として硫酸第一鉄5
0 ff1gを用いた以外は同じ方法で2−クロロプロ
ピオンアルデヒドの酸化を行った。
Comparative Example 1 In the method of Example 1, ferrous sulfate 5 was used as an oxidation catalyst.
Oxidation of 2-chloropropionaldehyde was performed in the same manner except that 1 g of 0 ff was used.

反応終了後の反応液の分析から2−クロロプロピオンア
ルデヒドの転化率は65.2%、2−クロロプロピオン
酸への選択率は99.5%以上であることがわかった。
Analysis of the reaction solution after completion of the reaction revealed that the conversion rate of 2-chloropropionaldehyde was 65.2% and the selectivity to 2-chloropropionic acid was 99.5% or more.

比較例2 実施例1の方法において、酸化触媒として二酸化バナジ
ウム7 mgを用いた以外は同じ方法で2−クロロプロ
ピオンアルデヒドの酸化を行った。
Comparative Example 2 2-chloropropionaldehyde was oxidized in the same manner as in Example 1 except that 7 mg of vanadium dioxide was used as the oxidation catalyst.

反応終了後の反応液の分析から2−クロロプロピオンア
ルデヒドの転化率は41.2%、2−クロロプロピオン
酸への選択率は99.5%以上であることがわかった。
Analysis of the reaction solution after completion of the reaction revealed that the conversion rate of 2-chloropropionaldehyde was 41.2% and the selectivity to 2-chloropropionic acid was 99.5% or more.

実施例2 実施例1において三酸化バナジウム7 mgの代わりに
酢酸コバルト(■)(四水和物) 25mg(0,1ミ
リモル)を用い、反応温度を50°Cとした以外は同じ
方法で酸化を行った。その結果、2−クロロプロピオン
アルデヒドの転化率96.6%、2−クロロプロピオン
酸への選択率99.5%以上の反応成績を得た。
Example 2 Oxidation was carried out in the same manner as in Example 1 except that 25 mg (0.1 mmol) of cobalt acetate (■) (tetrahydrate) was used instead of 7 mg of vanadium trioxide and the reaction temperature was 50 °C. I did it. As a result, reaction results were obtained in which the conversion rate of 2-chloropropionaldehyde was 96.6% and the selectivity to 2-chloropropionic acid was 99.5% or more.

実施例3 実施例1において、硫酸第一鉄so tagの代わりに
蓚酸第一鉄(二水和物)  50 tag (0,28
ミリモル)を、また、二酸化バナジウム7 mgの代わ
りに酸化クロム(n[)  9 vag (0,06ミ
リモル)を用い、反応を空気圧50Kg/cdとした以
外は同じ方法で酸化を行った。その結果、2−クロロプ
ロピオンアルデヒドの転化率97.8%、2−Iyロc
tプロピオン酸への選択率99.5%以上の反応成績を
得た。
Example 3 In Example 1, ferrous oxalate (dihydrate) 50 tag (0,28
The same method was used except that chromium oxide (n[) 9 vag (0.06 mmol) was used instead of 7 mg of vanadium dioxide and the reaction was carried out at an air pressure of 50 Kg/cd. As a result, the conversion rate of 2-chloropropionaldehyde was 97.8%, and the conversion rate of 2-chloropropionaldehyde was 97.8%.
A reaction result with a selectivity to t-propionic acid of 99.5% or more was obtained.

(発明の効果) 本発明の方法により、従来からのプロピオン酸の塩素化
法に比較して腐食の少ない環境下で工業的に2−クロロ
プロピオン酸を製造することができる。また、得られる
2−クロロプロピオン酸中には2.2−ジクロロプロピ
オン酸は殆ど検出されない、更に、これまでに提案され
ている2−クロロプロピオンアルデヒドの酸化方法に比
較して、より低い温度で酸化を行うことができるために
副生ずる不純物が非常に少なく、この結果、高純度の2
−クロロプロピオン酸を容易に得ることが可能となる。
(Effects of the Invention) According to the method of the present invention, 2-chloropropionic acid can be industrially produced in an environment with less corrosion than the conventional chlorination method of propionic acid. In addition, 2,2-dichloropropionic acid is hardly detected in the obtained 2-chloropropionic acid, and furthermore, compared to the oxidation method of 2-chloropropionaldehyde that has been proposed so far, it is possible to oxidize 2-chloropropionic acid at a lower temperature. Since oxidation can be performed, there are very few by-product impurities, resulting in highly pure 2
- It becomes possible to easily obtain chloropropionic acid.

また、更に、これまでに提案されている2−クロロプロ
ピオンアルデヒドの酸化方法に比較して、同じ温度では
より速い反応速度が得られるために、反応時間を短くで
き、この結果、やはり副反応が少なくなるとともに、反
応器あたりの生産性が向上する。
Furthermore, compared to the oxidation methods of 2-chloropropionaldehyde proposed so far, a faster reaction rate can be obtained at the same temperature, so the reaction time can be shortened, and as a result, side reactions are also avoided. As this decreases, productivity per reactor increases.

Claims (1)

【特許請求の範囲】 1 2−クロロプロピオンアルデヒドを (1)2−クロロプロピオンアルデヒド1モル当り0.
01mg原子ないし100mg原子の鉄化合物と、 (2)鉄化合物に対して原子比で0.001ないし1倍
の量のバナジウム化合物、コバルト化合物、またはクロ
ム化合物、 の存在下、液相において酸素もしくは酸素含有ガスによ
り酸化することを特徴とする2−クロロプロピオン酸の
製造方法。
[Scope of Claims] 1 2-chloropropionaldehyde (1) 0.0% per mole of 2-chloropropionaldehyde.
(2) a vanadium compound, a cobalt compound, or a chromium compound in an amount of 0.001 to 1 times the atomic ratio to the iron compound in the presence of oxygen or oxygen in the liquid phase. A method for producing 2-chloropropionic acid, which comprises oxidizing with a gas contained therein.
JP63059426A 1988-03-15 1988-03-15 Method for producing 2-chloropropionic acid Expired - Lifetime JPH07107014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63059426A JPH07107014B2 (en) 1988-03-15 1988-03-15 Method for producing 2-chloropropionic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63059426A JPH07107014B2 (en) 1988-03-15 1988-03-15 Method for producing 2-chloropropionic acid

Publications (2)

Publication Number Publication Date
JPH01233257A true JPH01233257A (en) 1989-09-19
JPH07107014B2 JPH07107014B2 (en) 1995-11-15

Family

ID=13112925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63059426A Expired - Lifetime JPH07107014B2 (en) 1988-03-15 1988-03-15 Method for producing 2-chloropropionic acid

Country Status (1)

Country Link
JP (1) JPH07107014B2 (en)

Also Published As

Publication number Publication date
JPH07107014B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
CA2145307A1 (en) A process for the preparation of adipic acid and other aliphatic dibasic acids
US2723994A (en) Oxidation of xylene and toluic acid mixtures to phthalic acids
US5081290A (en) Process for making aromatic polycarboxylic acids and oxidation catalyst system
EP0852576A4 (en) Method for preparation of carboxylic acids
MXPA06012058A (en) Liquid phase oxidation of p-xylene to terephthalic acid in the presence of a catalyst system containing nickel, manganese, and bromine atoms.
US2853514A (en) Process for the preparation of aromatic carboxylic acids
EP1167335B1 (en) Process for producing aromatic polycarboxylic acid
KR900006442B1 (en) Process for producing trimellitic acid
JPH01233257A (en) Production of 2-chloropropionic acid
JP5055262B2 (en) Method for producing p-toluic acid by liquid phase oxidation of p-xylene in water
JPS5865241A (en) Carbonylation of secondary benzylhalide
US4226790A (en) Process for oxidizing thallium (I) to thallium (III)
JPH04198149A (en) Oxidation of 2-chloropropionaldehyde
US4456555A (en) Manufacture of aryl esters
CN112851496A (en) Preparation method of p-toluic acid
JPH07196573A (en) Acetophenone production method
US3644512A (en) Process for converting butane to acetic acid
WO1995020560A1 (en) Process for the manufacture of benzaldehyde
JPH04198150A (en) Oxidation of 2-chloropropionaldehyde
JPS63297339A (en) Production of 2-chloropropionic acid
US7598415B2 (en) Process for the preparation of p-toluic acid by liquid phase oxidation of p-xylene in water
EP0018433B1 (en) Process for producing aromatic carboxylic acids and methyl esters thereof
JPS63310844A (en) Production of 2-chloropropionic acid
EP1398307A1 (en) Process for producing trimellitic acid
JPS6296446A (en) Production of 2-chloropropionic acid