[go: up one dir, main page]

JPH01232931A - Automatic blood pressure measuring apparatus - Google Patents

Automatic blood pressure measuring apparatus

Info

Publication number
JPH01232931A
JPH01232931A JP63058174A JP5817488A JPH01232931A JP H01232931 A JPH01232931 A JP H01232931A JP 63058174 A JP63058174 A JP 63058174A JP 5817488 A JP5817488 A JP 5817488A JP H01232931 A JPH01232931 A JP H01232931A
Authority
JP
Japan
Prior art keywords
pressure
compressed air
narrow passage
pulsation
blood pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63058174A
Other languages
Japanese (ja)
Other versions
JP2657923B2 (en
Inventor
Tadashi Fukami
正 深美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OUKEN SEIKO KK
Original Assignee
OUKEN SEIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OUKEN SEIKO KK filed Critical OUKEN SEIKO KK
Priority to JP63058174A priority Critical patent/JP2657923B2/en
Publication of JPH01232931A publication Critical patent/JPH01232931A/en
Application granted granted Critical
Publication of JP2657923B2 publication Critical patent/JP2657923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PURPOSE:To accurately measure blood pressure by removing the pulsation of compressed air and eliminating that a pressure sensor mistakes the pulsation of blood for that of compressed air, by providing the narrow passage arranged to the emitting port of a pressurizing mechanism part sufficiently long while providing a pressure controller having one or more pressure chamber on the way of said narrow passage. CONSTITUTION:A control part 80 starts a pressure pump apparatus 10. Next, compressed air is supplied to the suction port 21a of a pressurization controller 20 from the pressure pump apparatus 10 and sent to the first pressure chamber formed of a recessed part 21e. The compressed air sent in the first narrow passage is attenuated in its pulsation by the narrow passage high in air resistance and this compressed air attenuated in its pulsation is sent to the second pressure chamber formed of recessed parts 21b, 23b. Further, the compressed air passes through the second narrow passage having the same structure as the first narrow passage to send the compressed air whose pulsation is almost removed to the third pressure chamber. The third pressure chamber performs the same action as the second pressure chamber and also stabilizes the pressure of the compressed air supplied to a cuff 40.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気体を圧縮、加圧するポンプ装置を用いて、
自動的に人体の血圧を測定する自動血圧測定装置に関す
る。
[Detailed description of the invention] [Industrial application field] The present invention uses a pump device that compresses and pressurizes gas,
The present invention relates to an automatic blood pressure measuring device that automatically measures blood pressure of a human body.

〔従来の技術〕[Conventional technology]

一般に血圧の測定は、医師等の医療従事者によって手動
ポンプに連結した水銀柱と聴診器を用いて行なわれてい
た。しかし、近年の医療技術の発達と国民の健康増進を
願う認識から家庭でも血圧を計シたいとの要望が高オシ
、簡単な操作で血圧が測定できる自動血圧測定器が普及
するに至っている。
Generally, blood pressure measurements have been performed by medical personnel such as doctors using a mercury column connected to a manual pump and a stethoscope. However, in recent years, with the development of medical technology and the desire to improve the health of the people, there has been a strong desire to measure blood pressure at home, and automatic blood pressure measuring devices that can measure blood pressure with simple operation have become popular.

第9図は従来の自動血圧測定器の構成図である。FIG. 9 is a configuration diagram of a conventional automatic blood pressure measuring device.

図において、10は直流モータ10&とこの直流モータ
の回転により高圧の空気を吐出する加圧機構部10bか
らなる加圧ポンプ装置、30はこの加圧ポンプ装置10
で加圧された空気を各部に送る加圧配管、40は血圧測
定のとき被測定者の上腕部に取付は血管を圧迫すすため
の腕帯、50は腕帯40の圧力を検出する圧力センサ、
60は腕帯40に蓄積された加圧空気を除々に排出する
微排弁、70は血圧測定終了後腕帯40に残留した加圧
空気を一気に排出する急排弁である。80は制御部であ
シ、加圧ポンプ装置10の起動制御、及び腕帯40内の
圧力調整を行なうと共に、この調整で得られた圧力セン
サ50からの信号に基づき血圧値を算出し表示部90に
表示する。
In the figure, 10 is a pressurizing pump device consisting of a DC motor 10& and a pressurizing mechanism section 10b that discharges high-pressure air by the rotation of this DC motor, and 30 is this pressurizing pump device 10.
40 is a cuff attached to the upper arm of the subject to compress blood vessels during blood pressure measurement, and 50 is a pressure sensor for detecting the pressure of the cuff 40. ,
Reference numeral 60 denotes a slight discharge valve that gradually discharges the pressurized air accumulated in the cuff 40, and 70 denotes a quick discharge valve that discharges the pressurized air remaining in the cuff 40 all at once after blood pressure measurement is completed. Reference numeral 80 denotes a control unit, which controls the activation of the pressurizing pump device 10 and adjusts the pressure inside the cuff 40, and calculates a blood pressure value based on the signal from the pressure sensor 50 obtained by this adjustment, and displays a display unit. 90.

さて、この自動血圧測定器で血圧を測定する手順を第1
0図に示した特性図を用いて説明する。
Now, the first step is to measure blood pressure with this automatic blood pressure measuring device.
This will be explained using the characteristic diagram shown in Figure 0.

まず、腕帯40を被測定者の上腕部に取付は加圧ポンプ
装置10によりこの腕帯40を加圧する。
First, the arm cuff 40 is attached to the upper arm of the person to be measured, and the arm cuff 40 is pressurized by the pressurizing pump device 10 .

次に、時間Tl後に腕帯40が上腕の「最高血圧」を測
定するのに充分な圧力例えば250 +u Hgに達す
ると(点P)、制御部80は加圧ポンプ装置10を停止
させる。微排弁60は小穴の形状を有しており、加圧ポ
ンプ10が停止すると徐々に加圧空気を排出し腕帯40
内部の圧力を低下させる。そして、例えば圧力150g
Hg (点H)のとき上腕の血液が流れ始めたことを圧
力センサ50が検出すると、制御部80はこのときの圧
力を「最高血圧」と判断する。さらに腕帯40の圧力が
低下して、例えば圧力90smHg(点し)のとき血液
の脈動を圧力センサ50が検出すると、制御部80はこ
のときの圧力を「最低血圧」と判断する。このようにし
て、血圧測定が完了すると急排弁TOを開き腕帯40に
残留している加圧空気を全て排出しく点C)、表示部9
0に「最高血圧150J、「最低血圧90」を表示する
Next, when the arm cuff 40 reaches a pressure sufficient to measure the "systolic blood pressure" of the upper arm after a time Tl (point P), the control unit 80 stops the pressurizing pump device 10. The micro-exhaust valve 60 has the shape of a small hole, and when the pressurizing pump 10 stops, it gradually exhausts pressurized air and releases it from the cuff 40.
Reduce internal pressure. For example, the pressure is 150g
When the pressure sensor 50 detects that blood in the upper arm has started to flow when the pressure is Hg (point H), the control unit 80 determines the pressure at this time to be the "systolic blood pressure". When the pressure in the cuff 40 further decreases and the pressure sensor 50 detects blood pulsation when the pressure is, for example, 90 smHg (lit), the control unit 80 determines the pressure at this time to be the "diastolic blood pressure". In this way, when the blood pressure measurement is completed, the sudden exhaust valve TO is opened to exhaust all the pressurized air remaining in the cuff 40 (point C), and the display section 9
0 displays "systolic blood pressure 150J" and "diastolic blood pressure 90".

この血圧を測定する手順は、前述した医師等が手動ポン
プと聴診器で行なう手順をそのまま踏襲したもので、原
理的には問題がないが従来の手順では最初に「最高血圧
」を測定するため第10図に示すように腕帯40の初期
圧力を250atmHf 1で短時間で上昇しなければ
ならず、その結果加圧ポンプ装置の消費電力が大きくな
る原因となっていた。また、微排弁60が必要となシ、
構成が複雑になっていた。
This procedure for measuring blood pressure follows the same procedure as described above by doctors using a manual pump and stethoscope, and there is no problem in principle, but the conventional procedure first measures the ``systolic blood pressure.'' As shown in FIG. 10, the initial pressure of the cuff 40 had to be increased to 250 atmHf 1 in a short time, which resulted in an increase in the power consumption of the pressurizing pump device. In addition, the fine discharge valve 60 is not required.
The configuration was complicated.

このため、第11図に示す特性図のように改良した手順
が提案されている。すなわち、腕帯40への圧力を徐々
に上昇させ、前述とは逆に血液の脈動がなくなつ九とき
(点L)を「最低血圧」と判断し、さらに腕帯40の圧
力を上げ血液の流れが上ったとき(点H)を「最高血圧
」と判断する。
For this reason, an improved procedure as shown in the characteristic diagram shown in FIG. 11 has been proposed. That is, the pressure on the cuff 40 is gradually increased, and contrary to the above, the point at which the blood pulsation stops (point L) is determined to be the "diastolic blood pressure", and the pressure on the cuff 40 is further increased to increase the blood pressure. When the flow rises (point H), it is determined to be the "systolic blood pressure."

そして、被測定者の「最高血圧」を測定した後、急排弁
を開いて腕帯4oの加圧空気を排出する(点C)。この
ような手順であれば、加圧空気を徐々に排出する手順が
ないので微排弁60が不用であるばかシか腕帯40の初
期圧力を短時間で2501冨Hgまで上昇する必要がな
く、この点で前述の手順よシ優れている。
After measuring the "systolic blood pressure" of the subject, the emergency vent valve is opened to discharge the pressurized air from the cuff 4o (point C). With this procedure, there is no step for gradually discharging the pressurized air, so there is no need for the micro-exhaust valve 60, and there is no need to increase the initial pressure of the arm cuff 40 to 2501 Hg in a short time. , is superior to the previously described procedure in this respect.

〔発明が解決しようとする線層〕[Line layer that the invention attempts to solve]

しかしながら、第11図で説明した手順では加圧ポンプ
装置10から腕帯40に加圧している途中で「最低血圧
」(点し)及び「最高血圧」(点H)を測定している丸
め、血圧値を測定する圧力セ/す50が血液の脈動と加
圧ポンプ装置10による加圧された空気の脈動を誤認し
てしまう恐れがあり、正確な血圧測定が期待できなかっ
た。
However, in the procedure explained in FIG. 11, the "diastolic blood pressure" (dot) and "systolic blood pressure" (point H) are measured while the pressurizing pump device 10 is pressurizing the cuff 40. There is a possibility that the pressure sensor 50 for measuring the blood pressure value may misidentify the pulsation of the blood and the pulsation of the pressurized air by the pressurizing pump device 10, and accurate blood pressure measurement could not be expected.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前述の問題を解決するため、加圧機構部の吐出
口に連通ずる充分長い狭路と、この狭路の途中に1つ以
上の圧力室とを有する加圧調整器を備えている。
In order to solve the above-mentioned problem, the present invention includes a pressure regulator having a sufficiently long narrow passage communicating with the discharge port of the pressurizing mechanism and one or more pressure chambers in the middle of this narrow passage. .

〔作用〕[Effect]

加圧ポンプ装置で加圧するとき発生する加圧空気の脈動
は、加圧調整器により除去される。
The pulsation of pressurized air that occurs when pressurizing with the pressurizing pump device is eliminated by the pressurizing regulator.

〔実施例〕〔Example〕

以下、実施例について説明する。第1図は本発明に係る
一実施例を示す構成図である。図において第9図と同一
部分については同一符号を付する。
Examples will be described below. FIG. 1 is a configuration diagram showing an embodiment according to the present invention. In the figure, the same parts as in FIG. 9 are given the same reference numerals.

20は加圧空気の脈動を除去する加圧調整器である。第
2図は加圧調整器20の外観図を示しておシ、同図(−
)はその正面図、同図(b)は側面図である。
20 is a pressure regulator that eliminates pulsation of pressurized air. FIG. 2 shows an external view of the pressure regulator 20.
) is a front view thereof, and (b) is a side view thereof.

同図において、21は吸入側容器、22はバッキング、
23は吸入側容器21と同一構造の吐出側容器である。
In the figure, 21 is a suction side container, 22 is a backing,
23 is a discharge side container having the same structure as the suction side container 21.

加圧yI整整容0はこの主要る3つの部品から構成され
ておυ、バッキング22を中心として両側の容器21.
23がこれを挾み込むようにボルト24とナツト25と
で締結している。
Pressure yI cosmetic surgery 0 is composed of these three main parts.
23 is fastened with a bolt 24 and a nut 25 so as to sandwich this.

また、矢印Aは加圧ポンプ装置10から送υ込まれる空
気を吸入する方向を示し、矢印Bは吐出する方向を示す
。第3図は加圧調整器20における構成部品の組立図で
ある。図において、21aは吸入口、21bは凹部、2
1eは溝部、22bは凹部21bと同じ径で形成された
バッキング22の流通口、21d、22d、23dはボ
ルト24を通すための貫通穴、21eは吸入口21aに
連結した凹部である。
Further, arrow A indicates the direction in which air is inhaled from the pressurizing pump device 10, and arrow B indicates the direction in which air is discharged. FIG. 3 is an assembled diagram of the components of the pressure regulator 20. In the figure, 21a is an inlet, 21b is a recess, 2
1e is a groove, 22b is a communication port of the backing 22 formed with the same diameter as the recess 21b, 21d, 22d, and 23d are through holes for passing the bolt 24, and 21e is a recess connected to the suction port 21a.

なお、前述したように吸入側容器21と吐出側容器23
は同一構造となっているため、第3図に図示はしていな
いが吐出側容器23に吐出口23a。
In addition, as mentioned above, the suction side container 21 and the discharge side container 23
Since they have the same structure, there is a discharge port 23a in the discharge side container 23, although it is not shown in FIG.

凹部23b1溝部23C1吐出口23aに連結し7た凹
部23eが形成されている。第4図(−)は第3図の記
号Cからみた吸入側容器21の平面図、同図(b)は同
図(a)のIVB−IVB断面図である。同図(&)に
おいて、溝部21cは、凹部21eから凹部21bまで
、充分の距離が得られるように屈曲させて配置されてい
る。
A recess 23e is formed which is connected to the recess 23b1, the groove 23C1, and the discharge port 23a. 4(-) is a plan view of the suction side container 21 seen from symbol C in FIG. 3, and FIG. 4(b) is a sectional view taken along IVB-IVB in FIG. 3(a). In the same figure (&), the groove part 21c is bent and arranged so that a sufficient distance can be obtained from the recess part 21e to the recess part 21b.

また、溝部21cは同図(b)K示すように/、11さ
な溝断面を形成するのに対し、凹部21b、凹部21・
は充交大きな断面(容積)を有している。第5図は第2
図(a)のv−■断面図である。図において、吸入側容
器21における溝部21eはバッキング22と面するこ
とにより、凹部21θから凹部21bまで狭路を形成す
る(第1の狭路と呼ぶ)。また、凹部21・も同様にバ
ッキング22に面することにより圧力室を形成しく第1
の圧力室と呼ぶ)、凹部21bは流通口22bを介して
凹部23bと連結して凹部21b及び凹部23bの2つ
の容積を有する圧力室を形成する(第2の圧力室と呼ぶ
)。さらに、吐出側容器23における溝部23cも前述
と同様に凹部23bから凹部23@iでの狭路を形成し
く第2の狭路と呼ぶ)、凹部236も圧力室を形成する
(第3の圧力室と呼ぶ)。
Further, as shown in FIG.
has a large cross section (volume). Figure 5 is the second
It is a v-■ sectional view of figure (a). In the figure, the groove 21e in the suction side container 21 faces the backing 22, thereby forming a narrow path from the recess 21θ to the recess 21b (referred to as a first narrow path). In addition, the recess 21 also faces the backing 22 to form a pressure chamber.
The recess 21b is connected to the recess 23b via the communication port 22b to form a pressure chamber having two volumes, the recess 21b and the recess 23b (referred to as a second pressure chamber). Furthermore, the groove 23c in the discharge side container 23 also forms a narrow passage from the recess 23b to the recess 23@i (referred to as a second narrow passage), and the recess 236 also forms a pressure chamber (the third pressure (called a room).

次に動作について説明する。第1図の構成において、第
11図で説明した手順で血圧測定を行なう場合、まず制
御部80は加圧ポンプ装置10を起動させる。次に、加
圧ポンプ装置10から加圧された空気は加圧調整器20
の吸入口Ztaに供給される。この供給された加圧空気
は第6図に示すブロック図のように凹部21・で形成さ
れた第1の圧力室に送られる。この第1の圧力室は供給
された加圧空気を蓄積して、加圧空気が次の第1の狭路
を通過するときに流量低下するのを防止する。
Next, the operation will be explained. In the configuration shown in FIG. 1, when blood pressure is measured using the procedure described in FIG. 11, the control section 80 first starts the pressurizing pump device 10. Next, the air pressurized from the pressurizing pump device 10 is transferred to a pressurizing regulator 20.
is supplied to the inlet Zta of the inlet. This supplied pressurized air is sent to a first pressure chamber formed by a recess 21, as shown in the block diagram shown in FIG. This first pressure chamber stores the supplied pressurized air to prevent the flow rate from decreasing when the pressurized air passes through the next first narrow passage.

また、加圧空気を蓄積したときに脈動するエネルギーの
蓄積効果を生じさせ、脈動のエネルギーを平滑化させる
。次に、第1の狭路に送シ込まれた加圧空気は、空気抵
抗の高い狭路によって脈動が減衰する。そして、とのB
IC,動が減衰した加圧空気は凹部21b、23bで形
成された第2の加圧室に送られる。この圧力室の容量は
、第1の狭路に比べ充分大きな容積となるため、送シ込
まれた加圧空気に第1の圧力室で除去できなかった脈動
があっても、脈動するエネルギーの蓄積効果により、再
度脈動のエネルギーを平滑化させる。さらに、加圧空気
が第1の狭路と同一構造のtlc2の狭路を通過するこ
とにより、はぼ脈動が除去された加圧空気が第3の圧力
室へ送られる。第3の圧力室は、第2の圧力室と同一の
作用を行なうと共に1腕帯40へ供給する加圧空気の圧
力を安定化させる。
Furthermore, when pressurized air is accumulated, an accumulation effect of pulsating energy is produced, and the pulsating energy is smoothed out. Next, the pulsation of the pressurized air sent into the first narrow passage is attenuated by the narrow passage with high air resistance. And the B
The pressurized air whose IC motion has been attenuated is sent to the second pressurizing chamber formed by the recesses 21b and 23b. The capacity of this pressure chamber is sufficiently larger than that of the first narrow passage, so even if there is pulsation in the pumped pressurized air that cannot be removed in the first pressure chamber, the pulsating energy will be absorbed. Due to the accumulation effect, the pulsating energy is smoothed again. Furthermore, by passing the pressurized air through the narrow passage tlc2 having the same structure as the first narrow passage, the pressurized air from which pulsation has been removed is sent to the third pressure chamber. The third pressure chamber performs the same function as the second pressure chamber and stabilizes the pressure of the pressurized air supplied to the arm cuff 40.

このように加圧調整器20は、加圧ポンプ装置■から供
給される加圧空気の脈動を完全に除去する。
In this way, the pressurization regulator 20 completely eliminates the pulsation of the pressurized air supplied from the pressurization pump device (1).

なお、この作用の基本的な原理は自動車等の−Iフラー
に類似する。
Note that the basic principle of this action is similar to the -I fuller in automobiles and the like.

従って、圧力センサ50や他の各部に脈動が除去された
加圧空気が供給されるため、第11図で説明した「最低
血圧」(点し)及び「最高血圧」(点H)測定時におい
て、圧力センナ50が血液の脈動と加圧空気の脈動を誤
認することがなく正確な血圧測定が可能と々る。
Therefore, pressurized air with pulsation removed is supplied to the pressure sensor 50 and other parts, so when measuring the "diastolic blood pressure" (dot) and "systolic blood pressure" (point H) explained in FIG. The pressure sensor 50 can accurately measure blood pressure without misidentifying blood pulsation and pressurized air pulsation.

また、加圧調整器20を加圧ポンプ装置10・に連結す
ることにより、第7図に示す特性図のような定流量特性
が期待できる。すなわち、前述したように加圧調整器2
0は、2つの狭路と圧力室とで構成されているため、空
気抵抗が高く加圧ポンプ装置10の電圧を上げて圧力を
上昇させても、加圧調整器20を通過する加圧空気は一
定量に制限される。例えば、加圧調整器20を取付けて
いない場合の加圧ポンプ装置10の特性aは、ポンプ電
圧が増加すると流量も直線的に増加する。これに対し、
加圧調整器20を取付けたときの特性す、c、dは、ポ
ンプ電圧が増加するとすぐに第1の圧力室が加圧ポンプ
装置1Gの最高圧力に上昇するため、その結果特性aの
流量1に対して各流量が2’3’5となる。このことは
、使用電圧値が使用電圧範囲で変動してもほぼ〒定の流
量が得られることを意味しておシ、この特性により安定
した血圧測定が可能となる。また、狭路の形状、圧力室
の容積を変えることにより、血圧測定に必要な所望の流
量を特性す、c、dから選択することができ、設計上の
自由度を確保することができる。
Furthermore, by connecting the pressurization regulator 20 to the pressurization pump device 10, constant flow characteristics as shown in the characteristic diagram shown in FIG. 7 can be expected. That is, as mentioned above, the pressure regulator 2
0 is composed of two narrow passages and a pressure chamber, so air resistance is high and even if the voltage of the pressurizing pump device 10 is increased to increase the pressure, the pressurized air passing through the pressurizing regulator 20 is limited to a certain amount. For example, characteristic a of the pressurizing pump device 10 when the pressurizing regulator 20 is not attached is that as the pump voltage increases, the flow rate also increases linearly. On the other hand,
Characteristics (c) and (d) when the pressure regulator 20 is installed are such that as soon as the pump voltage increases, the first pressure chamber rises to the maximum pressure of the pressure pump device 1G, and as a result, the flow rate of characteristic a is 1, each flow rate is 2'3'5. This means that a substantially constant flow rate can be obtained even if the working voltage value varies within the working voltage range, and this characteristic allows stable blood pressure measurement. Furthermore, by changing the shape of the narrow passage and the volume of the pressure chamber, it is possible to select from c and d, which characterize the desired flow rate required for blood pressure measurement, and flexibility in design can be ensured.

なお、前述の実施例においては加圧ポンプ装置10と加
圧調整器20が別体の場合を示し九が、第8図に示す破
断面図のように両者を一体構造にしてもよい。図におい
て第3図と同一部分または相当部分については同一符号
を付する。10eは直流モータの電線、26は加圧機構
部10bから吸入側容器21に加圧空気を供給するとき
に1空気漏れを防ぐバッキングである。
In the above-mentioned embodiment, the pressurizing pump device 10 and the pressurizing regulator 20 are shown as separate bodies, but they may be integrated into an integrated structure as shown in the broken cross-sectional view of FIG. In the figure, the same or equivalent parts as in FIG. 3 are given the same reference numerals. Reference numeral 10e indicates an electric wire for the DC motor, and reference numeral 26 indicates a backing for preventing air leakage when pressurized air is supplied from the pressurizing mechanism section 10b to the suction side container 21.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明は、加圧機構部の吐出口に充分
長く配設した狭路と、との狭路の途中に1つ以上の圧力
室を有する加圧調整器を設けたことによυ、加圧空気の
脈動を除去するととができ、自動血圧測定器に使用した
場合、圧力センサが血液の脈動と加圧空気の脈動を誤認
することがなく正確な血圧測定が可能となる。また、加
圧ポンプ装置の使用電圧範囲において一定の流量特性が
得られるため、血圧測定中にポンプ電圧が変動しても安
定した血圧値を測定することができる。
As explained above, the present invention provides a narrow passage provided long enough at the discharge port of the pressurizing mechanism, and a pressurization regulator having one or more pressure chambers in the middle of the narrow passage. It is possible to remove the pulsation of pressurized air, and when used in an automatic blood pressure measurement device, the pressure sensor will not misidentify the pulsation of blood and the pulsation of pressurized air, allowing accurate blood pressure measurement. . Further, since a constant flow rate characteristic is obtained within the operating voltage range of the pressurizing pump device, a stable blood pressure value can be measured even if the pump voltage fluctuates during blood pressure measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を自動血圧測定器に使用した一実施例を
示す構成図、第2図(−)は加圧調整器の正面図、同図
(b)はその側面図、第3図は加圧調整器における構成
部品の組立図、第4図(−)は第3図の記号Cからみた
吸入側容器21の平面図、同図(b)は同図(&)のf
fB−IVB断面図、第5図は第2図(&)のV−V断
面図、第6図は加圧空気の流れを示すブロック図、第7
図は流量とポンプ電圧の特性図、第8図は加圧ポンプ装
置の一部断面図、第9図は従来の加圧ポンプ装置を自動
血圧測定器に使用した構成図、第10図は従来の圧力と
時間の特性図、第11図は提案されている圧力と時間の
特性図である。 10・拳・・加圧ポンプ装置、10a・・・・直流モー
タ、10b・・・・加圧機構部、20・・・・加圧調整
部、30・・・・加圧配管、40・・自・腕帯A s 
o−・・0圧カセンサ、TO・−0・急排弁、80・・
・・制御部、90・・・・表示部。
Fig. 1 is a configuration diagram showing an embodiment of the present invention used in an automatic blood pressure measuring device, Fig. 2 (-) is a front view of the pressure regulator, Fig. 3 (b) is a side view thereof, and Fig. 3 4(-) is a plan view of the suction side container 21 seen from symbol C in FIG. 3, and FIG.
fB-IVB sectional view, Fig. 5 is a V-V sectional view of Fig. 2 (&), Fig. 6 is a block diagram showing the flow of pressurized air, Fig. 7
The figure is a characteristic diagram of flow rate and pump voltage, Figure 8 is a partial sectional view of a pressure pump device, Figure 9 is a block diagram of a conventional pressure pump device used in an automatic blood pressure measuring device, and Figure 10 is a conventional pressure pump device. FIG. 11 is a proposed pressure-time characteristic diagram. 10. Fist: Pressure pump device, 10a: DC motor, 10b: Pressure mechanism section, 20: Pressure adjustment section, 30: Pressure piping, 40... Own arm cuff A s
o-・0 pressure sensor, TO・-0・sudden discharge valve, 80・・
...control section, 90...display section.

Claims (1)

【特許請求の範囲】 モータとこのモータの回転により高圧の気体を吐出する
加圧機構部からなる加圧ポンプ装置と、この加圧機構部
の吐出口に連通する充分長い狭路とこの狭路の途中に1
つ以上の加圧室とを有する加圧調整器と、 この加圧調整器から送られる加圧空気を蓄積する腕帯と
を備え、 この加圧調整器により加圧ポンプ装置本来の能力を充分
低め、脈動を除去し、ポンプ電圧に対し定流量特性を持
たせたことを特徴とする自動血圧測定装置。
[Scope of Claims] A pressurizing pump device comprising a motor and a pressurizing mechanism that discharges high-pressure gas by rotation of the motor, a sufficiently long narrow passage communicating with a discharge port of the pressurizing mechanism, and this narrow passage. 1 in the middle of
It is equipped with a pressure regulator having three or more pressurization chambers, and a cuff that accumulates the pressurized air sent from this pressure regulator. An automatic blood pressure measuring device characterized by low blood pressure, eliminating pulsation, and having constant flow characteristics with respect to pump voltage.
JP63058174A 1988-03-14 1988-03-14 Automatic blood pressure measurement device Expired - Lifetime JP2657923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63058174A JP2657923B2 (en) 1988-03-14 1988-03-14 Automatic blood pressure measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63058174A JP2657923B2 (en) 1988-03-14 1988-03-14 Automatic blood pressure measurement device

Publications (2)

Publication Number Publication Date
JPH01232931A true JPH01232931A (en) 1989-09-18
JP2657923B2 JP2657923B2 (en) 1997-09-30

Family

ID=13076636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63058174A Expired - Lifetime JP2657923B2 (en) 1988-03-14 1988-03-14 Automatic blood pressure measurement device

Country Status (1)

Country Link
JP (1) JP2657923B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002085357A (en) * 2000-09-14 2002-03-26 Mitsumi Electric Co Ltd Automatic sphygmomanometer for domestic use

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181092U (en) * 1985-10-18 1986-05-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181092U (en) * 1985-10-18 1986-05-29

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002085357A (en) * 2000-09-14 2002-03-26 Mitsumi Electric Co Ltd Automatic sphygmomanometer for domestic use

Also Published As

Publication number Publication date
JP2657923B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
US4627440A (en) Sphygmomanometric cuff pressurizing system
US6572621B1 (en) High efficiency external counterpulsation apparatus and method for controlling same
US6589267B1 (en) High efficiency external counterpulsation apparatus and method for controlling same
JP2938234B2 (en) Blood pressure monitor device with finger cuff calibration device
US20020133082A1 (en) Superior-and -inferior-limb blood-pressure index measuring apparatus
US20030144690A1 (en) High efficiency external counterpulsation apparatus and method for controlling same
JPH11264746A (en) Method and device for indirect measurement of physical signal
CN111343911A (en) Inflation device for inflation-based non-invasive blood pressure monitor and method of operating the same
EP0208520A2 (en) Oscillometric blood pressure monitor employing non uniform pressure decrementing steps
JPH01232931A (en) Automatic blood pressure measuring apparatus
CA2024551C (en) Automatic blood pressure measurement in hyperbaric chamber
JP2938238B2 (en) Atherosclerosis measuring device
TW201130461A (en) High-accurate hemadynamometer and method of using the same
KR20100009565U (en) Blood pressure measuring apparatus
KR0133448B1 (en) Sphygmomanometer having control function for optimum pressing and control metod thereof
JPH02154738A (en) Automatic blood pressure measuring instrument
RU2638712C1 (en) Pneumatic sensor for continuous non-invasive measurement of arterial pressure
RU2251386C2 (en) Device for automatic measurement of blood pressure
JP2626901B2 (en) Automatic blood pressure measurement device
CA1279774C (en) Sphygmomanometric cuff pressurizing system
RU13604U1 (en) PORTABLE DEVICE FOR MEASURING ARTERIAL PRESSURE AND PULSE FREQUENCY (OPTIONS)
JPH039727A (en) Pressure drop rate controller of pressure cuff and bag for blood pressure measuring apparatus
JPS5829089B2 (en) automatic blood pressure monitor
JPH0260629A (en) Blood pressure measuring cuff
JP2019187651A5 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 11