[go: up one dir, main page]

JPH01225792A - Electrodeposition bath stabilization method - Google Patents

Electrodeposition bath stabilization method

Info

Publication number
JPH01225792A
JPH01225792A JP4976488A JP4976488A JPH01225792A JP H01225792 A JPH01225792 A JP H01225792A JP 4976488 A JP4976488 A JP 4976488A JP 4976488 A JP4976488 A JP 4976488A JP H01225792 A JPH01225792 A JP H01225792A
Authority
JP
Japan
Prior art keywords
electrodeposition
bath
electrodeposition bath
metal
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4976488A
Other languages
Japanese (ja)
Inventor
Motohiro Nakayama
元宏 中山
Hideo Koyahara
小屋原 英雄
Riyouichi Naka
亮一 那珂
Minoru Komeno
米野 実
Kenichi Tanigawa
健一 谷川
Koro Hayasaka
早坂 公郎
Masaru Yanagida
柳田 賢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAMI DENSHI KOGYO KK
Nippon Steel Corp
Pilot Precision KK
Original Assignee
KAMI DENSHI KOGYO KK
Nippon Steel Corp
Pilot Precision KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAMI DENSHI KOGYO KK, Nippon Steel Corp, Pilot Precision KK filed Critical KAMI DENSHI KOGYO KK
Priority to JP4976488A priority Critical patent/JPH01225792A/en
Publication of JPH01225792A publication Critical patent/JPH01225792A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はAMまたはA2合金を陽極酸化処理した多孔性
アルマイト皮膜の微細孔中に、FeまたはFe合金を電
解析出させることにより、光学的、磁気的、機械的な特
徴ある表面特性を付与するための電析浴の安定化法に関
する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides optical , relates to a method for stabilizing an electrodeposition bath to impart distinctive magnetic and mechanical surface properties.

本発明の利用分野は広く、例えば、自動車、建材、電機
、容器、磁気記録用媒体など、あらゆる方面に用いるこ
とができる。
The present invention can be used in a wide range of fields, such as automobiles, building materials, electrical equipment, containers, and magnetic recording media.

[従来の技術] AuまたはA1合金の多孔性アルマイト皮膜の微細孔中
に、所謂2次電解着色法を利用し、金属を電析させ°る
ことは知られている。微細孔中に金属を電析させたアル
マイト皮膜は、耐光性、耐蝕性に優れ、表面硬度も高い
美麗な皮膜であり、内外装のA2建材を中心に広く利用
されている。他方、微細孔に金属を電析させ、電気的、
機械的、光学的、磁気的機能を持たせる研究も活発であ
る。たとえば、■磁性金属を電析させると垂直磁気異方
性を示す、所謂、磁性アルマイト皮膜となり、高密度磁
気記録媒体が得られる。■0.5μm前後の薄いアルマ
イト皮膜の微細孔中に金属を電析させると、太陽光の選
択吸収膜となる。■無電解めっきり触媒となり得る金属
を微細孔中に電析したのち、無電解めっきを行ない微細
孔の開孔部まで無電解めっき金属を充填すると導電性を
有するアルマイト皮膜となり、さらに無電解めっきを続
けるとアルマイト皮膜上に密着性の良い無電解めっき皮
膜が得られる。■微細孔中に電析させた金属を金属石ケ
ンや金属硫化物に変えることにより、潤滑性やその他の
性能を付与することができる。
[Prior Art] It is known that a so-called secondary electrolytic coloring method is used to electrodeposit metal into the micropores of a porous alumite film of Au or A1 alloy. Alumite film, which is made by electrodepositing metal into micropores, is a beautiful film with excellent light resistance, corrosion resistance, and high surface hardness, and is widely used for interior and exterior A2 building materials. On the other hand, metal is deposited in micropores and electrically
Research on adding mechanical, optical, and magnetic functions is also active. For example, (1) When a magnetic metal is electrodeposited, a so-called magnetic alumite film exhibiting perpendicular magnetic anisotropy is formed, and a high-density magnetic recording medium is obtained. (2) When metal is electrodeposited into the fine pores of a thin alumite film of around 0.5 μm, it becomes a film that selectively absorbs sunlight. ■Electroless plating After electrodepositing a metal that can become a catalyst into the micropores, electroless plating is performed and the electroless plating metal is filled up to the openings of the micropores, forming an alumite film with conductivity. If this process is continued, an electroless plating film with good adhesion will be obtained on the alumite film. ■Lubricating properties and other properties can be imparted by changing the metal electrodeposited into the micropores into metal soap or metal sulfide.

これらは、いずれもアルマイト皮膜微細孔中に、Fe、
 Ni、 Go、 Cu、 Sn、 7.n、 Pb、
 In、 Se、 Ag。
All of these have Fe, Fe,
Ni, Go, Cu, Sn, 7. n, Pb,
In, Se, Ag.

(!LC,等の金属の単体または合金を電析して用いら
れるが、なかでも、Feはコストが安く、公害上の問題
も少ない上、皮膜の耐食性等の特性を悪化させることも
なく、2次電解着色用金属種として最適である。また、
Feを必須成分として電解充填させた磁性層は優れた磁
気特性を示し、その実用化か期待されている。
(It is used by electrodepositing single metals or alloys such as LC, etc. Among them, Fe is low in cost, has few pollution problems, and does not deteriorate the properties such as corrosion resistance of the film. Ideal as a metal species for secondary electrolytic coloring.Also,
A magnetic layer electrolytically filled with Fe as an essential component exhibits excellent magnetic properties and is expected to be put to practical use.

[発明が解決しようとする課題] しかしながら、アルマイト皮膜微細孔中に、Feまたは
Fe合金を電解析出させるための電析浴中のFe2+は
、陽極において電解酸化されたり、エアレーション酸化
を受けてF e 3+に変化しやすく、浴安定性が著し
く劣っていた。そのため、電析効率の低下や(鉄の微細
孔中への充填析出か不十分になることに起因する)色合
いのコントロール不良、あるいは皮膜の磁気特性とくに
飽和磁束密度(BS)の低下等を引き起こすことがあっ
た。
[Problems to be Solved by the Invention] However, Fe2+ in the electrodeposition bath for electrolytically depositing Fe or Fe alloy into the fine pores of the alumite film is electrolytically oxidized at the anode or subjected to aeration oxidation to form F. It easily changed to e 3+ and had significantly poor bath stability. This causes a decrease in electrodeposition efficiency, poor control of color tone (due to insufficient filling and deposition of iron into micropores), and a decrease in the magnetic properties of the film, especially the saturation magnetic flux density (BS). Something happened.

FeJ+は、アルマイト微細孔中での金属電析の際、F
e”+ e + Fe2+の併発反応により電析効率の
低下をもたらす。また、Fc3+は金属のエツジング作
用をもっており、電析前のアルマイト微細孔内の素地の
アルミニウムや、−旦電析した金属を溶解する害作用を
もっている。
FeJ+ is F during metal electrodeposition in alumite micropores.
The simultaneous reaction of e''+ e + Fe2+ causes a decrease in the electrodeposition efficiency.Fc3+ also has a metal etching effect, and it can damage the base aluminum in the alumite micropores before electrodeposition, and the metal that has been electrodeposited. It has the harmful effect of dissolving.

このような害作用をもつFc’+を減少させる方法とし
て、L−アスコルビン酸をはじめとする各袖の還元剤の
添加か行なわれているが、これらの反応生成物の8積と
いう弊害があった。
Addition of various reducing agents such as L-ascorbic acid has been used as a method to reduce Fc'+, which has such harmful effects, but this has the disadvantage of producing 8 products of these reaction products. Ta.

また、電析浴中に有機酸や有機酸の塩に代表されるFe
2+の錯化剤を添加しFe3+への酸化を起こりに〈<
シて、安定化を計ろうとする試みがあるが、当該錯化剤
の分解生成物が、処理を重ねてゆくにつれ容積し、Fe
電析の阻害因子となり好ましくない。またFe”の酸化
を完全には防止できなかった。隔膜で陽極室、陰極室に
分離して電解する隔膜法を用い少くとも陽極での電解酸
化を防止することも考えられているか、アルマイトの2
次電解着色時の電解波形は直流または直流類似の波形よ
りも交流まはた交流類似の波形の方がスムーズな電析か
可能で専ら後者が使用されるため隔膜法を使用するメリ
ットが見出せないのである。仮に直流または直流類似の
電解波形を使用し隔膜法てrHH析を行なっても、浴電
圧が高くなり、アルマイト皮膜に破壊(スポーリング)
が起り易く好ましくない。その他隔膜法では設備的に高
価になること、Fe2+の酸化を完全に防止できない等
の問題を残している。
In addition, Fe, represented by organic acids and salts of organic acids, may be present in the electrodeposition bath.
2+ complexing agent is added to cause oxidation to Fe3+.
There have been attempts to stabilize the complexing agent, but as the treatment continues, the decomposition products of the complexing agent increase in volume and the Fe
This is not preferable as it becomes a factor that inhibits electrodeposition. In addition, it was not possible to completely prevent the oxidation of Fe''.Is it possible to prevent electrolytic oxidation at least at the anode by using a diaphragm method that separates the anode chamber and the cathode chamber for electrolysis using a diaphragm? 2
For the electrolytic waveform during the next electrolytic coloring, an AC or AC-like waveform allows for smoother electrodeposition than a DC or DC-like waveform, and the latter is used exclusively, so there is no advantage to using the diaphragm method. It is. Even if rHH deposition is performed using the diaphragm method using DC or a similar electrolytic waveform, the bath voltage will be high and the alumite film will be damaged (spalling).
This is not desirable as it tends to occur. Other problems with the diaphragm method include that the equipment is expensive and that oxidation of Fe2+ cannot be completely prevented.

また、アルマイト皮膜微細孔中に金属を電解析出させる
電析浴は通常の電気めっきに比べて高pt+領域で使用
されることが多く、電気分解は交流または交流類似の波
形を利用する方が直流波形を利用するよりスムーズな電
解析出ができる。一方、低pH領域で交流電解を行うと
、被処理物が陽極側になったとき5微細孔中に電解析出
した金属か再溶解を起こし、充分に電析充填できない。
In addition, the electrodeposition bath that electrolytically deposits metal into the fine pores of the alumite film is often used in a high pt+ region compared to normal electroplating, and it is better to use alternating current or a waveform similar to alternating current for electrolysis. Electrolytic deposition can be performed more smoothly than using a DC waveform. On the other hand, when alternating current electrolysis is performed in a low pH region, when the object to be treated is on the anode side, the metal electrolytically deposited in the 5 micropores will be redissolved, making it impossible to fill the electrodeposit sufficiently.

従って、高pH領域で電解を行うことが望ましい、しか
し、高pH領域で電解析出を行うと電析浴中の金属イオ
ンが消費されるにつれて、電析浴のpHは下がる傾向に
あり、特にFcイオンを含む電析浴(以下Fe系電析浴
と呼ぶ)の変動は大きい。pHの変動は磁気特性に大き
な、16 gを与えるのでpHをある領域に常に維持管
理することは最も重要な浴管理上の要素である。一般に
、′1゛E気めっき浴のpHを上昇させる方法として、
アルカリ金属の水酸化物、当該塩類、アンモニア、アミ
ン類等が用いられるが、アルマイト皮膜微細孔中への金
属電析には適さない。すなわち、これらのpl+調整剤
はアルマイト皮膜の破壊、いわゆるスポーリング現象を
起すので不適当である。また、浴成分である金属の水酸
化物の使用は溶解速度が遅く、不溶性の水酸化物が皮膜
表面に吸着し、て、微細孔中への金属の電解析出を阻害
したり、適切かつ迅速で精密なpH管理が難しく、工業
的な規模での実施が不可能であった。
Therefore, it is desirable to conduct electrolysis in a high pH region.However, when electrolytic deposition is performed in a high pH region, as the metal ions in the electrodeposition bath are consumed, the pH of the electrodeposition bath tends to decrease. Electrodeposition baths containing Fc ions (hereinafter referred to as Fe-based electrodeposition baths) have large fluctuations. Fluctuations in pH have a large effect on magnetic properties, so constantly maintaining the pH within a certain range is the most important element in bath management. Generally, as a method of increasing the pH of a '1゛E plating bath,
Alkali metal hydroxides, their salts, ammonia, amines, etc. are used, but they are not suitable for metal electrodeposition into the micropores of an alumite film. That is, these PL+ adjusting agents are unsuitable because they cause destruction of the alumite film, ie, the so-called spalling phenomenon. Furthermore, the use of metal hydroxide as a bath component has a slow dissolution rate, and the insoluble hydroxide adsorbs to the surface of the film, inhibiting the electrolytic deposition of the metal into the fine pores, or preventing proper electrolytic deposition. Rapid and precise pH control is difficult, and implementation on an industrial scale has been impossible.

本発明は鉄系電析浴において、Fe3+の生成を押え、
かつpH降下を抑制することで浴を安定化させ、品質の
安定した電解析出を可能とする新しい方法を提供しよう
とするものである。
The present invention suppresses the formation of Fe3+ in an iron-based electrodeposition bath,
The present invention also aims to provide a new method that stabilizes the bath by suppressing pH drop and enables electrolytic deposition with stable quality.

[課題を解決するための手段] 本発明すなわち、電析浴の安定化法は、FeまたはFe
を含む合金の電析浴中に、金属のFeまたはFe合金を
塊状、粒状、針状、粉状、線状、綿状、板状、箔状なと
の状態て存在させ、電析浴との接触によって、浴中のF
e3“をF e2”に還元させ、pHをも制御管理する
方法である。
[Means for Solving the Problems] The present invention, that is, a method for stabilizing an electrodeposition bath, uses Fe or Fe.
The metal Fe or Fe alloy is present in the form of lumps, granules, needles, powders, wires, cotton, plates, and foils in the electrodeposition bath of the alloy containing the metal. F in the bath by contact with
This is a method in which e3" is reduced to Fe2" and the pH is also controlled and managed.

溶解し、補充されるFeまたはFe合金の各回は、浴種
類、電析浴中でのFeまたはFe合金の接触面積量、液
の流速、浴温等の変化で違ってくるが、こわらの関係を
求め、管理することにより電析によるFe消費とバラン
スさせることで、浴を安定化させることができる。
The amount of Fe or Fe alloy to be dissolved and replenished each time varies depending on the type of bath, the amount of contact area of Fe or Fe alloy in the electrodeposition bath, the flow rate of the liquid, the bath temperature, etc. By determining and managing the relationship, the bath can be stabilized by balancing Fe consumption due to electrodeposition.

第1図のように、電析浴槽中でFeまたはFe合金を直
接Fc系電電析に接触共存させる方法、第2図のように
、電析浴槽とFeまたはFe合金の接触槽を別々に独立
させて循環させる方法等が適用できる。
As shown in Figure 1, there is a method in which Fe or Fe alloy is allowed to coexist in direct contact with Fc-based electrodeposition in an electrodeposition bath, and as shown in Figure 2, an electrodeposition bath and a contact bath for Fe or Fe alloy are separated and independent. A method such as letting the water flow and circulating it can be applied.

第1図は前者の方法を示しており、電析N!11に電析
浴2をみたし、被電析体3と対極4を配置する。直流電
源5を、交流電源6をまたはこれらを交互にして被電折
体3と対極4とに接続し、電析させる。電析糟1はスク
リーン7を隔てて、極板の存在しない側に鉄線8等を補
給する。また、第2図は後者の方法を示しており、鉄線
8等を充填した反応種9を設け、配管10を介してポン
プ11により電析浴2を循環させる。   □ 一般にFc電解析出において、電析浴中に、Fe”の生
成を抑ル11するために、L−アスコルビン酸などの還
元剤を併用することがある。しかも、本発明によりば、
これらの還元剤の消費が減るため、添加量を少なくでき
るかあるいは添加しなくてもよくなる。また、Feまた
はFe合金の溶解反応は、すでに生成しているFe3+
をFe2+に還元する作用も強いので浴安定の効果は極
めて大きい。
Figure 1 shows the former method and shows the electrodeposition N! 11 is filled with an electrodeposition bath 2, and an electrodeposited object 3 and a counter electrode 4 are placed therein. A DC power source 5, an AC power source 6, or these alternately are connected to the object to be folded 3 and the counter electrode 4, and electrodeposition is performed. Electrodeposition bath 1 is separated from screen 7, and iron wire 8 and the like are supplied to the side where the electrode plate is not present. Further, FIG. 2 shows the latter method, in which a reactive species 9 filled with iron wire 8 and the like is provided, and the electrodeposition bath 2 is circulated by a pump 11 via a pipe 10. □ In general, in Fc electrolytic deposition, a reducing agent such as L-ascorbic acid is sometimes used in combination in the electrodeposition bath in order to suppress the production of Fe.11 Moreover, according to the present invention,
Since the consumption of these reducing agents is reduced, the amount added can be reduced or it may not be necessary to add them. In addition, the dissolution reaction of Fe or Fe alloy is caused by the already generated Fe3+
Since it also has a strong effect of reducing Fe2+ to Fe2+, it has an extremely large bath stabilizing effect.

適用する電析浴は、硫酸浴、塩化浴、弗化浴、スルファ
ミン酸浴、有機酸浴などを含めて、Fe”を含有するも
のであればその種類を問わず、有効に活用できる。
Any type of electrodeposition bath can be effectively used as long as it contains Fe, including sulfuric acid baths, chloride baths, fluoride baths, sulfamic acid baths, organic acid baths, etc.

なお、使用する金属鉄源としては純鉄、電解鉄などの他
に軟鋼など工業的に製造され、市販されている各種他元
素・成分(例えば、C,Mn、 Si。
The metal iron sources used include pure iron, electrolytic iron, etc., as well as various other industrially produced and commercially available elements and components such as mild steel (for example, C, Mn, Si, etc.).

P、 Fe5G、 A9.203など)を含有するも<
7)テも、電析特性を損なわない程度の範囲内であれば
使用可能である。またFc−Ni、 Fe−Goなど合
金電析を行う場合は、鉄源としてFeとNiを適当量含
有した合金系のものも採用可能である。
P, Fe5G, A9.203, etc.)
7) Te can also be used as long as it does not impair the electrodeposition properties. Further, when performing alloy electrodeposition such as Fc-Ni or Fe-Go, alloys containing appropriate amounts of Fe and Ni can be used as the iron source.

なお、電析浴中にNi、 Go、 P、 Mn、 Or
、 Cu、 Sr。
In addition, in the electrodeposition bath, Ni, Go, P, Mn, Or
, Cu, Sr.

11h、 Re、 c、 o、 Vなどの他成分が1種
または2種以ト含有しても本発明を有効に適用できる。
The present invention can be effectively applied even if one or more of other components such as 11h, Re, c, o, and V are contained.

[作用コ 電析浴中のFe3+は金属Feと反応して、自らはFc
2+に還元され、金属Feは酸化されてFe2+どなっ
て溶出する。
[Fe3+ in the action co-electrodeposition bath reacts with metal Fe, and itself becomes Fc
It is reduced to 2+, and the metal Fe is oxidized and eluted as Fe2+.

通常電析浴中のFe’+生成の大部分は、電析時に陽極
においてFe2+→Fe”+eなる反応が起こる結果生
じるものであるが、その他にエアレーション酸化などに
より生じる場合もある。
Most of the Fe'+ produced in the normal electrodeposition bath is the result of the reaction Fe2+→Fe"+e occurring at the anode during electrodeposition, but it may also be produced by aeration oxidation.

本発明のFe溶解による還元反応は、2 Fe”十Fe
→3 Fc2+の反応である。この反応によりFe3+
イオン濃度を低下させあるいは濃度増加を抑制すると同
時に電析によって減少した電析浴中のFe2+を補給す
る効果も兼ねている。なお、金属FeによるFc”還元
反応はFe3+イオンの拡散律速反応であることから、
Fe”a光反応を促進するには、反応境界膜厚みの低減
が有効である。従って、具体的な方策としだは、電析浴
の攪拌とか、流動槽や充填槽を適用し、粒子表面の液流
速を高めることなどが極めて有効である。また、金属F
eとしては、細粒化、細径化などにより反応境膜を低減
することも有効である。一方、電析反応では、電析によ
るF e 2”消費のともなう遊離酸の増加すなわちp
H低下がおこる。ここで、FeまたはFe合金の溶解反
応では、Fe3+の還元反応のほかにFe+ 211”
4 Fe” + It2の反応も起こるため、水素オン
の消費でpHの低下を抑制し、pHを安定化させる効果
もあわせもつ。
The reduction reaction by Fe dissolution of the present invention
→3 This is a reaction of Fc2+. This reaction causes Fe3+
It has the effect of lowering the ion concentration or suppressing the increase in the concentration, and at the same time replenishing Fe2+ in the electrodeposition bath, which has been reduced by electrodeposition. In addition, since the Fc'' reduction reaction by metal Fe is a diffusion-limited reaction of Fe3+ ions,
In order to promote the Fe"a photoreaction, it is effective to reduce the thickness of the reaction boundary film. Therefore, specific measures include stirring the electrodeposition bath, applying a fluidized tank or a packed tank, and improving the particle surface. It is extremely effective to increase the liquid flow rate of metal F.
As for e, it is also effective to reduce the reaction film by making the particles finer or smaller in diameter. On the other hand, in the electrodeposition reaction, the amount of free acid increases with the consumption of F e 2'' due to electrodeposition, that is, p
H decrease occurs. Here, in the dissolution reaction of Fe or Fe alloy, in addition to the reduction reaction of Fe3+, Fe+ 211"
Since the reaction of 4 Fe" + It2 also occurs, it also has the effect of suppressing the decrease in pH due to the consumption of hydrogen ions and stabilizing the pH.

以上述べたように本発明の作用として、電析浴のFe3
ゝの低減化とpl+安定化が同時に実現できることから
、電析効率と電析反応および電析金属の結晶が安定化し
、着色や、磁気特性の品質向上と生産性・作業性の向上
を大幅にできる利点がある。
As described above, as an effect of the present invention, Fe3 in the electrodeposition bath
Since it is possible to reduce ゝ and stabilize PL+ at the same time, it stabilizes the electrodeposition efficiency, the electrodeposition reaction, and the crystals of the deposited metal, significantly improving the quality of coloring and magnetic properties, and improving productivity and workability. There are advantages that can be achieved.

特に、電析浴のpH調整のためのNa叶やNH4011
などの添加が不要となることから、アルマイト層の健全
性を確保できる特徴がある。
In particular, Na leaf and NH4011 are used to adjust the pH of the electrodeposition bath.
It has the feature of ensuring the integrity of the alumite layer because it eliminates the need for additions such as.

また、本発明は、鉄イ…体の電析のみならず、鉄と他の
元素の合金、を電析する場合においても、F c 3ゝ
含有浴てあれば同様の効果、作用を持つ。
Further, the present invention has similar effects and functions not only when depositing iron particles but also when depositing alloys of iron and other elements, as long as a bath containing F c 3.

[実施例] 本発明による電析浴の安定化と、それによってもたらさ
れる析出皮膜特性の安定化の例を比較例と共に第1表に
示す。
[Example] Table 1 shows examples of the stabilization of the electrodeposition bath according to the present invention and the resulting stabilization of the properties of the deposited film, together with comparative examples.

第1表ではアルマイト微細孔中に鉄を電解析出させた磁
性皮膜の飽和磁束密度BSを、浴中通電前後のFe3+
の濃度変化およびpH変化と共に示した。
Table 1 shows the saturation magnetic flux density BS of the magnetic film in which iron is electrolytically deposited in the fine pores of alumite, Fe3+ before and after energization in the bath.
It is shown together with the concentration change and pH change.

この表から明らかなように、本発明の方法によれば、通
電後の飽和磁束密度B8は比較例に比べ高い値を示して
いる。
As is clear from this table, according to the method of the present invention, the saturation magnetic flux density B8 after energization is higher than that of the comparative example.

[発明の効果] 本発明によれば、電析によって発生するFe”が、電祈
浴と接触している金属Feによって常時還元され、Fe
3+濃度を低位水準に安定的に保持することができる。
[Effects of the Invention] According to the present invention, Fe" generated by electrodeposition is constantly reduced by the metal Fe in contact with the electrolyte bath, and
The 3+ concentration can be stably maintained at a low level.

加えて、鉄のイオン補給により浴のpl+の所望の水準
に維持可能となる。そのため、FeまたはFe合金の電
析による電析浴単位体積当りの通電クーロン量が増加し
ていっても、新浴同様の電析浴組成と電析特性を維持で
きる。
In addition, iron ion supplementation allows the bath to maintain a desired level of pl+. Therefore, even if the amount of energized coulombs per unit volume of the electrodeposition bath increases due to the electrodeposition of Fe or Fe alloy, the same electrodeposition bath composition and electrodeposition characteristics as the new bath can be maintained.

さらにpl+調整剤、Fe2+酸化防止のための還元剤
の電析浴への添加か不要となるのて、当該添加剤および
その反応生成物の浴中への蓄積がない。
Furthermore, since it is not necessary to add a pl+ regulator and a reducing agent to prevent Fe2+ oxidation to the electrodeposition bath, there is no accumulation of the additives and their reaction products in the bath.

その結果、電析で安定的に大尉生産の着色材や磁性皮膜
の形成が可能になった。特に、末法によりアルマイト微
細孔中への緻密で均質な金属の電解析出が有利に行える
ことから、細孔深さをより大きくできるなど利点もあり
、色合いのコントロールや磁性皮膜の磁気特性等を向上
できる特徴がある。
As a result, it has become possible to stably form colored materials and magnetic films by electrodeposition. In particular, the electrolytic deposition of dense and homogeneous metal into the fine pores of alumite can be advantageously performed using the powder method, which has the advantage of allowing the pore depth to be increased, allowing for better control of color tone and magnetic properties of the magnetic film. There are characteristics that can be improved.

ざらに電析浴の廃棄が大幅に削減されることにより、電
析工程のコストダウンが実現する。
By significantly reducing the amount of electrodeposition bath waste, the cost of the electrodeposition process can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はおよび第2図はそれぞれ鉄線等を電析浴に接触
させる方法を説明する図面である。 1・・・電析梢、2・・・電析浴、3・・・被電析体、
4・・・対極、5・・・直流電源、6・・・交流(また
は交流類似)電源、7・・・スクリーン、8・・・鉄線
、9・・・反応槽、IO・・・配管、11・・・ポンプ
、12・・・フィルター。
FIG. 1 and FIG. 2 are drawings each illustrating a method of bringing an iron wire or the like into contact with an electrodeposition bath. 1... Electrodeposition top, 2... Electrodeposition bath, 3... Electrodeposited object,
4... Counter electrode, 5... DC power supply, 6... AC (or AC similar) power supply, 7... Screen, 8... Iron wire, 9... Reaction tank, IO... Piping, 11...Pump, 12...Filter.

Claims (1)

【特許請求の範囲】 1、アルミニウムまたはアルミニウム合金を陽極酸化処
理し、多孔性アルマイト皮膜を生成させ、その微細孔中
に鉄または鉄合金を電解析出させる電析浴において、電
析浴に鉄または鉄合金を接触共存させることを特徴とす
る電析浴の安定化法。 2、鉄または鉄合金を、板状、箔状、線状、綿状、塊状
、粒状、針状、粉末状のうち、1種または2種以上の形
態で電析浴に接触共存させることを特徴とする請求項1
記載の電析浴の安定化法。
[Scope of Claims] 1. In an electrodeposition bath in which aluminum or an aluminum alloy is anodized to form a porous alumite film, and iron or an iron alloy is electrolytically deposited in the fine pores, iron is added to the electrodeposition bath. Alternatively, a method for stabilizing an electrodeposition bath characterized by bringing an iron alloy into contact with the coexistence. 2. Iron or iron alloy is allowed to coexist in contact with the electrodeposition bath in the form of one or more of plate, foil, wire, cotton, block, granule, needle, and powder. Claim 1
Method for stabilizing the electrodeposition bath described.
JP4976488A 1988-03-04 1988-03-04 Electrodeposition bath stabilization method Pending JPH01225792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4976488A JPH01225792A (en) 1988-03-04 1988-03-04 Electrodeposition bath stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4976488A JPH01225792A (en) 1988-03-04 1988-03-04 Electrodeposition bath stabilization method

Publications (1)

Publication Number Publication Date
JPH01225792A true JPH01225792A (en) 1989-09-08

Family

ID=12840243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4976488A Pending JPH01225792A (en) 1988-03-04 1988-03-04 Electrodeposition bath stabilization method

Country Status (1)

Country Link
JP (1) JPH01225792A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096598A (en) * 2001-09-25 2003-04-03 Art Metal Mfg Co Ltd Surface treatment method for aluminum, method of producing sliding member, sliding mechanism, and bearing apparatus
JP4710136B2 (en) * 1999-04-06 2011-06-29 ソニー株式会社 Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532360A (en) * 1976-06-29 1978-01-11 Nippon Aluminium Mfg Method of stabilizing electrolytic pignetation solution aluminum and aluminum alloy
JPS58151489A (en) * 1982-02-27 1983-09-08 Nippon Steel Corp Iron-zinc alloy plating method
JPS6148599A (en) * 1984-08-13 1986-03-10 Nippon Steel Corp Ion replenishment method for iron-based or iron-based alloy electroplating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532360A (en) * 1976-06-29 1978-01-11 Nippon Aluminium Mfg Method of stabilizing electrolytic pignetation solution aluminum and aluminum alloy
JPS58151489A (en) * 1982-02-27 1983-09-08 Nippon Steel Corp Iron-zinc alloy plating method
JPS6148599A (en) * 1984-08-13 1986-03-10 Nippon Steel Corp Ion replenishment method for iron-based or iron-based alloy electroplating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710136B2 (en) * 1999-04-06 2011-06-29 ソニー株式会社 Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery
JP2003096598A (en) * 2001-09-25 2003-04-03 Art Metal Mfg Co Ltd Surface treatment method for aluminum, method of producing sliding member, sliding mechanism, and bearing apparatus

Similar Documents

Publication Publication Date Title
US11905613B2 (en) Electroplating bath containing trivalent chromium and process for depositing chromium
US4652348A (en) Method for the production of alloys possessing high elastic modulus and improved magnetic properties by electrodeposition
JP3455709B2 (en) Plating method and plating solution precursor used for it
JPS59136491A (en) Cyanide-free copper plating process and alloy anode plating solution
US3264199A (en) Electroless plating of metals
Puippe et al. Qualitative approach to pulse plating
JP4842698B2 (en) Electroplating method
JPH0424440B2 (en)
JPH01225792A (en) Electrodeposition bath stabilization method
US4159926A (en) Nickel plating
JPS6224520B2 (en)
US4111760A (en) Method and electrolyte for the electrodeposition of cobalt and cobalt-base alloys in the presence of an insoluble anode
US3799850A (en) Electrolytic process of extracting metallic zinc
Barthelmes Acid Copper Plating with Insoluble Anodes—A Novel Technology in PCB Manufacturing
US2690997A (en) Electrodeposition of copper
JP2000234200A (en) Electrolytic phosphate chemical conversion treatment and composite coating film formed on surface of steel
JPS5854200B2 (en) Method of supplying metal ions in electroplating bath
US2458827A (en) Electrodeposition of lead-tin-antimony alloys
US3303112A (en) Acidic gold cyanide electroplating bath and process
US3265596A (en) Cobalt-nickel alloy plating baths
SU1565920A1 (en) Electrolyte for depositing amorphous-phosphor alloy
RU2132889C1 (en) Process of preparation of electrolyte for deposition of metal nickel ( versions )
JPS62127493A (en) Electrolytic tinning method
Raub et al. The Influence of Acetylenic and Sulphur—Containing Organic Compounds on the Electrodeposition of Nickel
JPH06264281A (en) Palladium plating solution and palladium plating method using the same