[go: up one dir, main page]

JPH01226211A - Clock pulse generation circuit - Google Patents

Clock pulse generation circuit

Info

Publication number
JPH01226211A
JPH01226211A JP63051322A JP5132288A JPH01226211A JP H01226211 A JPH01226211 A JP H01226211A JP 63051322 A JP63051322 A JP 63051322A JP 5132288 A JP5132288 A JP 5132288A JP H01226211 A JPH01226211 A JP H01226211A
Authority
JP
Japan
Prior art keywords
circuit
clock pulse
semiconductor
level
crystal oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63051322A
Other languages
Japanese (ja)
Other versions
JP2795646B2 (en
Inventor
Izumi Sato
泉 佐藤
Koji Saito
斎藤 興二
Takashi Inoue
隆 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP63051322A priority Critical patent/JP2795646B2/en
Publication of JPH01226211A publication Critical patent/JPH01226211A/en
Application granted granted Critical
Publication of JP2795646B2 publication Critical patent/JP2795646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Unknown Time Intervals (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE:To improve resolution and measurement precision by providing a liquid crystal oscillation circuit which always generates a clock pulse measuring the time interval of a measurement gate having the connection of timing with a synchronizing signal and a control circuit which controls the output signal level of the liquid crystal oscillation circuit since impedance changes due to the energization of the synchronizing signal. CONSTITUTION:In a clock pulse generation circuit, the synchronizing signal outputted from a synchronous circuit 1 is supplied to a measurement gate generation circuit 2, etc., and it controls the timing of the action of a whole system, whereby it is simultaneously supplied to the base circuit of a second semiconductor 6 generating a control circuit 5. The base current of the liquid crystal oscillation circuit 3 is controlled by the action of the second semiconductor 6. Namely, the emitter of the second semiconductor 6 comes to a level H and a large base current flows in a first semiconductor 4 through a resistor R2 when the synchronizing signal is in the level H. When a counting action is not executed on the other hand, the synchronizing signal is held in a level L and the liquid crystal oscillation circuit 3 oscillates at the low level, whereby consumption power is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は例えば、電波や超音波などの伝搬時間の測定
に用いられるり[Iツクパルスを発生づるり[]ツクパ
ルス発生回路。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is used, for example, to measure the propagation time of radio waves, ultrasonic waves, etc., or to generate a pulse pulse.

特に省電力ならびに測定ゲートと非同期をな覆クロック
パルスの発生に関する。
In particular, it concerns power saving and the generation of clock pulses that are asynchronous with the measurement gate.

[従来の技術] 第3図は従来のクロックパルス発生回路の一例を示づ回
路図であり、 2は電波や超音波の伝搬時間に係わるゲート信号を発生
する測定ゲート発生回路、旦は水晶発揚回路、4は水晶
発振回路、aを形成フる第1平導体、7は水晶振動子、
8は水晶発揚回路旦の発振周波数に調整される共振回路
、10はAN[)、回路、11はクロックパルスを計数
Jるカウンタ、12は共振回路6を形成するトランス、
R2は抵抗器、C,Goはキャパシタである。
[Prior Art] Figure 3 is a circuit diagram showing an example of a conventional clock pulse generation circuit, in which 2 is a measurement gate generation circuit that generates a gate signal related to the propagation time of radio waves and ultrasonic waves, and 2 is a crystal generator. circuit, 4 is a crystal oscillation circuit, a is formed by a first flat conductor, 7 is a crystal oscillator,
8 is a resonant circuit adjusted to the oscillation frequency of the crystal oscillation circuit; 10 is an AN[) circuit; 11 is a counter for counting clock pulses; 12 is a transformer forming the resonant circuit 6;
R2 is a resistor, and C and Go are capacitors.

従来のりL1ツクパルス発生回路は上記のように構成さ
れ、 第1半力体4、水晶振動子7.1〜ランス12と1ドパ
シタCoよりなる共振回路8、キャパシタCに五り−」
ルピツツ形水晶発振回路旦を形成しで、常口4−・定周
波数且つ一定振幅のり1]ツクパルスか発生され、トラ
ンス12を介して出力される。測定グー ト発牛回路2
かうの測定ゲートと1:記クロックパルスはA N o
回路10に加えられ両者の論理積、即ち測定グー トに
て選択されたクロツクスバ°ルスはカウンタ11にて計
数され、伝搬時間が測定される。第1半導体4はカウン
タ11がタロツクパルスのh1数を(うわないときも常
l!J発振を継続し、クロックパルスは関連する論理素
子へ加えられて貢通電流の影響を受(プて消費電力か大
きくなる。
The conventional L1 pulse generation circuit is constructed as described above, and includes a first semi-power body 4, a resonant circuit 8 consisting of a crystal oscillator 7.1 to a lance 12, a dopasitor Co, and a capacitor C.
By forming a Lupitz-type crystal oscillation circuit, constant frequency and constant amplitude pulses are generated and outputted via a transformer 12. Measuring circuit 2
The measurement gate and clock pulse 1 are A No
The logical product of both signals applied to the circuit 10, that is, the clock pulse selected by the measurement gate is counted by the counter 11, and the propagation time is measured. The first semiconductor 4 continues to oscillate even when the counter 11 does not count the number of clock pulses (h1). or get bigger.

特にカウンター11の分解能を向上させるため、クロッ
クパルスの周波数を高くすると上記川縁は顕著に増大り
“る。
In particular, if the frequency of the clock pulse is increased in order to improve the resolution of the counter 11, the above-mentioned edge will increase significantly.

第4図は従来のクロックパルス発−[回路の他の一例を
示す回路図、 2、す、4,7.8.10,11,12゜R2,C,C
oは上記従来回路と同一であり、1は電波や超音波放射
のタイミングを決める同期111号を出力する同期回路
、13は同期回路1により作動し第1半導体4を含む水
晶発振回路3への給電を制御りる開閉器く′ある。
Figure 4 is a circuit diagram showing another example of the conventional clock pulse generation circuit.
o is the same as the conventional circuit described above, 1 is a synchronous circuit that outputs a synchronous signal 111 that determines the timing of radio wave or ultrasonic radiation, and 13 is a synchronous circuit that is operated by the synchronous circuit 1 and is connected to the crystal oscillation circuit 3 that includes the first semiconductor 4. There is a switch that controls the power supply.

従来のクロックパルス発生回路は上記のように構成され
、第1半導体4を含む水晶発振回路旦への給電は同期回
路1よりの同期信号にて作動する開閉器′13を介して
行われるので、カウンタ′11の作動か体什している時
には、水晶発振回路3の作動し休止して消費電力の低減
が削られるか、水晶発振回路品より出力されるり[」ツ
タパルスと同期回路1からの同期’I’jj jjとの
間には一定の位相関係が形成され、更に測定グーi〜も
同期信号とその位相が係わっているので、これら相qの
位相関係は一定となる。
The conventional clock pulse generation circuit is constructed as described above, and power is supplied to the crystal oscillation circuit including the first semiconductor 4 via the switch '13 which is operated by the synchronization signal from the synchronization circuit 1. When the counter '11 is in operation, the crystal oscillator circuit 3 is in operation and paused to reduce the power consumption, or the crystal oscillator circuit outputs a pulse pulse and synchronization from the synchronization circuit 1. A constant phase relationship is formed between 'I'jj jj, and since the phase of the measurement group i~ is also related to the synchronization signal, the phase relationship between these phases q is constant.

従って複数の測定ゲートにてサンプリングされたりl’
lクロックパルス均1直よりh1測ブ′−タを得るどさ
、その分解能や測定精度の同上か計れない。
Therefore, if sampled at multiple measurement gates, l'
It is impossible to measure the resolution and measurement accuracy of the h1 measurement button obtained from one cycle of the l clock pulse.

[発明か解決しようとする課題] 上記のJ、うな従来のり[−1ツタパルス発41−回路
では、第1半導体4を用いた水晶発振回路品は常時発振
を?jいクロックパルスを出力するので、カウンタ11
が計数しないとさも論理素子ヘク【」ツクパルスが印加
されて消費電力が大きくなる。
[Invention or Problem to be Solved] In the above J, conventional glue [-1 Tsuta pulse oscillation 41- circuit], does the crystal oscillation circuit product using the first semiconductor 4 constantly oscillate? Since it outputs a high clock pulse, the counter 11
If it is not counted, a pulse is applied to the logic element, increasing power consumption.

また同期信号に同期して水晶発振回路旦への給電を開閉
制御すると消費電力は逓減されるが、同期信gと測定ゲ
ートとクロックパルスとは相互に一定の位相関係となる
ので、測定グー1〜によるタロツクパルスのサンプリン
グ頻度を増してぞの平均値より計測データを求めても、
所定の分解能ヤ)測定精度が得られないという問題点が
あった。
Furthermore, power consumption is gradually reduced by controlling the opening and closing of the power supply to the crystal oscillator circuit in synchronization with the synchronization signal, but since the synchronization signal g, the measurement gate, and the clock pulse have a fixed phase relationship with each other, the measurement signal g Even if we increase the sampling frequency of tarokku pulses by ~ and calculate the measurement data from the average value,
There was a problem that a predetermined resolution and measurement accuracy could not be obtained.

この発明はかかる問題点を解決するためになされたもの
で、水晶発振回路品の出力信号レベルはカウンタの馴動
作作時は高レベルに調節され、h1数動作を行わないと
きは低レベルをなして常時発振動作が持続され、同期(
U号や測定ゲートとりL−1ツタパルスとの位相関係が
相互に非同期となり、分解能や測定精度の向上ならびに
消費電力の低減か計れるクロックパルス発生回路を得る
ことを目的とする [課題を解決づるための手段1 この発明に係るクロックパルス発生回路は、同期信号と
タイミングか係わる測定ゲートの時間間隔を測定するク
ロックパルスを常時発生する水晶発振回路と、同期信号
の(=J勢によりインピーダンスが変化して水晶発振回
路の出力信号レベルを調節づる制御回路とを設けたもの
である。
This invention was made to solve this problem, and the output signal level of the crystal oscillator circuit product is adjusted to a high level when the counter is in the warm-up operation, and is kept at a low level when the h1 number operation is not performed. The constant oscillation operation is maintained and the synchronization (
The purpose is to obtain a clock pulse generation circuit that has a phase relationship with the U and measurement gate L-1 tsuta pulses that is asynchronous with each other, improving resolution and measurement accuracy, and reducing power consumption [To solve the problem] Means 1 The clock pulse generation circuit according to the present invention includes a crystal oscillator circuit that constantly generates a clock pulse for measuring the time interval between the measurement gates related to the timing of the synchronization signal, and a crystal oscillation circuit whose impedance changes depending on the (=J force) of the synchronization signal. A control circuit for adjusting the output signal level of the crystal oscillation circuit is provided.

[作用1 この発明においては、水晶発振回路を形成する第1半導
体のベース回路のインピーダンスが同期回路の信号の付
勢により作動する制御回路により変化りるので、同期信
号により水晶発振回路の光(辰出力即ちクロックパルス
の信号レベルが調節される。
[Function 1] In this invention, since the impedance of the base circuit of the first semiconductor forming the crystal oscillation circuit is changed by the control circuit activated by the signal of the synchronous circuit, the light of the crystal oscillation circuit ( The signal level of the output or clock pulse is adjusted.

従つ゛(り[コックパルスは力rクンタか旧教動作を行
うとき高レベルに、その他にJ3いては低レベルとなり
ことができ、常時発振させても消費電力が低減できる、 更に測定グー1〜とクロックパルスとの位相関係は相互
に非同期にできるので、クロックパルスの周波数を高く
して複数の測定ゲートによりサンプリングされ、たクロ
ックパルスの平均化処理を施ずことにより、分解能なら
びに測定精度が一層向上できる。
Accordingly, the cock pulse can be at a high level when performing force r kunta or classical movements, and can be at a low level during other J3 operations, so power consumption can be reduced even if it is constantly oscillated. Since the phase relationship with the clock pulse can be made asynchronous with each other, the resolution and measurement accuracy can be further improved by increasing the frequency of the clock pulse, sampling it with multiple measurement gates, and not averaging the clock pulses. can.

[実施例] この発明の一実施例を添イζ1図面を参照して訂細に説
明覆る。
[Embodiment] An embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図はこの発明の一実施例を示1回路図であり、 図において、1,2.旦、4,7,8,10゜11、R
2,C,Coは上記従来回路と同一であり、互は同期信
号のタイミングにて水晶発振回路品の出力信号レベルを
制御づる制御回路、6は同期信号のイ」勢により作動す
る第2半導体、9は水晶発娠回路旦の出力信号振幅を制
限するダイオード、R1は第1半導体4のベース回路に
設けられた抵抗器を示している。
FIG. 1 is a circuit diagram showing an embodiment of the present invention. In the figure, 1, 2. Dan, 4, 7, 8, 10° 11, R
2, C, and Co are the same as the conventional circuits mentioned above, and each is a control circuit that controls the output signal level of the crystal oscillation circuit product at the timing of the synchronization signal, and 6 is a second semiconductor that operates according to the positive force of the synchronization signal. , 9 is a diode for limiting the output signal amplitude of the crystal starting circuit, and R1 is a resistor provided in the base circuit of the first semiconductor 4.

第2図はこの発明の動作波形の−・例を示し、■は同期
回路1から出力される同期信号、■は胴側ゲート、■は
水晶発振回路旦出力のクロックパルス、■は測定グー 
1〜により選択された閉動用クロックパルス、■はクロ
ックパルスの出力レベルを識別するしきい値を示してい
る。
Figure 2 shows an example of the operating waveforms of this invention, where ■ is the synchronization signal output from the synchronization circuit 1, ■ is the body side gate, ■ is the clock pulse output from the crystal oscillation circuit, and ■ is the measurement group.
Closing clock pulses selected from 1 to 3 indicate the threshold value for identifying the output level of the clock pulse.

上記のように構成されたクロックパルス発生回路は、同
期回路1から出力される同期(M ’tv■は測定グー
1ル発生回路2等に供給され、システム全体の動作のタ
イミングを制御すると同時に制御回路5を形成する第2
半導体6のベース回路に供給される。
The clock pulse generation circuit configured as described above is configured such that the synchronization (M'tv) output from the synchronization circuit 1 is supplied to the measurement pulse generation circuit 2, etc., and controls the timing of the operation of the entire system. the second forming the circuit 5;
It is supplied to the base circuit of the semiconductor 6.

第2半導体6の動作により水晶発娠回路旦のベース電流
が制御される。即ら同期信号■がトルベルの時は第2崖
聯体6のエミッタは1ルベルとなり、抵抗器R2を介し
て第1半導体4に大きいベース電流が流れるため、水晶
発振回路、剣の出力信号レベルは大ぎくなり、AND回
路10のしきい値■を超える振幅となる。
The operation of the second semiconductor 6 controls the base current of the crystal starting circuit. That is, when the synchronization signal (■) is at Torbel, the emitter of the second cliff assembly 6 is at 1 Lebel, and a large base current flows through the resistor R2 to the first semiconductor 4, so that the output signal level of the crystal oscillator circuit and sword becomes low. becomes so large that the amplitude exceeds the threshold value (■) of the AND circuit 10.

一方同期信月■がトルベルの時は、第2半導体6はカッ
]〜オフ状態となり、第1半導体4のベース電流は抵抗
器R1,Rzの直列回路を介して供給されるためベース
電流は小さくなる。
On the other hand, when the synchronization signal ■ is at the trubel level, the second semiconductor 6 is turned off, and the base current of the first semiconductor 4 is supplied through the series circuit of resistors R1 and Rz, so the base current is small. Become.

従つC1この時の水晶発振回路品の出力信号レベルがか
小さくなりAND回路10のしきい値■を超えないので
出力されない。然し第1半導体4による水晶発振回路旦
は常時発振作用が持続するようそのベース電流値が調整
されている。
Therefore, the output signal level of the crystal oscillator circuit product C1 at this time becomes so small that it does not exceed the threshold value (2) of the AND circuit 10, so that it is not output. However, the base current value of the crystal oscillation circuit formed by the first semiconductor 4 is adjusted so that the oscillation effect is maintained at all times.

AND回路10は、同期信号■によって第2半導体6を
介して振幅変調された発振出力信号、即ちり1」ツクパ
ルス■と測定ゲート■との論理積によってカウンタ11
が計数1べぎ計数用クロックパルス■が形成される。測
定ゲート■は同期信号■がトルベルのタイミングに発生
するよう制御される、従って測定グー1〜■のゲート=
 9− 巾を測定するためクロックパルスにて語数動作を行なう
時は、必ず水晶発振回路品は高レベルの発振状態にあり
、その時のクロックパルス■は論理回路のしきい値■を
超えているので測定ゲート■の語数動作は可能である。
The AND circuit 10 generates a counter 11 by the logical product of the oscillation output signal amplitude-modulated via the second semiconductor 6 by the synchronizing signal ■, that is, the 1'' pulse ■ and the measurement gate ■.
When the count is 1, a counting clock pulse (2) is formed. The measurement gate ■ is controlled so that the synchronization signal ■ is generated at the timing of the torque, so the gates of measurement goo 1 to ■ =
9- When performing a word count operation using a clock pulse to measure the width, the crystal oscillation circuit product is always in a high-level oscillation state, and the clock pulse ■ at that time exceeds the threshold value ■ of the logic circuit. The word count operation of measurement gate ■ is possible.

−−’lj、計数動作を行なわない時は、同期信号■は
[−レベルに保たれており、水晶発(辰回路旦は低レベ
ルの発振となり、論理回路のしぎい値■を超えない発振
出力のクロックパルス■となる。従って、この時は水晶
振動子7固有が消費づる消費電力も低減され、その信号
を受ける論理回路’bbきい値■を超えないため、貴通
電流は流れなくなるのでクロックパルス発生回路の省電
力が討れる。
--'lj, When no counting operation is performed, the synchronizing signal ■ is kept at the [- level, and the crystal oscillation (the dragon circuit) oscillates at a low level, and the oscillation does not exceed the threshold value ■ of the logic circuit. This becomes the output clock pulse ■.Therefore, at this time, the power consumption of the crystal oscillator 7 is also reduced, and the logic circuit that receives the signal does not exceed the 'bb threshold ■, so the current will no longer flow. The power consumption of the clock pulse generation circuit can be reduced.

同期回路1どの位相関係は、クロックパルス■は水晶振
動子7固有の周波数ならびに位相で常時発振を持続して
いるため、ランダムとなり複数回にわたって測定ゲート
■の時間に対応するh1数用クロックパルス■を計数覆
ることによリ、測定データの分解能ならびに粘度の向上
か期待できる。
The phase relationship of the synchronous circuit 1 is that the clock pulse ■ is constantly oscillating at the frequency and phase unique to the crystal oscillator 7, so it is random and the h1 number clock pulse ■ corresponds to the time of the measurement gate ■ multiple times. It is expected that the resolution and viscosity of the measured data will be improved by counting.

さらにり−ニ+ツクパルス■の周波数を高くずと、大幅
な消費電力の増加を招くことなく分解能ならびに精度は
−・層内上する。
Furthermore, without increasing the frequency of the second pulse (2), the resolution and accuracy can be increased by -.

この発明は電波や超音波を用いてての伝搬時間に係わる
測定ゲート■の測定、即ち対象物までの距離測定、対象
物の厚さなどの(J法測定、対象物の移動速度の測定な
どへ利用てぎる。
This invention uses radio waves and ultrasonic waves to measure measurement gates related to propagation time, i.e., to measure the distance to an object, the thickness of the object, etc. (J-method measurement, measurement of the moving speed of the object, etc.) I'm using it too much.

水晶発振回路旦に代わり、一定周波数の信号を発生リ−
る仙の発振回路を用いても同等の作用を行うことができ
る。
Instead of the crystal oscillator circuit, it generates a constant frequency signal.
The same effect can be achieved using a conventional oscillation circuit.

[発明の効果] この発明は以上−説明したとcf′3す、り[1ツクパ
ルスを発生リ−ろ水晶発振回路と、水晶発振回路の出力
信号レベルを調節する制御回路を設ける簡単な回路によ
り、 水晶発振回路を形成りる第1半導体のバイアス電流は第
2半導体を介し−C加えられる同期イへ号により制御さ
れるので、水晶発振回路の出力信号レベルが調節される
3、従ってカウンタがクロックパルスを計数りるときは
高レベル信号を、その他のときは低レベル信号を出力す
るのC゛クロックパルス発牛回路の省電力を削ることか
でさ″る。
[Effects of the Invention] As described above, the present invention can be realized by a simple circuit that includes a cf'3 [1 pulse] generation crystal oscillation circuit and a control circuit for adjusting the output signal level of the crystal oscillation circuit. Since the bias current of the first semiconductor forming the crystal oscillator circuit is controlled by the synchronizing signal applied to -C through the second semiconductor, the output signal level of the crystal oscillator circuit is adjusted3, so that the counter The reason for outputting a high level signal when counting clock pulses and a low level signal at other times is to reduce the power consumption of the clock pulse generation circuit.

また水晶発振回路は常時連続して発掘作用か行われ、ク
ロックパルスと同期信号や測定ゲートとは相Hの位相関
係が非同期になるので、複数の測定グー トにより4ノ
ンシリングされたり1]ツタパルスの平均化11pを行
うことにより、測定データの分解能や精度か一層向−1
きれ、クロックパルスの周波数を高くすると分解能や精
度は更に一層向上できるという効果かある。
In addition, the crystal oscillator circuit is always continuously excavated, and the phase relationship between the clock pulse, the synchronization signal, and the measurement gate is asynchronous. By averaging 11p, the resolution and accuracy of the measurement data can be further improved.
However, increasing the frequency of the clock pulse has the effect of further improving resolution and accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す回路図、冴)2図は
この発明の動作波形の一例、第3図は従来のクロックパ
ルス発生回路の一例を示覆回路図、第4図は従来のり「
1ツクパルス発牛回路の他の一例を示づ回路図である。 図において、1は同期回路、2は測定ゲート発生回路、
旦は水晶発振回路、4は第1半導体、5は制御回路、6
は第2半導体、7は水晶振動子、8は共振回路、9はダ
イオード、10はAND回路、11はカウンタ、R1,
R2,R3は抵抗器、C,Coはキャパシタでおる。 なR3、各図中同一符号は同一または相当部分を示す。 特許出願人 株式会社 東 京 R4器rf)l  L
fl−鳳           さθ @ ■ ■
Fig. 1 is a circuit diagram showing an embodiment of the present invention, Fig. 2 is an example of the operating waveforms of the present invention, Fig. 3 is a circuit diagram showing an example of a conventional clock pulse generation circuit, and Fig. 4 is a circuit diagram showing an example of the conventional clock pulse generation circuit. Conventional glue
FIG. 7 is a circuit diagram showing another example of a one-pulse generation circuit. In the figure, 1 is a synchronous circuit, 2 is a measurement gate generation circuit,
1 is a crystal oscillation circuit, 4 is a first semiconductor, 5 is a control circuit, and 6 is a crystal oscillation circuit.
is a second semiconductor, 7 is a crystal resonator, 8 is a resonant circuit, 9 is a diode, 10 is an AND circuit, 11 is a counter, R1,
R2 and R3 are resistors, and C and Co are capacitors. The same reference numerals in each figure indicate the same or corresponding parts. Patent applicant Tokyo Co., Ltd. R4 equipment rf)l L
fl-Otori Saθ @ ■ ■

Claims (1)

【特許請求の範囲】 同期信号と同期して発生する測定ゲートの時間間隔をク
ロックパルスを用いて測定するクロックパルス発生回路
において、 クロックパルスを常時発生する水晶発振回路と、上記同
期信号の付勢によりインピーダンスが変化して上記水晶
発振回路の出力信号レベルを調節する制御回路を備える
と共に上記同期信号と上記クロックパルスが非同期とな
ることを特徴とするクロックパルス発生回路。
[Scope of Claim] A clock pulse generation circuit that uses clock pulses to measure the time interval of measurement gates that are generated in synchronization with a synchronization signal, comprising: a crystal oscillation circuit that constantly generates clock pulses; and energization of the synchronization signal. A clock pulse generation circuit comprising: a control circuit that adjusts an output signal level of the crystal oscillation circuit by changing impedance, and wherein the synchronization signal and the clock pulse are asynchronous.
JP63051322A 1988-03-04 1988-03-04 Clock pulse generation circuit Expired - Lifetime JP2795646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63051322A JP2795646B2 (en) 1988-03-04 1988-03-04 Clock pulse generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63051322A JP2795646B2 (en) 1988-03-04 1988-03-04 Clock pulse generation circuit

Publications (2)

Publication Number Publication Date
JPH01226211A true JPH01226211A (en) 1989-09-08
JP2795646B2 JP2795646B2 (en) 1998-09-10

Family

ID=12883678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63051322A Expired - Lifetime JP2795646B2 (en) 1988-03-04 1988-03-04 Clock pulse generation circuit

Country Status (1)

Country Link
JP (1) JP2795646B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387176A (en) * 1989-08-31 1991-04-11 Kao Corp Alkaline pullulanase, microorganisms producing it, and method for producing alkaline pullulanase

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132864A (en) * 1976-04-30 1977-11-07 Tokyo Keiki Kk Method of and apparatus for measuring thickness with ultrasonic
JPS61225904A (en) * 1985-03-30 1986-10-07 Toshiba Corp Oscillation circuit with oscillation stop function
JPS62298204A (en) * 1986-06-17 1987-12-25 Mitsubishi Electric Corp Cmos gate array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132864A (en) * 1976-04-30 1977-11-07 Tokyo Keiki Kk Method of and apparatus for measuring thickness with ultrasonic
JPS61225904A (en) * 1985-03-30 1986-10-07 Toshiba Corp Oscillation circuit with oscillation stop function
JPS62298204A (en) * 1986-06-17 1987-12-25 Mitsubishi Electric Corp Cmos gate array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387176A (en) * 1989-08-31 1991-04-11 Kao Corp Alkaline pullulanase, microorganisms producing it, and method for producing alkaline pullulanase

Also Published As

Publication number Publication date
JP2795646B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
KR100235386B1 (en) Delay time measurement method and random pulse train generation circuit used therein
US4710653A (en) Edge detector circuit and oscillator using same
US4864255A (en) Oscillator capable of quickly supplying a stable oscillation signal
JPS6161283B2 (en)
US8413523B2 (en) Oscillation circuit
JPS6347002B2 (en)
JPH01226211A (en) Clock pulse generation circuit
KR20030028557A (en) Method and apparatus for a digital clock multiplication circuit
US4382692A (en) Analog-display electronic timepiece comprising a divider with an adjustable division factor
JP2720417B2 (en) Delay pulse generator
JPH0464431B2 (en)
US6633203B1 (en) Method and apparatus for a gated oscillator in digital circuits
JPS6199415A (en) Frequency counter device
JP2742642B2 (en) Oscillation-synchronous frequency change measurement method and apparatus
KR100206925B1 (en) RAM's negative clock pulse generation circuit
US20080007313A1 (en) Digital clock generator
US20250088181A1 (en) Frequency control circuit and frequency control method
US4280210A (en) Electronic alarm timepiece
KR950001436B1 (en) Reference pulse generated circuit
JPS628592Y2 (en)
JPH09214307A (en) Clock circuit
SU765983A2 (en) Infra-low frequency sinusoidal oscillation generator
JPH06848Y2 (en) Q switch laser device
JPH045037Y2 (en)
JPH0441629Y2 (en)