[go: up one dir, main page]

JPH01231019A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPH01231019A
JPH01231019A JP5743388A JP5743388A JPH01231019A JP H01231019 A JPH01231019 A JP H01231019A JP 5743388 A JP5743388 A JP 5743388A JP 5743388 A JP5743388 A JP 5743388A JP H01231019 A JPH01231019 A JP H01231019A
Authority
JP
Japan
Prior art keywords
power
light
traveling wave
optical modulator
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5743388A
Other languages
Japanese (ja)
Other versions
JPH0814664B2 (en
Inventor
Hideaki Okayama
秀彰 岡山
Akihiro Matoba
的場 昭大
Masato Kawahara
正人 川原
Akira Watanabe
彰 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP5743388A priority Critical patent/JPH0814664B2/en
Publication of JPH01231019A publication Critical patent/JPH01231019A/en
Publication of JPH0814664B2 publication Critical patent/JPH0814664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

PURPOSE:To widen a modulation frequency band with a low operating voltage by constituting the optical modulator in such a manner that N-pieces of progressive wave electrodes are driven by the microwave electric signals which are divided in power to N components hereby equalizing the progression speed of light and the progression speed of microwaves. CONSTITUTION:N-pieces (N>=2) of the progressive wave electrodes 14a-14d which are arranged in the progressing direction of the light waves in order to modulate the light waves to light signals of prescribed wavelengths and power dividing means 19a-19c which divide the powers of the microwave electric signals for modulation to the N-components as well as delay means 20a-20c which supply the divided powers successively to the progressive wave electrodes by delaying the same for the prescribed period of time are provided. The delay time of the power is thereby set at the optimum value, by which the equalizing of the progressive speeds of the light and the microwaves is enabled and the modulation band is widened while the increase of the operating voltage is suppressed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、マイクロ波電気信号を進行波電極に供給して
直流光を所定波長の光信号に変調する光変調器に関する
もので必る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical modulator that modulates direct current light into an optical signal of a predetermined wavelength by supplying a microwave electric signal to a traveling wave electrode.

(従来の技術) 従来、このような分野の技術としては、末田正著「光エ
レクトロニクス」初版(1985−4−15)昭晃堂P
、182−185に記載、されるものかあった。以下、
その構成を図を用いて説明する。
(Conventional technology) Conventionally, as a technology in this field, there is a technology described in "Optoelectronics" by Tadashi Sueda, first edition (April 15, 1985), published by Shokodo P.
, 182-185. below,
Its configuration will be explained using figures.

第2図は、従来の進行波電極を用いた光変調器の一構成
例を示す図で必る。
FIG. 2 is a diagram showing an example of the configuration of an optical modulator using a conventional traveling wave electrode.

この光変調器は、LiNbo3−z板等の電気光学効果
を持つ結晶基板1を備え、ぞの結晶基板1には光の入力
ポートハ及び光信号の出力ボート2bか形成されると共
に、(の入出力ポート2a、2b、間に、分岐された2
つのアーム3a。
This optical modulator is equipped with a crystal substrate 1 having an electro-optic effect such as a LiNbo3-z board, and each crystal substrate 1 is formed with an optical input port 2b and an optical signal output port 2b. 2 branched between output ports 2a and 2b
Two arms 3a.

3bを有するマツハ・ツエンダ型干渉器3が形成されて
いる。これらの入出力ポート2a、2b及び干渉器3は
、導波路で構成されている。干渉器3の両側には進行波
電極4とアース電極5か形成されている。また、マイク
ロ波電気信号を入力するための入力端子6は、同軸ケー
ブル7の中心導体7aを介して進行波電極4の一端に接
続8′れ、その進行波電極4の他端がインピーダンスマ
ツチング用の終端抵抗8を介してアース電極5の一端に
接続され、さらにそのアース電惨5の他端が同軸ケーブ
ル7の外部導体7bを介してグランドに接続されている
A Matsuha-Zehnder type interferometer 3 having 3b is formed. These input/output ports 2a, 2b and the interferometer 3 are constituted by waveguides. A traveling wave electrode 4 and a ground electrode 5 are formed on both sides of the interferometer 3. Further, an input terminal 6 for inputting a microwave electric signal is connected 8' to one end of the traveling wave electrode 4 via the center conductor 7a of the coaxial cable 7, and the other end of the traveling wave electrode 4 is connected to the impedance matching terminal 6. It is connected to one end of a ground electrode 5 via a terminating resistor 8, and the other end of the ground electrode 5 is connected to the ground via an external conductor 7b of a coaxial cable 7.

以上の構成において、マイクロ波電気信号を入力端子6
に供給すると共に、直流光を入力ポート2aに供給する
と、進行波電極4とアース電極5間に電場が生じ、その
電場によって干渉器3の2つのアーム3a、3bを進行
する光波に位相差が生じ、所定波長の光信@3か出カポ
−1〜2bから送出される。
In the above configuration, the microwave electric signal is input to the input terminal 6.
When DC light is supplied to the input port 2a, an electric field is generated between the traveling wave electrode 4 and the ground electrode 5, and this electric field causes a phase difference in the light waves traveling through the two arms 3a and 3b of the interferometer 3. The optical signal of a predetermined wavelength is transmitted from the output capacitors 1 to 2b.

この種の光変調器では、光波とマイクロ波が同一の方向
に伝搬するため、干渉器3はマイクロ波にとっては一種
の伝送線路となり、集中形のように電気8世による帯域
幅制限がなくなり、それによって変調帯域が広くとれる
という特徴を有している。
In this type of optical modulator, light waves and microwaves propagate in the same direction, so the interferometer 3 becomes a kind of transmission line for the microwaves, and there is no bandwidth restriction due to electricity VIII as in the centralized type. This has the characteristic that the modulation band can be widened.

(発明が解決しようとする課題) しかしながら、上記構成の光変調器では、次のような課
題があった。
(Problems to be Solved by the Invention) However, the optical modulator having the above configuration has the following problems.

進行波電慢4の長さ、つまり素子長をし、供給覆るマイ
クロ波電気信号の電圧をVioとづると、LXV、o=
一定値 となり、マイクロ電圧Vjoを小さくするためにはそれ
に対応して素子長りを長くづる必要がある。
If the length of the traveling wave voltage 4 is the length of the element, and the voltage of the microwave electric signal to be supplied is Vio, then LXV, o=
In order to reduce the micro voltage Vjo to a constant value, it is necessary to increase the element length accordingly.

ところが、光の進行速度とマイクロ波の進行速度が異な
るために、素子長りを長くすると両者の速度差が大ぎく
なって変調帯域が下ってしまい、低電圧で帯域の広い光
変調器を得ることが困難て必つlこ。
However, since the traveling speeds of light and microwaves are different, increasing the length of the element increases the speed difference between the two and lowers the modulation band, making it possible to obtain an optical modulator with a wide band at low voltage. It is always difficult to do this.

本発明は前記従来技術が持っていた課題として、低電圧
で帯域の広い光変調器を得ることが困難な点について解
決した光変調器を提供するものでおる。
The present invention provides an optical modulator that solves the problem of the prior art, which is that it is difficult to obtain an optical modulator with a wide band at low voltage.

(課題を解決Jるための手段) 本発明は前記課題を解決するために、マイクロ波電気信
号を進行波型4〜に供給して直流光を所定波長の光信号
に変調する光変調器において、光波を所定波長の光信号
に変調するためにその光波の進行方向に配列されたN個
(但し、Na3)の進行波電極と、変調用のマイクロ波
電気信号をN等分にパワー分割するパワー分割手段と、
このパワー分割手段でN等分に分〃jされたパワーを所
定時間遅延させて前記各進行波電極に順次供給する遅延
手段とを備えたもので必る。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides an optical modulator that modulates DC light into an optical signal of a predetermined wavelength by supplying a microwave electric signal to a traveling wave type 4~. , in order to modulate the light wave into an optical signal of a predetermined wavelength, N (however, Na3) traveling wave electrodes are arranged in the traveling direction of the light wave, and the power of the microwave electric signal for modulation is divided into N equal parts. power dividing means;
It is necessary to include a delay means for delaying the power divided into N equal parts by the power dividing means for a predetermined time and sequentially supplying the power to each of the traveling wave electrodes.

(作 用) 本発明によれば、以上のように光変調器を構成したので
、マイクロ波電気信号はパワー分割手段で複数のパワー
に分割された後、それらの各パワーが遅延手段で順次遅
延されてN個の進行波電極に順次供給される。このため
、パワーの遅延時間を最適値に設定することにより、光
とマイクロ波の進行速度を等しくすることが可能となり
、ぞれによって動作電圧の上昇を抑制しつつ、変調帯域
の拡大化が図れる。従って前記課題を解決できるのであ
る。
(Function) According to the present invention, since the optical modulator is configured as described above, the microwave electrical signal is divided into a plurality of powers by the power dividing means, and then each of these powers is sequentially delayed by the delay means. and is sequentially supplied to N traveling wave electrodes. Therefore, by setting the power delay time to an optimal value, it is possible to equalize the propagation speeds of light and microwaves, thereby expanding the modulation band while suppressing the increase in operating voltage. . Therefore, the above problem can be solved.

(実施例) 第1図は、本発明の第1の実施例を示す光変調器の構成
図である。
(Embodiment) FIG. 1 is a configuration diagram of an optical modulator showing a first embodiment of the present invention.

この光変調器はLiNb03−Z板等の電気光学効果を
持つ結晶基板11を備え、その結晶基板11には光の入
力ポート12a及び光信号の出力ポート12bが形成さ
れると共に、その入出力ポート12a、12b間には、
分岐された2つのアーム13a、13bを有するマツハ
・ツエンダ型干渉器13か形成されている。これらの入
出力ポート12a、12b及び干渉器13は、導波路で
構成されている。干渉器13の両側には、N個(但し、
Na3)の進行波電極14〜14dとアース電極、15
が形成され、それらの各進行波電極′14a〜14dと
アース電極15との間が、例えば50Ωのインピーダン
ス整合用の終端抵抗16a〜16dでそれぞれ接続され
ている。
This optical modulator is equipped with a crystal substrate 11 having an electro-optic effect such as a LiNb03-Z board, and the crystal substrate 11 is formed with an optical input port 12a and an optical signal output port 12b. Between 12a and 12b,
A Matsuha-Zehnder type interferometer 13 having two branched arms 13a and 13b is formed. These input/output ports 12a, 12b and the interferometer 13 are constructed of waveguides. On both sides of the interferometer 13, there are N pieces (however,
Na3) traveling wave electrodes 14 to 14d and a ground electrode, 15
are formed, and each of the traveling wave electrodes '14a to 14d and the ground electrode 15 are connected by terminating resistors 16a to 16d for impedance matching of, for example, 50Ω.

また、マイクロ波電気信号を入力するための入力端子1
7には、中心導体18aとグランドに接続された外部導
体18bとを有する同軸ケーブル18を介して、(N−
1)個の1人力2出力型のマイクロ波用パワー分υj器
19a〜19oが接続され、そのパワー分vj器19a
〜19oにょって入力マイクロ波のパワーがN分割され
る。パワー分割器19aの一方の出力側は同軸ケーブル
18により進行波電極14a及びアース電極11に接続
され、ざらにパワー分割器19aの他方の出力側及びパ
ワー分割器19bの2つの出力側は同軸ケーブル18及
びマイクロ波用遅延器20゜〜20oを介して各進行波
電極14b〜14d及びアース電極15にそれぞれ接続
されている。遅延器20a、20b、20Cの遅延時間
は、20aく20bく20oに設定されている。
In addition, an input terminal 1 for inputting a microwave electric signal is provided.
7 is connected to (N-
1) Single-powered two-output microwave power dividers 19a to 19o are connected, and the power divider vj unit 19a
The power of the input microwave is divided into N by 19o. One output side of the power divider 19a is connected to the traveling wave electrode 14a and the ground electrode 11 by a coaxial cable 18, and the other output side of the power divider 19a and the two output sides of the power divider 19b are connected to the coaxial cable. It is connected to each of the traveling wave electrodes 14b to 14d and the ground electrode 15 via microwave delay devices 18 and microwave delay devices 20° to 20o, respectively. The delay times of the delay devices 20a, 20b, and 20C are set to 20a x 20b x 20o.

ここで、パワー分割器19〜19oとしては、例えば横
河ヒューレットパツカード社(YHP)製の製品番号1
1667A、11667B等を用いればよい。但し、単
にマイクロ波ストリップラインを分岐した構造のもので
は、その分岐部でのインピーダンス不整合による反射損
失が大ざい問題、おるいは分岐後の電場の大きさが小さ
くなる等の問題がおるため、使用できない。
Here, as the power dividers 19 to 19o, for example, product number 1 manufactured by Yokogawa Hewlett Packard Co., Ltd. (YHP) is used.
1667A, 11667B, etc. may be used. However, if the microwave strip line is simply branched, there are problems such as large reflection loss due to impedance mismatch at the branch, or a decrease in the magnitude of the electric field after the branch. ,I can not use it.

次に、第1図の動作を説明する。Next, the operation shown in FIG. 1 will be explained.

マイクロ波電気信号を入力端子17に供給すると共に、
直流光を入力ポート12aに供給すると、マイクロ波電
気信号のパワーはパワー分割器19oで2分割され、ざ
らにその2分割されたパワーがパワー分割器19a、1
9bでそれぞれ2分割された後、パワー分割器19aの
一方の出力が進行波電極14a及びアース電極15間に
供給され、その進行波電極14aとアース電極15間に
電場が生じる。パワー分割器19aの他端の出力は遅延
器19aで一定時間遅延されて進行波電極14b及びア
ース電極15間に供給され、パワー分1a’J 器19
 bの一方の出力遅延器20bでさら°に遅延されて進
行波電極14o及びアース電極15間に供給され、さら
にパワー分vj器19bの他方の出力は遅延器20oで
さらに遅延されて進行波電極14d及びアース電極15
間に供給されていく。このように遅延器20a、20b
While supplying a microwave electric signal to the input terminal 17,
When direct current light is supplied to the input port 12a, the power of the microwave electric signal is divided into two by the power divider 19o, and the divided power is roughly divided into two by the power divider 19a, 1.
9b, one output of the power divider 19a is supplied between the traveling wave electrode 14a and the earth electrode 15, and an electric field is generated between the traveling wave electrode 14a and the earth electrode 15. The output from the other end of the power divider 19a is delayed by a delay device 19a for a certain period of time and is supplied between the traveling wave electrode 14b and the ground electrode 15, and the power divider 1a'J is supplied between the traveling wave electrode 14b and the ground electrode 15.
The output of the power divider 19b is further delayed by one output delay device 20b and supplied between the traveling wave electrode 14o and the ground electrode 15, and the other output of the power divider 19b is further delayed by the delay device 20o and supplied to the traveling wave electrode. 14d and earth electrode 15
will be supplied in the meantime. In this way, the delay devices 20a, 20b
.

20oで順次遅れたマイクロ波パワーが進行波電極14
b〜14dとアース電極15との間に順次供給されてい
くと、それらの間に電場が発生していく。これと対応し
て、入力ポート12aに供給された直流光は、干渉器1
3の2つのアーム13a、13b中を分岐して進行し、
その間に変調を受けて所定波長の光信号が出力ポート1
2bから出力される。
The microwave power sequentially delayed at 20o is transmitted to the traveling wave electrode 14.
When they are sequentially supplied between b to 14d and the ground electrode 15, an electric field is generated between them. Correspondingly, the DC light supplied to the input port 12a is
Branching and proceeding through the two arms 13a and 13b of 3,
During that time, an optical signal of a predetermined wavelength is modulated and output to port 1.
It is output from 2b.

ここで、入力ポート12i1から入力された直流光が2
つのアーム13a、13bで分割されて各々の進行波電
極14.〜14dへ到達する時間Taと、入力端子17
から入力されたマイクロ波が遅延器20〜20oで遅延
されて各々の進行枝電極14a〜14dへ到達する時間
Tbとが、同一になるように設定されている。そのため
、入力された直流光はそれぞれの進行波電極148〜1
4d箇所で、干渉器13の2つのアーム13a。
Here, the DC light input from the input port 12i1 is 2
Each traveling wave electrode 14. is divided into two arms 13a, 13b. The time Ta to reach ~14d and the input terminal 17
The time Tb for the microwaves inputted from the terminals to reach the respective advancing branch electrodes 14a to 14d after being delayed by the delay devices 20 to 20o is set to be the same. Therefore, the input DC light is transmitted to each of the traveling wave electrodes 148 to 1.
4d, two arms 13a of the interferometer 13;

13b間の位相差を累積していく。この際、マイクロ波
パワーはパワー分割器19〜19oで1/N等分されて
各進行波電極14a〜14dに供給されるが、(電場)
2がマイクロ波パワーに比例するため、各進行波電極1
4a〜14dとアース電極15との間に生じる電場は1
/(団になるのみで、それほど小さくならない。干渉器
13をスイッチするのに必要な位相差はπである。必要
な電場口は、電極13の全長、つまり素子長をLとする
と、 E=定数×π/L でおる。N分割すると、必要な電場E。はEo=定数×
πX ff/ L である。−1方、変調周波数の評価に適した3dB帯域
はN/Lに比例し、それにより、3dB帯域/Eoはf
lに比例する。従って分割数Nが多いほど、前記の光の
到達時間Taとマイクロ波の到達時間Tbとを精度良く
一致させることができ、つまり光の進行速度とマイクロ
波の進行速度とを高精度に一致させることができ、それ
によって低電圧で広帯域の変調が行える。
13b is accumulated. At this time, the microwave power is divided into 1/N equal parts by power dividers 19 to 19o and supplied to each traveling wave electrode 14a to 14d, but (electric field)
Since 2 is proportional to the microwave power, each traveling wave electrode 1
The electric field generated between 4a to 14d and the ground electrode 15 is 1
/(The phase difference required to switch the interferometer 13 is π.If the total length of the electrode 13, that is, the element length is L, then E= Constant x π/L. When divided into N, the required electric field E is Eo = constant x
πX ff/L. -On the other hand, the 3dB band suitable for evaluating the modulation frequency is proportional to N/L, so the 3dB band/Eo is f
It is proportional to l. Therefore, the larger the number of divisions N, the more accurately the light arrival time Ta and the microwave arrival time Tb can be matched, that is, the traveling speed of light and the traveling speed of microwaves can be matched with high precision. This allows wideband modulation at low voltages.

第3図は本発明の第2の実施例を示す光変調器の構成図
であり、第1図中の要素と同一の要素には同一の符号が
付されている。
FIG. 3 is a block diagram of an optical modulator showing a second embodiment of the present invention, and the same elements as those in FIG. 1 are given the same reference numerals.

この光変調器では、第1の実施例と同様に、結晶基板1
1上に入力ポート12.及び出力ポート12bが形成さ
れ、その入出力ボート12a、12b間に、分岐された
2つのアーム13a、13bを有するマツハ・ツエンダ
型干渉器13が形成されている。この干渉器13の両側
には、長さり。のN個の進行波電極24a〜24dと、
これに対応してNgのアース電極25a〜25dとが形
成され、それらの各進行波電極24a〜24dとアース
電極25〜25dとの間が、例えば50Ωのインピーダ
ンス整合用の終端抵抗26a〜26dでてれでれ接続さ
れている。マイクロ波電気信丹を入力するための入力端
子17には、第1の実施例と同様に、中心導体18a及
び外部導体18bを有覆る同軸ケーブル18を介して(
N−1)f[Iの1人力2出力型のマイクロ波用パワー
分割器19a〜19oが接続され、そのパワー分割器1
9a〜ゴ9゜によって入力マイクロ波のパワーがN分割
される。
In this optical modulator, as in the first embodiment, a crystal substrate 1
1 on input port 12. and an output port 12b are formed, and a Matsuha-Zehnder type interferometer 13 having two branched arms 13a, 13b is formed between the input/output ports 12a, 12b. There are lengths on both sides of this interferometer 13. N traveling wave electrodes 24a to 24d,
Correspondingly, Ng ground electrodes 25a to 25d are formed, and between each of these traveling wave electrodes 24a to 24d and the ground electrodes 25 to 25d, a terminating resistor 26a to 26d of, for example, 50Ω for impedance matching is formed. Teledere is connected. As in the first embodiment, the input terminal 17 for inputting microwave electricity is connected to the coaxial cable 18 that covers the center conductor 18a and the outer conductor 18b (
N-1) One-power two-output type microwave power dividers 19a to 19o of f[I are connected, and the power divider 1
The power of the input microwave is divided into N by 9a to 9°.

この実施例では、第1の実施例の遅延器20a〜20o
に代えて、結晶基板11上に(N−1>本のマイクロ波
の遅延線30〜30oを形成し、これらの遅延線30〜
30oで伝搬距離を変え、遅延の最を変化させている。
In this embodiment, the delay devices 20a to 20o of the first embodiment are
Instead, (N-1>microwave delay lines 30 to 30o are formed on the crystal substrate 11, and these delay lines 30 to 30o are
The propagation distance is changed at 30 degrees, and the maximum delay is changed.

即ち、入力ポート12 側の進行波電極24a及びアー
ス電(へ25aは、同軸ケーブル18を介して直接パワ
ー分割器19の一方の出力側に接続され、ざらに進行波
電極24b及びアース電極25bは艮ざL の遅延線3
0aと同軸ケーブル1Bを介してロー パワー分割器19aの他方の出力側に、進行波電(へ2
4 及びアース電極25 は艮ざ2Lmの遅C 延線30bと同軸ケーブル18を介してパワー分割器1
9bの一方の出力側に、出力ポート121゜側の進行波
電極24d及びアース電極25dは長さ3L の遅延線
30oと同鞘ケーブル18を介ロー してパワー分割器19bの他方の出力側に、それぞれ接
続されている。
That is, the traveling wave electrode 24a and the ground electrode 25a on the input port 12 side are directly connected to one output side of the power divider 19 via the coaxial cable 18, and the traveling wave electrode 24b and the earth electrode 25b are connected directly to one output side of the power divider 19 via the coaxial cable 18. Delay line 3 of 艮zaL
0a and coaxial cable 1B to the other output side of the low power divider 19a.
4 and the ground electrode 25 are connected to the power divider 1 via the delay line 30b and the coaxial cable 18 with a length of 2Lm.
On one output side of the power divider 19b, the traveling wave electrode 24d and the ground electrode 25d on the output port 121° side are connected to the other output side of the power divider 19b via a delay line 30o having a length of 3L and the same sheath cable 18. , are connected to each other.

遅延線30a、30b、30oの長さし□ 。Lengths of delay lines 30a, 30b, 30o □.

21m、31mと、第3図に示すそれらの配置角度θと
は、次のようにして決定すればよい。
21m, 31m and their arrangement angle θ shown in FIG. 3 may be determined as follows.

遅延線30aの長き+、は、分割された各進行波電、1
少24a〜24dの長さし。、及び光とマイクロ波の間
の伝搬速度の比により決定される。光速をC1光の屈折
率をn  このn。に対応する0 ゝ マイクロ波の値をn111として、光の伝搬速度をC/
no、マイクロ波の伝搬速度をC/nll1とする。光
が入力ポート12aからN番目の進行波電極の始端に達
する時間で。は、 となり、同じくマイクロ波がN番目の進行波電極の始端
に達する時間τ、は、 但し、ζ□;入力時にd−3ける光と マイクロ波の位相差。
The length + of the delay line 30a is each divided traveling wave wave, 1
The length is 24a to 24d. , and the ratio of propagation speeds between light and microwaves. The speed of light is C1 the refractive index of light is n. 0, which corresponds to
No, the propagation speed of the microwave is assumed to be C/nll1. At the time when the light reaches the beginning of the Nth traveling wave electrode from the input port 12a. Similarly, the time τ for the microwave to reach the starting end of the Nth traveling wave electrode is, however, ζ□: Phase difference between the light and the microwave by d-3 at the time of input.

どなる。(2)式に83いて、入カポ−1〜12aへの
入力光は直流光であるので、位相差ζ。=Oとおくこと
ができる。位相差τ。=τ。とづると、(1)、(2>
式よりり。no−LIIlnIIlとなる。
bawl. In Equation (2), since the input light to the input capos 1 to 12a is DC light, the phase difference ζ. =O can be set. Phase difference τ. =τ. In other words, (1), (2>
From the ceremony. It becomes no-LIIlnIIl.

従ってLlll−り。rlo/nll、とすれば良い。Therefore Lllll-ri. rlo/nll.

結晶基板11として例えばli\bo3−z板を用いた
場合、通常そのLiNbO3−7板においては、no/
r)lTl;1/2となるため、Lm/L−8=1/2
とすれば良く、これにより第3図の配置角度θ;30°
とすると、前記第1の実施例と同様の作用、効果が17
られる。
For example, when a Li\bo3-z plate is used as the crystal substrate 11, normally the LiNbO3-7 plate has no/
r) lTl: 1/2, so Lm/L-8=1/2
Therefore, the arrangement angle θ in Fig. 3 is 30°.
Then, the same operation and effect as in the first embodiment will be 17.
It will be done.

第4図は、第1図及び第3図において結晶基板11とし
てL i NbO3−Z板を用いた場合の性能を示す特
性図である。ここで、アーム13a。
FIG. 4 is a characteristic diagram showing the performance when a LiNbO3-Z plate is used as the crystal substrate 11 in FIGS. 1 and 3. Here, arm 13a.

13bの間隔15μm、光波長1.3μm、各終端抵抗
16a〜16d、26a〜26dのインピ−ダンス50
Ωとして、入力端子17に5Vのマイクロ波電気信号を
供給したときの3dB帯域の性能曲線Aと、素子長の性
能曲線Bが示されている。
13b spacing 15 μm, optical wavelength 1.3 μm, impedance of each terminal resistor 16a to 16d, 26a to 26d 50
As Ω, a 3 dB band performance curve A when a 5 V microwave electric signal is supplied to the input terminal 17 and a performance curve B of the element length are shown.

例えば、進行波電114a〜14.d、24a〜24d
の分割数Nが4.の場合、曲線Aから、3dB帯域の変
調可能帯域はO〜140H2、ざらに曲線Bから進行波
電極の全長、つまり素子長は4cmである。
For example, traveling wave electricity 114a-14. d, 24a-24d
The number of divisions N is 4. In this case, from curve A, the modifiable band of 3 dB band is O~140H2, and roughly from curve B, the total length of the traveling wave electrode, that is, the element length is 4 cm.

また、分割数Nか8の場合、3dB帯域の変調可能帯域
はO〜20G町、素子長は5.7cmである。
Further, when the number of divisions is N or 8, the modifiable band of the 3 dB band is O to 20 G, and the element length is 5.7 cm.

このように、分Vj数Nを増加させることにより、動作
電圧を例えば5Vのように低電圧に保持しつつ変調帯域
の拡大か図れることが理解できる。
It can be seen that by increasing the Vj number N in this way, it is possible to expand the modulation band while maintaining the operating voltage at a low voltage, such as 5V.

第5図は本発明の第3の実施例を示す光変調器の構成図
でおり、第1図中の要素と同一の要素には同一の符号が
付されている。
FIG. 5 is a block diagram of an optical modulator showing a third embodiment of the present invention, and the same elements as those in FIG. 1 are given the same reference numerals.

この光変調器では、化合物半導体の基板41を用い、そ
の基板41上には多重準子井度(MQW)型または電界
吸収型の光導波路43が形成され、その先導波路43の
一方の端面に入力ポート43aが、他方の端面に出力ボ
ート43bがぞれぞれ形成されている。光導波路43上
にはN個の進行波電極/44a〜44dが形成されると
共に、基板41の底面にアース電極45か形成され、そ
れらの各進行波電極44a〜44dとアース電極45と
か終端抵抗16a〜16dで接続されている。マイクロ
波電気信号を入力するための入力端子17は、第1の実
施例と同様に、同軸ケーブル18に、より、パワー分v
1器19a〜19o、及び遅延器20a〜20oを介し
て各進行波電極43a〜43d及びアース電極45と接
続されている。
In this optical modulator, a compound semiconductor substrate 41 is used, on which a multi-quasi-quasi-well (MQW) type or electroabsorption type optical waveguide 43 is formed. A port 43a and an output boat 43b are formed on the other end surface, respectively. N traveling wave electrodes/44a to 44d are formed on the optical waveguide 43, and a ground electrode 45 is formed on the bottom surface of the substrate 41, and each of these traveling wave electrodes 44a to 44d, the ground electrode 45, and a terminal resistor are formed. 16a to 16d are connected. The input terminal 17 for inputting the microwave electrical signal is connected to the coaxial cable 18 to receive the power component v, as in the first embodiment.
Each of the traveling wave electrodes 43a to 43d and the ground electrode 45 are connected to each other via delay units 19a to 19o and delay units 20a to 20o.

以上の構成において、直流光を入力ポート43aに供給
すると共に、マイクロ波電気信号を入力端子17に供給
すれば、第1の実施例と同様に、光導波路43中を通る
光の進行速度と、進行波電(Φ44a〜44dに供給さ
れるマイクロ波の進行速度とが等しくなり、低電圧で帯
域の広い光変調器が得られる。
In the above configuration, if DC light is supplied to the input port 43a and a microwave electric signal is supplied to the input terminal 17, the traveling speed of the light passing through the optical waveguide 43 can be adjusted as in the first embodiment. The traveling speed of the microwaves supplied to Φ44a to 44d becomes equal, and an optical modulator with a wide band at low voltage can be obtained.

なお、本発明は図示の実施例に限定されず、例えば第5
図の遅延器20a〜2ooを第3図の遅延線30a〜3
0oに置き換えたり、あるいは干渉器13、光導波路4
3、進行波電極14a〜14d、24a〜2=1d、4
4a〜44d1パワ一分割器19a〜19o、遅延器2
oa〜200、遅延素子30a〜306等を図示以外の
形状や構造に変形することも可能でおる。
Note that the present invention is not limited to the illustrated embodiment; for example, the fifth embodiment
The delay devices 20a to 2oo in the figure are replaced by the delay lines 30a to 30 in FIG.
0o, or interferometer 13, optical waveguide 4
3. Traveling wave electrodes 14a-14d, 24a-2=1d, 4
4a to 44d1 power divider 19a to 19o, delay device 2
It is also possible to modify the delay elements 30a to 306, etc. to shapes and structures other than those shown in the drawings.

(発明の効果) 以上詳細に説明したように、本発明によれば、N等分に
パワー分v1されたマイクロ波電気信号により、N9i
1の進行波電極を駆動する構成にしたので、光の進行速
度とマイクロ波の進行速度とを等しくすることが可能に
なり、それによって低い動作電圧で、変調帯域を拡大で
きる。
(Effects of the Invention) As explained in detail above, according to the present invention, the microwave electric signal whose power is divided into N equal parts v1 is used to generate N9i
Since the configuration is such that one traveling wave electrode is driven, it is possible to equalize the traveling speed of light and the traveling speed of microwaves, and thereby the modulation band can be expanded with a low operating voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す光変調器の構成図
、第2図は従来の光変調器の構成図、第3図は本発明の
第2の実施例を示す光変調器の構成図、第4図は第1図
及び第3図の特性図、第5図は本発明の第3の実施例を
示す光変調器の構成図である。 11・・・・・・結晶基板、12.43a・・・・・・
入カポ一ト、12b、43b・・・・・・出力ボート、
13・・・・・・マツハ・ツエンダ型干渉器、14〜1
4d。 24a〜24d、44a〜44d・・・・・・進行波電
極、15.25 〜25d、45・・・・・・アース電
極、17・・・・・・入力端子、19〜19 ・・・・
・・パワ−分割器、20a〜20o・・・・・・遅延器
、3oa〜300・・・・・・遅延線。 出願人代理人  柿  水  恭  成11゛珀塁墓叛
        j5:アース電槽12a:へカボ一ト
       17:入力端子126゛出力ボート  
     19α〜19c:パワー〇割器+4Q〜+4
d : 1tyaQ不狗 杢発明の第1の実施例の尤変謂器 第1図 不発明の第2の笑施例の尤変調券 第3図
FIG. 1 is a block diagram of an optical modulator showing a first embodiment of the present invention, FIG. 2 is a block diagram of a conventional optical modulator, and FIG. 3 is a light modulation diagram showing a second embodiment of the present invention. FIG. 4 is a diagram showing the characteristics of FIGS. 1 and 3, and FIG. 5 is a diagram showing the configuration of an optical modulator according to a third embodiment of the present invention. 11...Crystal substrate, 12.43a...
Input port, 12b, 43b...output port,
13...Matsuha-Zehnder type interferometer, 14-1
4d. 24a to 24d, 44a to 44d... Traveling wave electrode, 15.25 to 25d, 45... Earth electrode, 17... Input terminal, 19 to 19...
...Power divider, 20a-20o...Delay device, 3oa-300...Delay line. Applicant's agent Kaki Mizu Kyo Sei 11゛ Aquarium Burglary J5: Earth tank 12a: Hekaboto 17: Input terminal 126゛ Output boat
19α~19c: Power divider +4Q~+4
d: 1tyaQ The first embodiment of the invention, the modulation device, Figure 1, the second embodiment of the invention, the modulation ticket, Figure 3

Claims (1)

【特許請求の範囲】 光波を所定波長の光信号に変調するためにその光波の進
行方向に配列されたN個(但し、N≧2)の進行波電極
と、 変調用のマイクロ波電気信号をN等分にパワー分割する
パワー分割手段と、 このパワー分割手段でN等分に分割されたパワーを所定
時間遅延させて前記各進行波電極に順次供給する遅延手
段とを備えたことを特徴とする光変調器。
[Claims] N (N≧2) traveling wave electrodes arranged in the traveling direction of the light wave in order to modulate the light wave into an optical signal of a predetermined wavelength, and a microwave electric signal for modulation. The power dividing means divides the power into N equal parts, and the delay means delays the power divided into N equal parts by the power dividing means by a predetermined time and sequentially supplies the power to each of the traveling wave electrodes. optical modulator.
JP5743388A 1988-03-11 1988-03-11 Light modulator Expired - Fee Related JPH0814664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5743388A JPH0814664B2 (en) 1988-03-11 1988-03-11 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5743388A JPH0814664B2 (en) 1988-03-11 1988-03-11 Light modulator

Publications (2)

Publication Number Publication Date
JPH01231019A true JPH01231019A (en) 1989-09-14
JPH0814664B2 JPH0814664B2 (en) 1996-02-14

Family

ID=13055520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5743388A Expired - Fee Related JPH0814664B2 (en) 1988-03-11 1988-03-11 Light modulator

Country Status (1)

Country Link
JP (1) JPH0814664B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237517A (en) * 1988-03-17 1989-09-22 Fujitsu Ltd Waveguide optical modulator
EP0547779A2 (en) * 1991-12-16 1993-06-23 AT&T Corp. Soliton generator
JPH075404A (en) * 1993-02-04 1995-01-10 Hughes Aircraft Co Periodic domain-inversion electro- optical modulator
JPH08500191A (en) * 1992-05-21 1996-01-09 クリスタル テクノロジー インコーポレイテッド Apparatus and method of cascaded integrated optical phase modulator for linearization of signal transmission
WO2012063413A1 (en) * 2010-11-10 2012-05-18 日本電気株式会社 Optical phase modulation circuit and method of optical phase modulation
US20140105605A1 (en) * 2012-10-11 2014-04-17 Stmicroelectronics S.R.L. Driver for multi-stage wave guide modulator and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237517A (en) * 1988-03-17 1989-09-22 Fujitsu Ltd Waveguide optical modulator
EP0547779A2 (en) * 1991-12-16 1993-06-23 AT&T Corp. Soliton generator
JPH08500191A (en) * 1992-05-21 1996-01-09 クリスタル テクノロジー インコーポレイテッド Apparatus and method of cascaded integrated optical phase modulator for linearization of signal transmission
JPH075404A (en) * 1993-02-04 1995-01-10 Hughes Aircraft Co Periodic domain-inversion electro- optical modulator
WO2012063413A1 (en) * 2010-11-10 2012-05-18 日本電気株式会社 Optical phase modulation circuit and method of optical phase modulation
CN103210601A (en) * 2010-11-10 2013-07-17 日本电气株式会社 Optical phase modulation circuit and method of optical phase modulation
US20140105605A1 (en) * 2012-10-11 2014-04-17 Stmicroelectronics S.R.L. Driver for multi-stage wave guide modulator and method
US8989601B2 (en) * 2012-10-11 2015-03-24 Stmicroelectronics S.R.L. Driver for multi-stage wave guide modulator and method

Also Published As

Publication number Publication date
JPH0814664B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
US6192167B1 (en) Differential drive optical modulator
US5291565A (en) Broad band, low power electro-optic modulator apparatus and method with segmented electrodes
US8737773B2 (en) Optical control element
EP0427092B1 (en) Electro-optic modulator
US6580840B1 (en) High efficiency electro-optic modulator with equalized frequency response
CN103676214B (en) Optical modulator
JP4234117B2 (en) Light modulator
JPH06300994A (en) Waveguide type optical device
JP3943019B2 (en) Broadband electro-optic modulator
CN101501555B (en) Optical modulator
US10088734B2 (en) Waveguide-type optical element
JPH01231019A (en) Optical modulator
Souza et al. An analytical solution for fiber optic links with photonic-assisted millimeter wave upconversion due to MZM nonlinearities
JPH09304745A (en) Waveguide type optical device
US5572610A (en) Waveguide-type optical device and impedance matching method thereof
JPH05257102A (en) Optical phase modulating circuit
WO2021103294A1 (en) Distributed light intensity modulator
Chen et al. Simulation and Design of LiNbO $ _ {3} $ Modulators With Switched Segmented Electrode Structure for High Bandwidth and Low Half-Wave Voltage
JPS63261219A (en) light modulation element
MIKAMI et al. Directional coupler type light modulator using LiNbO 3 waveguides
WO2020226741A1 (en) Optical modulator rf electrodes
US3994566A (en) Synchronous traveling wave electro-optic light pipe modulator
JP2008152206A (en) Optical modulator
JPH01237517A (en) Waveguide optical modulator
Tsuji et al. Low-loss design method for a planar dielectric-waveguide branch: effect of a taper of serpentine shape

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees