[go: up one dir, main page]

JPH01225647A - Resin composition - Google Patents

Resin composition

Info

Publication number
JPH01225647A
JPH01225647A JP4970388A JP4970388A JPH01225647A JP H01225647 A JPH01225647 A JP H01225647A JP 4970388 A JP4970388 A JP 4970388A JP 4970388 A JP4970388 A JP 4970388A JP H01225647 A JPH01225647 A JP H01225647A
Authority
JP
Japan
Prior art keywords
weight
copolymer
resin composition
olefin
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4970388A
Other languages
Japanese (ja)
Inventor
Tadashi Matsuo
正 松尾
Yoshishige Shimizu
喜茂 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP4970388A priority Critical patent/JPH01225647A/en
Publication of JPH01225647A publication Critical patent/JPH01225647A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/14Copolymers of propene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To make it possible to form a molding resin composition having excellent impact resistance, flexibility and abrasion resistance and wide applicability, by mixing a mixed resin comprising a polyolefin and an alpha-olefin/glycidyl (meth)acrylate copolymer with a polyester fiber. CONSTITUTION:This resin composition comprises a mixed resin comprising 99.5-50wt.% polyolefin (a) and 0.5-50wt.% copolymer (b) composed of 80-99wt.% alpha-olefin and 20-1wt.% glycidyl (meth)acrylate and a fiber (c) of a polyester comprising an acid component containing at least 40mol.% terephthalic acid and a diol component in a ratio of 10-150pts.wt. (c) to 100pts. wt. sum of (a)+(b). As component (a), one based on polyethylene or polypropylene is desirable. As the alpha-olefin in component (b), ethylene or propylene is particularly desirable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐衝撃性、柔軟性、耐摩耗性などの機械的性
質が改善されたポリオレフィン系樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a polyolefin resin composition with improved mechanical properties such as impact resistance, flexibility, and abrasion resistance.

〔従来の技術〕[Conventional technology]

複合材料は基本的には3つの要素、すなわち樹脂マトリ
ックス、強化繊維及び樹脂マトリックス−強化繊維間の
界面から成って℃・る。マトリックス樹脂としては熱可
塑性樹脂例えばポリオレフィン及び熱硬化性樹脂例えば
エポキシ樹脂、不飽和ポリエステルなど、強化繊維とし
てはガラス、ポリエステル、ポリアミド、ポリオレフィ
ン等の繊維が挙げられる。マトリックス/繊維界面の主
な機能は応力をマトリックスから強化繊維に伝達するこ
とであるから、界面の化学的、物理的性質が複合材料の
機械的性質に大きく影響する。マトリックスと強化繊維
の相溶性は複合材料の荷重分配の決定因子であり、マト
リックスと強化繊維の相溶性を高めるために繊維被覆材
が用いられてきた。例えば米国特許筒5657417号
明細書には、強化プラスチックスの分野において有機重
合体とガラス繊維のような異種材料を結合するためにシ
ラン系カップリング剤を用いることが示されている。
Composite materials basically consist of three elements: a resin matrix, reinforcing fibers, and an interface between the resin matrix and the reinforcing fibers. Matrix resins include thermoplastic resins such as polyolefins and thermosetting resins such as epoxy resins and unsaturated polyesters, and reinforcing fibers include fibers such as glass, polyester, polyamide, and polyolefin. Since the main function of the matrix/fiber interface is to transfer stress from the matrix to the reinforcing fibers, the chemical and physical properties of the interface greatly influence the mechanical properties of the composite material. The compatibility of the matrix and reinforcing fibers is a determining factor in load distribution in composite materials, and fiber coatings have been used to increase the compatibility between the matrix and reinforcing fibers. For example, US Pat. No. 5,657,417 discloses the use of silane coupling agents to bond dissimilar materials such as organic polymers and glass fibers in the field of reinforced plastics.

また特開昭56−24423号公報には、ゴムと繊維の
接着性を改良するためにシラン系カソブリング剤を用い
ることが示されている。しかしこれらの手段を構じても
、マトリックスと強化繊維の間の界面の接着性は充分で
はなく、得られる強化複合材料の機械的性質の発現も不
充分であった。
Further, JP-A-56-24423 discloses the use of a silane-based casobling agent to improve the adhesion between rubber and fibers. However, even with these measures, the adhesion at the interface between the matrix and reinforcing fibers was not sufficient, and the mechanical properties of the resulting reinforced composite material were also insufficient.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは、このような問題点を改良するため研究を
進めた結果、耐衝撃性、柔軟・性、耐摩耗性に優れ、実
用範囲の広(・成形用樹脂組成物を見出して本発明を完
成した。
As a result of conducting research to improve these problems, the present inventors discovered a resin composition for molding that has excellent impact resistance, flexibility, and abrasion resistance, and has a wide range of practical applications. Completed the invention.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ポリオレフィン(a) 99.5〜50重量
%及びα−オレフィン80〜99重量%トクリシジル(
メタ)アクリレート20〜1重量%との共重合体(b)
 0.5〜50重量%から成る樹脂と、テレフタル酸を
40モル%以上含有する酸成分及びジオール成分からな
るポリエステル繊維(c)を、(a)モ(b)の100
重量部に対し(c)を10〜150重量部の比率で含有
する樹脂組成物である。
The present invention comprises 99.5 to 50% by weight of polyolefin (a) and 80 to 99% by weight of α-olefin tocricidyl (
Copolymer (b) with 20-1% by weight of meth)acrylate
A polyester fiber (c) consisting of a resin consisting of 0.5 to 50% by weight, an acid component and a diol component containing 40 mol% or more of terephthalic acid,
This is a resin composition containing (c) in a ratio of 10 to 150 parts by weight.

本発明に用いられるポリオレフィン(a)とじては、低
密度ポリエチレン、高密度ポリエチレン、アイソタクチ
ック構造を主とするポリプロピレン、エチレン共重合体
、プロピレン共重合体など、並びにこれらの混合物が用
いられる。ポリエチレン、ポリプロピレンを主体とする
ものが好ましい。
The polyolefin (a) used in the present invention includes low density polyethylene, high density polyethylene, polypropylene mainly having an isotactic structure, ethylene copolymers, propylene copolymers, and mixtures thereof. Those mainly composed of polyethylene or polypropylene are preferred.

α=オレフィン−グリシジル(メタ)アクリレート共重
合体(1))のα−オレフィンとしては、例えばエチレ
ン、プロピレン、ブテン−1、イソブチレン、ペンテン
−1、ヘキセン−1、ヘプテン−1、オクテン−1、ド
デセン−1,4−メチル−ペンテン−1など、並びにこ
れらの混合物が用いられる。エチレン及びプロピレンが
特に好ましい。この共重合体(1))はランダム共重合
体、ブロック共重合体、グラフト共重合体のいずれでも
よい。
Examples of the α-olefin of α=olefin-glycidyl (meth)acrylate copolymer (1)) include ethylene, propylene, butene-1, isobutylene, pentene-1, hexene-1, heptene-1, octene-1, Dodecene-1,4-methyl-pentene-1 and the like, as well as mixtures thereof, are used. Particular preference is given to ethylene and propylene. This copolymer (1)) may be a random copolymer, a block copolymer, or a graft copolymer.

共重合体(b)は、α−オレフィン、グリシジルメタク
リレート、グリシジルアクリレート以外のビニル化合物
を共重合成分として含有していてもよい。このようなビ
ニル化合物とシテハ例えばスチレン、酢酸ビニル、メチ
ル(メタ)アクリレート、エチルアクリレート、塩化ビ
ニル、α−メチルスチレン、ジビニルベンゼン、アクリ
ル酸、テトラフルオロエチレン、ジフルオロエチレン、
塩化ビニリデン、アクリロニトリル、アクリル酸アミド
などが用いられる。
The copolymer (b) may contain a vinyl compound other than α-olefin, glycidyl methacrylate, or glycidyl acrylate as a copolymerization component. Such vinyl compounds and compounds such as styrene, vinyl acetate, methyl (meth)acrylate, ethyl acrylate, vinyl chloride, α-methylstyrene, divinylbenzene, acrylic acid, tetrafluoroethylene, difluoroethylene,
Vinylidene chloride, acrylonitrile, acrylamide, etc. are used.

共重合体(b)中のα−オレフィン含有量は80〜99
重量%、グリシジル(メタ)アクリレート含有量は20
〜1重量%である。グリシジル(メタ)アクリレート含
有量が1重量%未満の場合は耐衝撃性の向上はみられな
い。また20重量%より多くしても耐衝撃性の格別の向
上はみられず、ゲル分の発生することがある。
The α-olefin content in the copolymer (b) is 80 to 99
Weight%, glycidyl (meth)acrylate content is 20
~1% by weight. When the glycidyl (meth)acrylate content is less than 1% by weight, no improvement in impact resistance is observed. Further, even if the amount exceeds 20% by weight, no particular improvement in impact resistance is observed, and gel components may occur.

ポリオレフィン(a)と共重合体(b)の割合は、重量
で995〜so:0.5〜50好ましくは995〜60
:0.5〜40である。共重合体(b)がこれより少な
いと成形品の物性の向上はみられない。またこれより多
いと成形品の耐衝撃性が低下する。
The ratio of polyolefin (a) to copolymer (b) is 995 to 0.5 to 50, preferably 995 to 60 by weight.
:0.5-40. If the amount of copolymer (b) is less than this, no improvement in the physical properties of the molded article will be observed. Moreover, if the amount is more than this, the impact resistance of the molded product will decrease.

テレフタル酸を40モル%以上含有する酸成分及びジオ
ール成分からなるポリエステル繊維(c)のための他の
酸成分としてはインフタル酸、p −β−オキシエトキ
シ安息香酸、2,6−ナフタレンジカルボン酸、4.4
’−ジカルボキシジフェニル、4,4’−ジカルボキシ
ベンゾフェノン、ビス(4−カルボキシフェニル)エタ
ン、アシヒン酸、セパシン酸、5−ナトリウムスルホイ
ソフタル酸などのジカルボン酸が挙げられる。またジオ
ール成分としてはプロピレングリコール、ブタンジオー
ル、ネオペンチルグリコール、ジエチレンクリコール、
ビスフェノールAのエチレンオキサイド付加物等が挙げ
られる。
Other acid components for the polyester fiber (c) consisting of an acid component containing 40 mol% or more of terephthalic acid and a diol component include inphthalic acid, p-β-oxyethoxybenzoic acid, 2,6-naphthalene dicarboxylic acid, 4.4
Examples include dicarboxylic acids such as '-dicarboxydiphenyl, 4,4'-dicarboxybenzophenone, bis(4-carboxyphenyl)ethane, acihinic acid, cepacic acid, and 5-sodium sulfoisophthalic acid. In addition, the diol components include propylene glycol, butanediol, neopentyl glycol, diethylene glycol,
Examples include ethylene oxide adducts of bisphenol A.

コノポリエステルの製法としては、芳香族ジカルボン酸
をグリコールと直接反応させる方法及び芳香族ジカルボ
ン酸のジメチルエステルをグリコールとエステル交換反
応させるエステル交換法が用いられる。
Conopolyester is produced by a method in which an aromatic dicarboxylic acid is directly reacted with a glycol, and a transesterification method in which a dimethyl ester of an aromatic dicarboxylic acid is transesterified with a glycol.

ポリエステル繊維(c)としては、単繊維繊度が1〜1
0デニール好ましくは1〜5デニールノミルドフアイバ
ー、カットファイバー、フイラメント糸等が挙げられる
。単繊維繊度が1デニ一ル未満では、樹脂複合成形品に
充分な物理的、化学的性能を与えることが困難である。
The polyester fiber (c) has a single fiber fineness of 1 to 1.
Examples include milled fibers of 0 denier, preferably 1 to 5 denier, cut fibers, filament yarns, and the like. If the single fiber fineness is less than 1 denier, it is difficult to provide sufficient physical and chemical performance to the resin composite molded product.

また10デニールより大きいと、繊維の単位重量当りの
樹脂マトリックスとの接着面積が減少し、良好な接着性
を維持することが困難になる。
Moreover, if it is larger than 10 denier, the adhesion area of the fiber to the resin matrix per unit weight decreases, making it difficult to maintain good adhesion.

ポリエステル繊維(c)の強度は6〜10g/デニール
、伸度は10〜50%、洪水収縮率は0゜5〜10%の
範囲が好ましい。単繊維の強度が31/デニ一ル未満又
は伸度が50%より高いと、樹脂複合成形品に充分な性
能特に耐衝撃性を賦与することが困難になる。洪水収縮
率は樹脂複合成形品の外観に大きな影響を及ぼす因子で
ある。例えば弊水収縮率が10%のポリエステル繊維を
補強材料として用いたポリプロピレン樹脂の190℃金
型成形での樹脂複合成形品の金型寸法に対する収縮率は
0.6%であるが、洪水収縮率が11.8%及び13.
2%のポリエステル繊維を用いると、得られる成形品の
収縮率はそれぞれ0.46%及び0.61%と急激に増
加し、成形品にクラックの生じる原因となる。また洪水
収縮率が0.5%未満のポリエステル繊維を用いると一
1成形品の曲げ強度が低下するおそれがある。ポリエス
テル繊維の断面形状は、円形の地異形と称される三葉、
四葉状等のいずれの形状でもよく、また中空糸でもよい
The polyester fiber (c) preferably has a strength of 6 to 10 g/denier, an elongation of 10 to 50%, and a flood shrinkage rate of 0.5 to 10%. If the strength of the single fiber is less than 31/denier or the elongation is higher than 50%, it becomes difficult to impart sufficient performance, particularly impact resistance, to the resin composite molded product. Flood shrinkage rate is a factor that greatly affects the appearance of resin composite molded products. For example, when polypropylene resin is molded at 190°C using polyester fibers with a water shrinkage rate of 10% as a reinforcing material, the shrinkage rate relative to the mold dimensions of a resin composite molded product is 0.6%, but the flood shrinkage rate is 0.6%. 11.8% and 13.
When 2% polyester fiber is used, the shrinkage rate of the molded product increases sharply to 0.46% and 0.61%, respectively, which causes cracks to occur in the molded product. Furthermore, if polyester fibers having a flood shrinkage rate of less than 0.5% are used, the bending strength of the molded product may decrease. The cross-sectional shape of polyester fiber is trilobal, which is called a circular shape.
It may have any shape such as a four-lobed shape, or may be a hollow fiber.

本発明の樹脂組成物は、ポリオレフイア (a)、共重
合体(bl及びポリエステル繊維(c)を溶融混合する
ことにより得られる。
The resin composition of the present invention is obtained by melt-mixing polyolefin (a), copolymer (bl), and polyester fiber (c).

ポリエステル繊維(c)の配合量は、ポリオレフィン(
a)及び共重合体(b)がらの混合樹脂100重量部に
対し、10〜150重量部好ましくは1゜〜100重量
部である。ポリエステル繊維(c)の配合量が10重量
部未満では、成形品の剛性、寸法安定性、耐熱性、塗装
性等の改善効果が不充分である。また150重量部より
多いと、樹脂組成物の流動性、成形性及び成形品の強度
が低下する。
The blending amount of polyester fiber (c) is as follows: polyolefin (
The amount is 10 to 150 parts by weight, preferably 1° to 100 parts by weight, per 100 parts by weight of the mixed resin of a) and copolymer (b). If the amount of polyester fiber (c) is less than 10 parts by weight, the effects of improving the rigidity, dimensional stability, heat resistance, paintability, etc. of the molded article will be insufficient. Moreover, if it exceeds 150 parts by weight, the fluidity and moldability of the resin composition and the strength of the molded product will decrease.

本発明の樹脂組成物は、他の強化繊維、無機充填剤、樹
脂用可塑剤等を含有していてもよい。
The resin composition of the present invention may contain other reinforcing fibers, inorganic fillers, plasticizers for resins, and the like.

他の強化繊維としてはガラス繊維、炭素繊維、ポリアミ
ド繊維、セルロース繊維等、無機充填剤としてはシリカ
、アルミナ、炭酸カルシウム、珪酸マグネシウム、珪酸
アルミニウム、硫酸バリウム、硫酸カルシウム等が用い
られる。無機充填剤を添加することにより、繊維の分散
性、成形品の耐衝撃性、難燃性、剛性、耐熱性等を改善
することができる。
Examples of other reinforcing fibers include glass fibers, carbon fibers, polyamide fibers, and cellulose fibers, and inorganic fillers include silica, alumina, calcium carbonate, magnesium silicate, aluminum silicate, barium sulfate, and calcium sulfate. By adding an inorganic filler, it is possible to improve the dispersibility of fibers, the impact resistance, flame retardance, rigidity, heat resistance, etc. of molded products.

ポリオレフィン(a)、共重合体(b)及びポリエステ
ル繊維(c)の混合は、任意の順序でバンバI7=ミキ
サー、ロールミキサー、ニーグー、押出機、高速回転ミ
キサー等により行われる。
The polyolefin (a), the copolymer (b) and the polyester fiber (c) are mixed in any order using a Bamba I7 mixer, a roll mixer, a Niegoo, an extruder, a high-speed rotating mixer, or the like.

〔発明の効果〕〔Effect of the invention〕

本発明の樹脂組成物は、押出成形、射出成形等の成形法
により成形することができ、得られる成形品は耐衝撃性
、柔軟性、耐摩耗性等の機械的性質が著しく改善されて
いるので、自動車の内外装部品、電気音響部品等に適し
ている。
The resin composition of the present invention can be molded by a molding method such as extrusion molding or injection molding, and the resulting molded product has significantly improved mechanical properties such as impact resistance, flexibility, and abrasion resistance. Therefore, it is suitable for automobile interior and exterior parts, electroacoustic parts, etc.

実施例1〜3及び比較例1.2 メルトフローレート30、エチレン含有it 8゜0重
量%のポリプロピレンブロック共重合体38重量部及び
メルトフローレート0.4、炭素数1000当りのエチ
ル分岐数2.5の高密度ポリエチレン10重量部の混合
物をポリオレフィン樹脂として用い、これにメルトフロ
ーレート6゜0、エチレン含有量88重量%のエチレン
−グリシジルメタクリレート共重合体及び線状飽和ポリ
エステル繊維を第1表に示す割合で配合し、ヘンシェル
ミキサーで混合したのち、2軸押出機を用いて約190
°Cの温度で溶融混合し、ベレットを製造した。得られ
たベレットを射出成形してIzod衝撃試験片を作成し
、衝撃値を測定した。
Examples 1 to 3 and Comparative Example 1.2 Melt flow rate 30, 38 parts by weight of polypropylene block copolymer containing 8.0% by weight of ethylene, melt flow rate 0.4, number of ethyl branches per 1000 carbon atoms 2 A mixture of 10 parts by weight of high-density polyethylene with a melt flow rate of 6°0 and an ethylene content of 88% by weight and linear saturated polyester fibers were added to this as shown in Table 1. After mixing in a Henschel mixer, approximately 190
The pellets were produced by melt mixing at a temperature of °C. The obtained pellet was injection molded to prepare an Izod impact test piece, and the impact value was measured.

また比較のため、ポリエステル繊維不含の組成物(比較
例1)及びエチレン−グリシジルメタクリレート共重合
体不含の組成物(比較例2)についても、試験片を作成
し、衝撃値を測定した。その結果を第1表に示す。なお
試験片としてはRなし、Vノツチ付試験片を用いた。表
中の配合割合は重量部を意味する。
For comparison, test pieces were also prepared for a composition containing no polyester fiber (Comparative Example 1) and a composition containing no ethylene-glycidyl methacrylate copolymer (Comparative Example 2), and the impact values were measured. The results are shown in Table 1. As the test piece, a test piece without R and with a V notch was used. The blending ratios in the table mean parts by weight.

第1表 *1プロピレンブロック共重合体38部と高密度ポリエ
チレン10部の混合物 ネ2エチレンーグリシジルメタクリレート共重合体*3
繊度2.0デニール、強度7.59/7″ニール、伸度
10.4%、製水収縮率3.0%、酸成分:テレフタル
酸100モル% 実施例4.5及び比較例6 エチレン含有量の異なるエチレン−グリシジルメタクリ
レート共重合体を用い、その他は実施例2と同様にして
試験片を作成し、衝撃値を測′定した。なお比較のため
前記の共重合体に代えてポリエチレンを用い、同様の試
験を行った。
Table 1 *1 Mixture of 38 parts of propylene block copolymer and 10 parts of high-density polyethylene 2 Ethylene-glycidyl methacrylate copolymer *3
Fineness 2.0 denier, strength 7.59/7'' neel, elongation 10.4%, water production shrinkage rate 3.0%, acid component: terephthalic acid 100 mol% Example 4.5 and Comparative Example 6 Contains ethylene Test pieces were prepared in the same manner as in Example 2 except that different amounts of ethylene-glycidyl methacrylate copolymers were used, and the impact values were measured.For comparison, polyethylene was used instead of the above copolymer. A similar test was conducted using

その結果を第2表に示す。表中のE/Gはエチレン/グ
リシジルメタクリレートを意味する。
The results are shown in Table 2. E/G in the table means ethylene/glycidyl methacrylate.

第2表Table 2

Claims (1)

【特許請求の範囲】[Claims]  ポリオレフィン(a)99.5〜50重量%及びα−
オレフィン80〜99重量%とグリシジル(メタ)アク
リレート20〜1重量%との共重合体(b)0.5〜5
0重量%から成る樹脂と、テレフタル酸を40モル%以
上含有する酸成分及びジオール成分から成るポリエステ
ル繊維(c)を、(a)+(b)の100重量部に対し
(c)を10〜150重量部の比率で含有する樹脂組成
物。
Polyolefin (a) 99.5 to 50% by weight and α-
Copolymer (b) of 80-99% by weight of olefin and 20-1% by weight of glycidyl (meth)acrylate (b) 0.5-5
Polyester fiber (c) consisting of a resin consisting of 0% by weight, an acid component containing 40% by mole or more of terephthalic acid, and a diol component, and 10 to 10% of (c) for 100 parts by weight of (a) + (b). A resin composition containing 150 parts by weight.
JP4970388A 1988-03-04 1988-03-04 Resin composition Pending JPH01225647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4970388A JPH01225647A (en) 1988-03-04 1988-03-04 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4970388A JPH01225647A (en) 1988-03-04 1988-03-04 Resin composition

Publications (1)

Publication Number Publication Date
JPH01225647A true JPH01225647A (en) 1989-09-08

Family

ID=12838547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4970388A Pending JPH01225647A (en) 1988-03-04 1988-03-04 Resin composition

Country Status (1)

Country Link
JP (1) JPH01225647A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008995A (en) * 2004-05-24 2006-01-12 Sumitomo Chemical Co Ltd Fiber-reinforced polyolefin resin composition, pellets thereof and molded body thereof
WO2006124363A3 (en) * 2005-05-17 2007-01-18 Exxonmobil Res & Eng Co Fiber reinforced polypropylene composite body panels
WO2006125035A3 (en) * 2005-05-17 2007-03-22 Exxonmobil Res & Eng Co Method for making fiber reinforced polypropylene composites
US7482402B2 (en) 2005-05-17 2009-01-27 Exxonmobil Research And Engineering Company Fiber reinforced polypropylene compositions
US8865261B2 (en) 2012-12-06 2014-10-21 Eastman Chemical Company Extrusion coating of elongated substrates
US9604251B2 (en) 2008-07-16 2017-03-28 Eastman Chemical Company Thermoplastic formulations for enhanced paintability, toughness and melt processability
US9616457B2 (en) 2012-04-30 2017-04-11 Innovative Coatings, Inc. Pressurization coating systems, methods, and apparatuses
US9744707B2 (en) 2013-10-18 2017-08-29 Eastman Chemical Company Extrusion-coated structural members having extruded profile members
US9920526B2 (en) 2013-10-18 2018-03-20 Eastman Chemical Company Coated structural members having improved resistance to cracking
US10576491B2 (en) 2008-07-01 2020-03-03 Precision Coating Innovations, Llc Pressurization coating systems, methods, and apparatuses

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008995A (en) * 2004-05-24 2006-01-12 Sumitomo Chemical Co Ltd Fiber-reinforced polyolefin resin composition, pellets thereof and molded body thereof
WO2006124363A3 (en) * 2005-05-17 2007-01-18 Exxonmobil Res & Eng Co Fiber reinforced polypropylene composite body panels
WO2006125035A3 (en) * 2005-05-17 2007-03-22 Exxonmobil Res & Eng Co Method for making fiber reinforced polypropylene composites
US7482402B2 (en) 2005-05-17 2009-01-27 Exxonmobil Research And Engineering Company Fiber reinforced polypropylene compositions
US10576491B2 (en) 2008-07-01 2020-03-03 Precision Coating Innovations, Llc Pressurization coating systems, methods, and apparatuses
US9604251B2 (en) 2008-07-16 2017-03-28 Eastman Chemical Company Thermoplastic formulations for enhanced paintability, toughness and melt processability
US9616457B2 (en) 2012-04-30 2017-04-11 Innovative Coatings, Inc. Pressurization coating systems, methods, and apparatuses
US8865261B2 (en) 2012-12-06 2014-10-21 Eastman Chemical Company Extrusion coating of elongated substrates
US9919503B2 (en) 2012-12-06 2018-03-20 Eastman Chemical Company Extrusion coating of elongated substrates
US9744707B2 (en) 2013-10-18 2017-08-29 Eastman Chemical Company Extrusion-coated structural members having extruded profile members
US9920526B2 (en) 2013-10-18 2018-03-20 Eastman Chemical Company Coated structural members having improved resistance to cracking

Similar Documents

Publication Publication Date Title
EP0838501B1 (en) Method and compositions for toughening polyester resins
EP0017942B1 (en) Polyethylene terephthalate molding compositions
US5300572A (en) Moldable polyester resin compositions and molded articles formed of the same
US3937757A (en) Molding compositions of polybutylene terephthalate and olefin polymer
US4401792A (en) Process for increasing the rate of crystallization of polyesters
JPS59136344A (en) Thermoplastic molding composition with improved impact resistance
JPS59131645A (en) Thermoplastic polyester-linear low density polyethylene molding compositions
JPH06504566A (en) impact resistant polymer blend
JPH01225647A (en) Resin composition
JPH0452300B2 (en)
JPS59191758A (en) Polycarbonate resin composition
JPH01167370A (en) thermoplastic resin composition
US5068274A (en) Secondary amides in polyethylene terephthalate molding compositions
JPH041260A (en) Polyester resin composition
JP3040142B2 (en) Reinforced resin composition
JPH0569136B2 (en)
US4373047A (en) Flame retardant thermoplastic compositions with reduced bloom
JP3291276B2 (en) Polyester polymer alloy
JPH07100904A (en) Polyester hollow molded product
JPH01223142A (en) resin composition
US5206291A (en) Polymer compositions having improved impact strength
JPS6361045A (en) Thermoplastic resin composition
JPS61200159A (en) Impact-resistant polyester resin composition
JP2583231B2 (en) Impact resistant polyester resin composition
JP3040578B2 (en) Polyester resin composition