[go: up one dir, main page]

JPH01227038A - Compensating method of load change on vibration stage and compensating apparatus thereof - Google Patents

Compensating method of load change on vibration stage and compensating apparatus thereof

Info

Publication number
JPH01227038A
JPH01227038A JP63052610A JP5261088A JPH01227038A JP H01227038 A JPH01227038 A JP H01227038A JP 63052610 A JP63052610 A JP 63052610A JP 5261088 A JP5261088 A JP 5261088A JP H01227038 A JPH01227038 A JP H01227038A
Authority
JP
Japan
Prior art keywords
hydraulic cylinder
vibration table
compensation signal
hydraulic
servo valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63052610A
Other languages
Japanese (ja)
Inventor
Jiro Ito
二郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63052610A priority Critical patent/JPH01227038A/en
Publication of JPH01227038A publication Critical patent/JPH01227038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Servomotors (AREA)

Abstract

PURPOSE:To automate the compensation of a change in vibration acceleration accompanying a change in a load, by detecting a hydraulic pressure in a hydraulic pressure chamber of a hydraulic cylinder and by adding a compensation signal calculated on the basis of a detected value to an output signal of an automatic computation circuit. CONSTITUTION:Hydraulic pressures P1 and P2 in a pair of hydraulic pressure chambers of a hydraulic cylinder 2 are detected by pressure detectors 21 and 22, the respective detection signals of the pressure detectors 21 and 22 are amplified by an amplifier 23, and a differential pressure is calculated by an adder 24. Next, a compensation signal circuit 25 adds the detected differential pressure of the hydraulic cylinder 2 to an input voltage of a servo amplifier 9 by means of an adder 26. By giving a compensation signal to a servo value control signal in this way to prevent an output speed from suffering an effect of an operating force, the output speed is fixed even when the weight of a substance mounted on a vibration stage is varied, and a change in a load can be compensated automatically even in a system wherein the load changes with a large degree.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気油圧サーボ制御式の振動台において、搭
載物体の重量が変化しても自動的に補正して一定の振動
加速度を与え得るように改良した負荷変化の補償方法、
及び負荷変化の補償装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is an electrohydraulic servo-controlled vibration table that can automatically compensate for changes in the weight of a mounted object and provide a constant vibration acceleration. An improved load change compensation method,
and a load change compensation device.

〔従来の技術〕[Conventional technology]

この種の振動台に関しては特公昭53−43061号公
報に記載の振動試験機が公知である。
Regarding this type of vibration table, a vibration tester described in Japanese Patent Publication No. 53-43061 is known.

第3図は上記公知例における電気油圧サーボ制御機構の
系統図である。
FIG. 3 is a system diagram of the electro-hydraulic servo control mechanism in the above-mentioned known example.

被検物を搭載される振動台1は、油圧シリンダ2によっ
て加振される。
A vibration table 1 on which a test object is mounted is vibrated by a hydraulic cylinder 2.

上記油圧シリンダ2は、サーボ弁3を介して油圧源4に
接続されている。
The hydraulic cylinder 2 is connected to a hydraulic power source 4 via a servo valve 3.

一方、入力信号供給部14は、変位に相当する電圧信号
E d を速度に相当する電圧信号E V を及び、加
速度に相当する電圧信号Eaを出力している。
On the other hand, the input signal supply section 14 outputs a voltage signal E d corresponding to displacement, a voltage signal EV corresponding to velocity, and a voltage signal Ea corresponding to acceleration.

前記振動台1の変位量は変位検出器10によって、速度
は速度検出器12によって、加速度は加速度検出器13
によって、それぞれ検出され、増幅器11を介してフィ
ードバックされる。
The amount of displacement of the vibration table 1 is detected by a displacement detector 10, the speed by a speed detector 12, and the acceleration by an acceleration detector 13.
are respectively detected and fed back via the amplifier 11.

上記フィードバック信号は、加算器8によって前記の電
圧信号Edt ””Vw Eaに加算され、サーボ増幅
器9を介して前述のサーボ弁3を制御する。
The feedback signal is added to the voltage signal Edt ``''Vw Ea by the adder 8 and controls the servo valve 3 via the servo amplifier 9 .

第4図は上記公知例のブロック図であって、その記号の
意味は次の如くである。
FIG. 4 is a block diagram of the above-mentioned known example, and the meanings of the symbols are as follows.

Apニジリンダ2のピストンの断面積  db=粘性抵
抗係数   kg s / amC:駆動系の則性を表
わす定数  cd/kgK =サーボ増幅器9のゲイン
   m A / VKa:加速度のフィードバックゲ
インV S ’ / anKv:速度のフィードバック
ゲイン V s / cmKy:変位のフィードバック
ゲイン V / aaKi:サーボ弁3の流量利得  
al?/ S m AKp:サーボ弁3の内部もれによ
る出力流量の減少率   ci / s kg m :振動台1可動部の質量   kgs2/cmRa
:加速度の入力ゲイン(無次元) Rv:速度の入力ゲイン  1 / sRy:変位の入
力ゲイン  1/s2 前記第2図に示したブロック図において、とする。ここ
において E=C=A、F=D=B・・・・・・(3)と選べば、
前記の(1)式は となる。
Cross-sectional area of the piston of the Ap Niji cylinder 2 db = viscous drag coefficient kg s / amC: constant representing the law of the drive system cd / kgK = gain of the servo amplifier 9 m A / VKa: feedback gain of acceleration V S ' / anKv: Speed feedback gain V s / cmKy: Displacement feedback gain V / aaKi: Flow rate gain of servo valve 3
Al? / S m AKp: Decrease rate of output flow rate due to internal leakage of servo valve 3 ci / s kg m: Mass of moving part of shaking table 1 kgs2/cmRa
: Acceleration input gain (dimensionless) Rv: Velocity input gain 1/sRy: Displacement input gain 1/s2 In the block diagram shown in FIG. 2 above. Here, if we choose E=C=A, F=D=B...(3),
The above equation (1) is as follows.

即ち、各入力Ra、 Rv、 Ry、及び各フィードバ
ックKa、Kv、Kyを(3)式の条件で設定すればサ
ーボ制御系は1次系に近似され、特性の改善が図られる
That is, if each input Ra, Rv, Ry and each feedback Ka, Kv, Ky are set under the conditions of equation (3), the servo control system is approximated to a first-order system, and the characteristics are improved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来技術において(第3図参照)、いま仮りに、サ
ーボ弁3の内部もれが無く、かつ、油圧シリンダ2と振
動台1とを結ぶ伝動系が完全剛体であるとするならば、
該振動台1に搭載される被検物の重量変化によって振動
加速度は影響を受ない筈である。
In the prior art described above (see FIG. 3), if it is assumed that there is no internal leakage in the servo valve 3 and that the transmission system connecting the hydraulic cylinder 2 and the vibration table 1 is a completely rigid body,
The vibration acceleration should not be affected by changes in the weight of the test object mounted on the vibration table 1.

しかし乍ら、実際問題としては、搭載重量が増加した場
合に同一加速度を与える為には油圧を高くしなければな
らず、これに伴ってサーボ弁内リークが増加(実効出力
が減少)する。また、伝動部材の弾性変形量も増加する
ので、前述の公知技術においては、搭載重量(負荷)の
変化に伴って振動加速度も変化する。
However, as a practical matter, if the mounted weight increases, the oil pressure must be increased in order to provide the same acceleration, and as a result, leakage within the servo valve increases (effective output decreases). Furthermore, since the amount of elastic deformation of the transmission member also increases, in the above-mentioned known technology, the vibration acceleration also changes as the mounted weight (load) changes.

これを数式に基づいて述べると次の如くである。This can be explained based on a mathematical formula as follows.

前記A、Bの価が、(2)式に示したように可動部質量
m(負荷m)によって変化するため、このmが変化した
ときは、その都度Kv、 Ka、 Rv、 Raを再調
整しないと一定の振動加速度が得られない。
The values of A and B above change depending on the moving part mass m (load m) as shown in equation (2), so when m changes, readjust Kv, Ka, Rv, and Ra each time. Otherwise, constant vibration acceleration cannot be obtained.

例えば地震シュミレーション用振動台のような振動台の
可動部固定質量が大半を占め負荷mの変化の少ないシス
テムにおいては、従来技術は充分に有効である。しかし
、車両振動台等の被加振体により負荷mが大幅に変化す
る場合、その都度(3)式の条件となるよう再調整しな
ければならない。
For example, in a system such as a shaking table for earthquake simulation in which most of the mass is fixed to the movable part of a shaking table and the load m does not change much, the conventional technique is sufficiently effective. However, if the load m changes significantly due to a vibrating object such as a vehicle vibration table, readjustment must be made each time to satisfy the condition of equation (3).

実用上の問題からいえば、その都度の調整は非常に煩雑
で振動台システムとしての操作性を著しく阻害するとい
う問題があった。
From a practical point of view, there is a problem in that each adjustment is very complicated and significantly impedes the operability of the shaking table system.

本発明の目的は上記に鑑み振動台の搭載物重量が変化し
ても、一定の振動加速度が得られるよう自動的に補償す
る方法、及び補償装置を提供することを目的とする。
In view of the above, an object of the present invention is to provide a method and a compensating device for automatically compensating to obtain a constant vibration acceleration even if the weight of the load on the vibration table changes.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために創作した本発明に係る補償
手段について、第4図(公知例)を参照して説明する。
The compensation means according to the present invention created to achieve the above object will be explained with reference to FIG. 4 (known example).

入力電圧E(S)+作動力F(S)+出力速度V (S
)の関係を求めると、 上記の(5)式から出力速度v(S)を求めると、とな
る。
Input voltage E (S) + operating force F (S) + output speed V (S
) is obtained from the above equation (5), and the output speed v(S) is obtained from the above equation (5).

この(6)式から明らかなように、振動台の最終的な制
御目標である出力速度V (S)は、入力電圧E (S
)と作動力F (S)との両者に依存する。
As is clear from equation (6), the output speed V (S), which is the final control target of the shaking table, is the input voltage E (S
) and the actuation force F (S).

即ち、作動力F (S)に変化があれば出力速度V (
S)に変化を生じる6作動力F (S)の変動は負荷変
動によって生じ、両者は同一であるから、負荷の変化に
よって制御目的とする出力速度v(s)が変動すること
を意味する。よって負荷変化の影響を無くするには、(
6)式において作動力F (S)の項を打ち消すような
補償信号G (S)を加えればよい。
That is, if there is a change in the operating force F (S), the output speed V (
6. Fluctuations in the operating force F (S) that cause changes in S) are caused by load fluctuations, and since both are the same, this means that the output speed v(s), which is the target of control, fluctuates due to changes in the load. Therefore, in order to eliminate the influence of load changes, (
In equation 6), a compensation signal G (S) that cancels the term of the actuation force F (S) may be added.

補償信号a <S)は(5)式において(6)式のF 
(S)の項を打ち消す値として求めることが出来、次の
ようになる。
Compensation signal a < S) is expressed as F in equation (6) in equation (5).
It can be found as a value that cancels out the term (S), and is as follows.

この(7)式に示したような補償信号G (S)が得ら
れたならば、これを(6)式に加えるととなり、出力速
度V(S)はサーボ増幅器の入力電圧E C5)に比例
(注・AP+ K t k iは常数である)する。
Once the compensation signal G (S) shown in equation (7) is obtained, adding it to equation (6) will result in the output speed V (S) being equal to the input voltage E C5) of the servo amplifier. Proportional (Note: AP + K t k i is a constant).

〔作用〕[Effect]

上記の補償信号G (S)を与えて、V(S)が作動力
F (S)の影響を受ないようにすると、振動台の搭載
質量が変化してもV (S)が一定となる。従って一定
の振動加速度が得られる。
If the above compensation signal G (S) is given so that V (S) is not affected by the actuation force F (S), V (S) will remain constant even if the mounted mass of the shaking table changes. . Therefore, a constant vibration acceleration is obtained.

〔実施例〕〔Example〕

第1図及び第2図は本発明の1実施例を示す。 1 and 2 show one embodiment of the invention.

この実施例は前記の公知技術に本発明を適用して改良し
たものである。
This embodiment is an improvement by applying the present invention to the above-mentioned known technique.

第1図は前記公知例における第3図に対応する制御系統
図である。
FIG. 1 is a control system diagram corresponding to FIG. 3 in the known example.

本第1図に示した補償ループCrは、第2図について後
述する圧力検出器21.22によって検出した油圧シリ
ンダの油圧p <s)をフィードバックとしてサーボ増
幅器の入力電圧E <s>に戻すループを構成するもの
である。この補償ループCrの伝達関数は、以下に説明
するところによって、となる。
The compensation loop Cr shown in FIG. 1 is a loop that returns the hydraulic pressure p<s) of the hydraulic cylinder detected by the pressure detectors 21 and 22 described later in FIG. 2 to the input voltage E<s> of the servo amplifier as feedback. It constitutes. The transfer function of this compensation loop Cr is as follows.

上記(9)式の伝達関数は、作動力F (S)を油圧P
(s)を介して検出し、サーボ増幅器のゲインK。
The transfer function of equation (9) above is expressed by converting the operating force F (S) into the hydraulic pressure P
(s) and the gain K of the servo amplifier.

サーボ弁の流量ゲインkPを勘定に入れたループで、(
7)式の信号と等価になるようにして求め得る。
In a loop that takes into account the flow rate gain kP of the servo valve, (
7) It can be obtained so that it is equivalent to the signal in Eq.

この(9)式の伝達関数G (S)を用いて、前記のP
 (S)をサーボ増幅器の入力に加えれば、出力速度V
C5)は前掲の(8)式の値となり、負荷重量(質量m
)の影響を受けなくなる。
Using the transfer function G (S) of equation (9), the above P
(S) to the input of the servo amplifier, the output speed V
C5) is the value of equation (8) above, and the load weight (mass m
) will no longer be affected by

第2図は、上記の本発明方法を実施するために構成した
本発明装置のブロック図である。
FIG. 2 is a block diagram of an apparatus of the present invention configured to carry out the method of the present invention described above.

油圧シリンダ2の、1対の圧力室の油圧P1゜R2を検
出する圧力検出器21.22を設ける。
Pressure detectors 21 and 22 are provided to detect oil pressure P1°R2 in a pair of pressure chambers of the hydraulic cylinder 2.

上記圧力検出器21 、22それぞれの検出信号を、増
幅器23で増幅し、加算器24によって差圧を算出する
。ここで、油圧シリンダ2の差圧が該油圧シリンダ2の
作動力を生じる油圧P (S)となる。
The detection signals of the pressure detectors 21 and 22 are amplified by an amplifier 23, and a differential pressure is calculated by an adder 24. Here, the differential pressure of the hydraulic cylinder 2 becomes the hydraulic pressure P (S) that generates the operating force of the hydraulic cylinder 2.

また、補償信号回路25は、上記の差圧P (S)を受
けて、次の如くに作用する。
Further, the compensation signal circuit 25 receives the above-mentioned differential pressure P (S) and operates as follows.

即ち、補償信号回路25の伝達関数は次掲の(10)式
の如くである。
That is, the transfer function of the compensation signal circuit 25 is as shown in equation (10) below.

但しα1 ・・・・・・R4の分圧比(0〜1)α2・
・・・・・R5の分圧比(0〜1)(10)式の伝達関
数で(9)式の伝達関数を実現させるため以下の通り設
定を行う。
However, α1... R4 partial pressure ratio (0 to 1) α2・
...Partial pressure ratio of R5 (0 to 1) In order to realize the transfer function of equation (9) using the transfer function of equation (10), the following settings are made.

又、5CR2は対ノイズ上問題とならない範囲で最少に
設定し、5CR(αlR1+R2)>5CR2として無
視できる値とする0以上の如く設定された補償信号回路
25により、前記検出のP(S)を加算器26でサーボ
増幅器9の入力電圧に加えれば(7)式の補償信号と等
価になる。本実施例の装置によれば、以上のようにして
負荷変動を補償することが出来る。
In addition, 5CR2 is set to the minimum value within a range that does not pose a problem with respect to noise, and the detected P(S) is set to a value that can be ignored as 5CR(αlR1+R2)>5CR2. When added to the input voltage of the servo amplifier 9 by the adder 26, it becomes equivalent to the compensation signal of equation (7). According to the device of this embodiment, it is possible to compensate for load fluctuations in the manner described above.

〔発明の効果〕〔Effect of the invention〕

本発明にの補償方法によれば、車両振動台等の被加振体
により大幅に負荷の変化するシステムにおいても、制御
特性が負荷変化による影響を受けないようにすることが
できる。
According to the compensation method of the present invention, even in a system where the load changes significantly due to a vibrated object such as a vehicle vibration table, the control characteristics can be prevented from being affected by the load change.

本発明回路を公知の振動試験機(特公昭53−4306
1)のマイナー補償として付設すれば、負荷変化により
(3)式条件を満たすようにその都度の調整を無くする
ことができる。前記公知例の振動試験機に対してのみな
らず、電気油圧サーボ機構より成る振動台の制御一般に
おいて本発明回路を用いることにより、負荷変化の影響
を無くすることができるので制御特性の改善の効果があ
る。
The circuit of the present invention was applied to a known vibration tester (Japanese Patent Publication No. 53-4306).
If it is added as a minor compensation for 1), it is possible to eliminate the need for adjustment every time the load changes so as to satisfy the condition of equation (3). By using the circuit of the present invention not only for the vibration testing machine of the above-mentioned known example, but also for general control of a vibration table consisting of an electro-hydraulic servo mechanism, it is possible to eliminate the influence of load changes, thereby improving control characteristics. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る補償方法を示すブロック図、第2
図は本発明に係る補償装置を示す制御系統図である。 第3図及び第4図は公知技術の説明図である。 1・・・振動台、2・・・油圧シリンダ、3・・・サー
ボ弁、4・・・油圧源、8・・・加算器、9・・・サー
ボ増幅器、10・・・変位検出器、11・・増幅器、1
2・・・速度検出器、13・・・加速度検出器、14・
・・入力信号供給部、21 、22・・・圧力検出器、
23・・・増幅器、24・・・加算器、25・・・補償
信号回路、26・・・加算器。 代理人弁理士 秋  本  正  実 祐 ! @
FIG. 1 is a block diagram showing the compensation method according to the present invention, and FIG.
The figure is a control system diagram showing a compensation device according to the present invention. FIGS. 3 and 4 are explanatory diagrams of known techniques. DESCRIPTION OF SYMBOLS 1... Vibration table, 2... Hydraulic cylinder, 3... Servo valve, 4... Hydraulic source, 8... Adder, 9... Servo amplifier, 10... Displacement detector, 11...Amplifier, 1
2... Speed detector, 13... Acceleration detector, 14.
...Input signal supply section, 21, 22...Pressure detector,
23...Amplifier, 24...Adder, 25...Compensation signal circuit, 26...Adder. Representative Patent Attorney Miyu Akimoto! @

Claims (1)

【特許請求の範囲】 1、被検物を搭載する振動台と、上記の振動台に振動を
与える油圧シリンダと、上記の油圧シリンダに与えられ
る圧力油を制御するサーボ弁と、上記のサーボ弁に制御
信号を与える自動演算回路とを備えた振動台設備を使用
する際、前記の被検物の重量変化を補償して一定の振動
加速度を与える方法において、 (a)前記油圧シリンダの油圧室内の油圧を検出し、 (b)上記の検出値に基づいて、補償信号を算出し、 (c)上記の補償信号を、前記自動演算回路の出力信号
に加算することを特徴とする、振動台の負荷変化補償方
法。 2、油圧シリンダと振動台とを結ぶ駆動系の剛性を表わ
す定数をc(cm^3/kg)とし、サーボ弁の内部リ
ークによる出力流量の減少率をk_P(cm^3/sk
g)として、 前記の補償信号はc及びk_Pに比例するものであるこ
とを特徴とする特許請求の範囲第1項に記載した振動台
の負荷変化補償方法。 3、被検物を搭載する振動台と、上記の振動台に振動を
与える油圧シリンダと、上記の油圧シリンダに与えられ
る圧力油を制御するサーボ弁と、上記のサーボ弁に制御
信号を与える自動演算回路とを備えた振動台設備を使用
する際、前記の被検物の重量変化を補償して一定の振動
加速度を与える装置において、 (a)前記油圧シリンダの油圧室内の油圧を検出して電
気信号を発する圧力検出器と、 (b)上記圧力検出器の出力信号を入力されて、補償信
号を算出する補償信号回路と、 (c)上記の補償信号を、前記サーボ弁制御信号に加算
する加算器と、を備えたことを特徴とする振動台の負荷
変化補償装置。
[Scope of Claims] 1. A vibration table on which a test object is mounted, a hydraulic cylinder that vibrates the vibration table, a servo valve that controls pressure oil applied to the hydraulic cylinder, and the servo valve described above. When using a vibration table equipment equipped with an automatic calculation circuit that provides a control signal to the test object, in the method of providing a constant vibration acceleration by compensating for changes in the weight of the test object, (a) the hydraulic chamber of the hydraulic cylinder is (b) calculates a compensation signal based on the detected value; and (c) adds the compensation signal to the output signal of the automatic calculation circuit. load change compensation method. 2. The constant representing the rigidity of the drive system connecting the hydraulic cylinder and the vibration table is c (cm^3/kg), and the reduction rate of the output flow rate due to internal leakage of the servo valve is k_P (cm^3/sk).
g) The method for compensating for load changes in a shaking table according to claim 1, wherein: the compensation signal is proportional to c and k_P. 3. A vibration table on which the test object is mounted, a hydraulic cylinder that vibrates the vibration table, a servo valve that controls the pressure oil applied to the hydraulic cylinder, and an automatic system that provides control signals to the servo valve. When using a vibration table equipment equipped with an arithmetic circuit, in the device that compensates for changes in the weight of the object to be tested and gives a constant vibration acceleration, (a) detecting the hydraulic pressure in the hydraulic chamber of the hydraulic cylinder; (b) a compensation signal circuit that receives the output signal of the pressure detector and calculates a compensation signal; (c) adds the compensation signal to the servo valve control signal; A load change compensator for a vibration table, comprising: an adder for compensating for load changes in a vibration table.
JP63052610A 1988-03-08 1988-03-08 Compensating method of load change on vibration stage and compensating apparatus thereof Pending JPH01227038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63052610A JPH01227038A (en) 1988-03-08 1988-03-08 Compensating method of load change on vibration stage and compensating apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63052610A JPH01227038A (en) 1988-03-08 1988-03-08 Compensating method of load change on vibration stage and compensating apparatus thereof

Publications (1)

Publication Number Publication Date
JPH01227038A true JPH01227038A (en) 1989-09-11

Family

ID=12919567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63052610A Pending JPH01227038A (en) 1988-03-08 1988-03-08 Compensating method of load change on vibration stage and compensating apparatus thereof

Country Status (1)

Country Link
JP (1) JPH01227038A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0605021A2 (en) * 1992-10-30 1994-07-06 Fokker Aircraft B.V. Movement simulator
CN114382750A (en) * 2021-12-30 2022-04-22 大连海事大学 A disturbance force compensation method for electro-hydraulic acceleration servo system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0605021A2 (en) * 1992-10-30 1994-07-06 Fokker Aircraft B.V. Movement simulator
EP0605021A3 (en) * 1992-10-30 1996-04-10 Fokker Aircraft Movement simulator.
CN114382750A (en) * 2021-12-30 2022-04-22 大连海事大学 A disturbance force compensation method for electro-hydraulic acceleration servo system
CN114382750B (en) * 2021-12-30 2024-03-22 大连海事大学 Disturbance force compensation method of electrohydraulic acceleration servo system

Similar Documents

Publication Publication Date Title
US3477665A (en) Vibration attenuating method and electrohydraulic attenuator for rotarywing aircraft
GB2289111A (en) Vehicle suspension damper control system with a single acceleration sensor
US4297888A (en) Stability control system for vibration test device
US6189385B1 (en) Shaking table and method of controlling the same
JP3054732B2 (en) Control device for chassis device
US4334216A (en) Electronic device for monitoring the operation of a servo system including a hydraulic jack
US4919402A (en) Vibration damping device utilizing electrorheopectic fluid
JPH01227038A (en) Compensating method of load change on vibration stage and compensating apparatus thereof
US4817498A (en) Dynamic characteristic compensating device for electrical hydraulic servo actuator
JPH0666682A (en) Control method for brake dynamo system
WO1997003536A1 (en) Loudspeaker circuit with means for monitoring the pressure at the speaker diaphragm, means for monitoring the velocity of the speaker diaphragm and a feedback circuit
US5666427A (en) Method of and apparatus for controlling noise generated in confined spaces
JPH02116308U (en)
JPH0442615B2 (en)
JPH0231243B2 (en) DENKYUATSUSAABOKEI
KR960700466A (en) CROSSOVER AND SPECTRAL PREEMPHASIS NETWORKS FOR ADAPTIVE INVERSE CONTROL
JPH03303A (en) Method and apparatus for compensating pressure fluid characteristic of servo valve in electrohydraulic servo device
JP3372975B2 (en) Active vibration isolation method and vibration isolation device
JP3725259B2 (en) Hydraulic shaker control device
JPH08189302A (en) Thrust automatic adjusting device
JPH10318879A (en) Apparatus for compensating the influence of disturbance in vibration testing machine
EP0713818B1 (en) Hydraulic force regulating system
JP3640823B2 (en) Servo control system
JP2576627B2 (en) Fluid actuator control device
SU1476207A1 (en) Electrohydraulic servo