[go: up one dir, main page]

JPH0122341B2 - - Google Patents

Info

Publication number
JPH0122341B2
JPH0122341B2 JP55117322A JP11732280A JPH0122341B2 JP H0122341 B2 JPH0122341 B2 JP H0122341B2 JP 55117322 A JP55117322 A JP 55117322A JP 11732280 A JP11732280 A JP 11732280A JP H0122341 B2 JPH0122341 B2 JP H0122341B2
Authority
JP
Japan
Prior art keywords
cadmium
silver
oxide
electrical contact
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55117322A
Other languages
Japanese (ja)
Other versions
JPS5741338A (en
Inventor
Hitoshi Tsuji
Shigeo Shioda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP55117322A priority Critical patent/JPS5741338A/en
Publication of JPS5741338A publication Critical patent/JPS5741338A/en
Publication of JPH0122341B2 publication Critical patent/JPH0122341B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)
  • Manufacture Of Switches (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、内部酸化法によつて製造された銀−
酸化物系の複合電気接点材料に関する。 従来より内部酸化法によつて製造される銀−酸
化物系の複合電気接点材料としては、銀−酸化カ
ドミウム系、例えば銀−酸化カドミウム12w/o
より成る複合電気接点材料が小電流乃至中電流域
で優れた接点特性を示すものとして各方面で広く
用いられてきた。 然し乍ら、近時電気及び電子機器のより一層の
小型化により電気接点材料にはより高い接点特性
が要求され、従来の銀−酸化カドミウム系の複合
電気接点材料では耐溶着性に劣り、使用に耐えら
れなくなつてきた。 この為、更に耐溶着性に優れた銀−酸化カドミ
ウム系の複合電気接点材料が要求されている。 銀−酸化カドミウム系の複合電気接点材料の耐
溶着性を向上させるには、従来電気接点材料全体
に於ける酸化物の含有率を高めることが行なわれ
ていたが、カドミウムが20w/oを超える銀−カ
ドミウム合金は通常行なわれている内部酸化法で
は表面に酸化カドミウムの厚い凝集層を作つてし
まい、内部まで酸化が進行しないので、酸化物の
含有率が低下すると共に電気接点材料の接触抵抗
が高く、且つ電気伝導度が低くなり、その上加工
性が劣下するものである。 本発明は上記諸事情に鑑みなされたものであ
り、従来の銀−酸化物系複合電気接点材料よりも
優れた接点性能、とりわけ耐溶着性に優れた複合
電気接点材料を提供せんとするものである。 本発明の複合電気接点材料の1つは、銀中に、
カドミウム20〜35w/oとビスマス0.01〜2.0w/
oを添加せしめた合金を、内部酸化せしめて成る
ものであり、他の1つは前記合金にさらにニツケ
ル0.01〜1.0w/oを添加せしめた合金を、内部酸
化せしめて成るものである。 本発明の複合電気接点材料に於いて、銀中に、
カドミウムの他、ビスマスを添加して内部酸化す
る理由は、先ず第1にビスマスがカドミウムと固
溶せず共晶体を作るからであり、第2には酸化ビ
スマスの生成エネルギーが酸化カドミウムの生成
エネルギーよりも小さく、カドミウムよりも酸化
され易いからである。 銀−カドミウム固溶体を酸化すると、表面から
酸素が銀中に拡散していき、内部から外表面に向
かつて拡散してくるカドミウムと結合して内部酸
化が起り、それがどんどん内部に進行していつ
て、中心まで進んだ時点で内部酸化が完了となる
が、カドミウムの量が20w/oを超えると酸化の
最前線に酸化カドミウムが凝集して酸素の進入が
妨げられ、途中で酸化が停止してしまうが、ビス
マスを添加することによりビスマスがカドミウム
と共晶体を作る為、析出したビスマスが銀中での
カドミウムの拡散を押えることになる。またビス
マスはカドミウムよりも酸化され易いので、カド
ミウムよりも早く酸化物として析出しカドミウム
の拡散をおさえることができる。従つてカドミウ
ムの拡散速度が遅くなり、相対的に酸素の拡散速
度が早まるので、酸化カドミウムの凝集層を作る
ことがなく、内部まで酸化が進行することになる
のである。 また銀中に、カドミウム、ビスマスを添加の
他、更にニツケルを添加する理由は、ニツケルの
添加により、銀中に酸化カドミウム、酸化ビスマ
スが均一微細に分散されて、耐溶着性、耐消耗性
が向上するからである。 然して、銀中に添加するカドミウムを20〜
35w/oとした理由は、20w/o未満では電気接
点材料として耐溶着性を向上させるのに必要な酸
化物の含有量が少なく、35w/oを超えるといく
らカドミウムの拡散を抑えてもカドミウムの絶対
量が多過ぎるので、酸化カドミウムの凝集層が形
成され、酸化が停止してしまうからである。また
ビスマスの添加量を0.1〜2.0w/oとした理由は、
0.1w/o未満ではカドミウムの拡散を抑える効
果が無く、2.0w/oを超えると酸化ビスマスの
方が凝集層を作つて酸化を停止してしまうからで
ある。更にニツケルの添加量を0.01w/o〜
1.0w/oとしたのは、0.01w/o未満では酸化カ
ドミウム、酸化ビスマスを銀中に均一微細に分散
させることができず、1.0w/oを超えると酸化
ニツケルが粒界に凝集して加工性が劣下するから
である。 次に本発明による複合電気接点材料の効果を明
瞭ならしめる為にその具体的な実施例と従来例に
ついて説明する。 実施例 1 銀中に、カドミウム30w/oとビスマス0.5w/
oを添加して成る合金の溶湯を噴霧して粒径1mm
以下の粉粒体となし、次に9気圧、800℃の酸素
雰囲気中で内部酸化して銀−酸化カドミウム−酸
化ビスマスの複合粉末となす。この時粉粒体内の
カドミウムはビスマスの添加効果により全て酸化
する。次いでこの複合粉末を圧縮し、焼結した
後、押出、引抜加工により直径2mmの線材とな
し、然る後ヘツダー加工により頭部直径4mm、頭
部厚さ1.1mm、脚部直径2mm、脚部高さ1.5mmのリ
ベツト型電気接点を得た。 実施例 2 銀中に、カドミウム25w/oとビスマス1.0w/
oを添加して成る合金の溶湯を金型に鋳造して直
径50mm、長さ45mmのビレツトを作り、次にこのビ
レツトを金型から取外して押出、引抜加工により
直径2mmの線材となし、次いでこれを長さ2mmに
切断してチツプを作り、次にこのチツプを9気
圧、700℃の酸素雰囲気中で内部酸化して銀−酸
化カドミウム−酸化ビスマスの複合体となす。こ
の時チツプ中のカドミウムはビスマスの添加効果
により全て酸化していた。次いでこの複合体を圧
縮し、焼結した後、押出、引抜加工により直径2
mmの線材となし、然る後ヘツダー加工により頭部
直径4mm、頭部厚さ1.1mm、脚部直径2mm、脚部
高さ1.5mmのリベツト型電気接点を得た。 実施例 3 銀中に、カドミウム25w/oとビスマス1.0w/
oとニツケル0.05w/oを添加して成る合金の溶
湯を金型に鋳造して直径50mm、長さ45mmのビレツ
トを作り、次にこのビレツトを金型から取外して
押出、引抜加工により直径2mmの線材となし、次
いでこれを長さ2mmに切断してチツプを作り、次
にチツプを9気圧、700℃の酸素雰囲気中で内部
酸化して銀−酸化カドミウム−酸化ビスマス−酸
化ニツケルの複合体となす。この時チツプ中のカ
ドミウムはビスマスの添加により全て酸化し且つ
ニツケルの添加により酸化カドミウム、酸化ビス
マスが均一微細に分散していた。次いでこの複合
体を圧縮し、焼結した後、押出、引抜加工により
直径2mmの線材となし、然る後ヘツダー加工によ
り頭部直径4mm、頭部厚さ1.1mm、脚部直径2mm、
脚部高さ1.5mmのリベツト型電気接点を得た。 〔従来例〕 銀粉と酸化カドミウム粉を重量%で70:30の割
合で混合した混合粉末を圧縮し、焼結した後押
出、引抜加工により直径2mmの線材となし、然る
後ヘツダー加工により頭部直径4mm、頭部厚さ
1.1mm、頭部直径2mm、脚部高さ1.5mmのリベツト
型電気接点を得た。 然して実施例1、2、3及び従来例のリベツト
型電気接点各9個を、下記の試験条件にて開閉試
験を行ない。溶着発生までの開閉回数を測定した
ところ、下記の表に示すような結果を得た。 試験条件 電 圧:AC100V、50Hz 電 流:投入電流71A、定常電流5A 開閉頻度:20回/分 負 荷:抵抗負荷 開閉回数:溶着発生まで
The present invention provides silver produced by an internal oxidation method.
This invention relates to oxide-based composite electrical contact materials. Conventionally, silver-cadmium oxide-based composite electrical contact materials produced by internal oxidation methods include silver-cadmium oxide 12w/o.
Composite electrical contact materials consisting of these materials have been widely used in various fields as they exhibit excellent contact characteristics in the small to medium current range. However, with the recent miniaturization of electric and electronic devices, higher contact properties are required of electrical contact materials, and conventional silver-cadmium oxide composite electrical contact materials have poor welding resistance and cannot withstand use. I've become unable to do it. For this reason, there is a demand for a silver-cadmium oxide composite electrical contact material with even better welding resistance. In order to improve the adhesion resistance of silver-cadmium oxide composite electrical contact materials, conventional methods have been to increase the content of oxides in the entire electrical contact material. When silver-cadmium alloys are usually internally oxidized, a thick agglomerated layer of cadmium oxide is formed on the surface, and oxidation does not progress to the inside, so the oxide content decreases and the contact resistance of the electrical contact material decreases. is high, electrical conductivity is low, and workability is also deteriorated. The present invention was made in view of the above circumstances, and it is an object of the present invention to provide a composite electrical contact material that has superior contact performance, particularly superior welding resistance, than conventional silver-oxide composite electrical contact materials. be. One of the composite electrical contact materials of the present invention includes silver,
Cadmium 20~35w/o and bismuth 0.01~2.0w/
One is made by internally oxidizing an alloy to which nickel is added, and the other is made by internally oxidizing an alloy to which 0.01 to 1.0 w/o of nickel is added to the above alloy. In the composite electrical contact material of the present invention, in silver,
The reason for internal oxidation by adding bismuth in addition to cadmium is, firstly, that bismuth does not form a solid solution with cadmium and forms a eutectic, and secondly, the production energy of bismuth oxide is the same as the production energy of cadmium oxide. This is because it is smaller than cadmium and more easily oxidized than cadmium. When a silver-cadmium solid solution is oxidized, oxygen diffuses into the silver from the surface, combines with the cadmium that diffuses from the inside toward the outside surface, and internal oxidation occurs, which progresses further inside. , internal oxidation is complete when it reaches the center, but if the amount of cadmium exceeds 20w/o, cadmium oxide aggregates at the forefront of oxidation, blocking oxygen from entering, and oxidation stops midway. However, by adding bismuth, bismuth forms a eutectic with cadmium, so the precipitated bismuth suppresses the diffusion of cadmium in silver. Furthermore, since bismuth is more easily oxidized than cadmium, it precipitates as an oxide more quickly than cadmium and can suppress the diffusion of cadmium. Therefore, the diffusion rate of cadmium is slowed down and the diffusion rate of oxygen is relatively quick, so that no agglomerated layer of cadmium oxide is formed and oxidation progresses to the inside. The reason for adding nickel to silver in addition to cadmium and bismuth is that by adding nickel, cadmium oxide and bismuth oxide are uniformly and finely dispersed in silver, improving welding resistance and wear resistance. This is because it will improve. However, the amount of cadmium added to silver is
The reason for setting 35w/o is that below 20w/o, the content of oxide necessary to improve the welding resistance as an electrical contact material is small, and above 35w/o, no matter how much cadmium diffusion is suppressed, cadmium This is because if the absolute amount of cadmium oxide is too large, an agglomerated layer of cadmium oxide is formed and oxidation is stopped. Also, the reason why the amount of bismuth added was set at 0.1 to 2.0 w/o is as follows.
This is because if it is less than 0.1 w/o, there is no effect of suppressing the diffusion of cadmium, and if it exceeds 2.0 w/o, bismuth oxide forms a cohesive layer and stops oxidation. Furthermore, the amount of nickel added is 0.01w/o ~
The reason for setting it at 1.0w/o is that if it is less than 0.01w/o, cadmium oxide and bismuth oxide cannot be uniformly and finely dispersed in silver, and if it exceeds 1.0w/o, nickel oxide will aggregate at grain boundaries. This is because workability deteriorates. Next, in order to clarify the effects of the composite electrical contact material according to the present invention, specific examples and conventional examples thereof will be described. Example 1 Cadmium 30w/o and bismuth 0.5w/o in silver
Spray the molten alloy made by adding o to particles with a particle size of 1 mm.
The following granular material is formed, and then internally oxidized in an oxygen atmosphere at 9 atm and 800°C to form a composite powder of silver-cadmium oxide-bismuth oxide. At this time, all of the cadmium in the powder is oxidized due to the effect of adding bismuth. Next, this composite powder was compressed and sintered, and then extruded and drawn into a wire rod with a diameter of 2 mm, and then processed into a wire rod with a head diameter of 4 mm, a head thickness of 1.1 mm, a leg diameter of 2 mm, and a wire rod with a diameter of 2 mm. A rivet type electrical contact with a height of 1.5 mm was obtained. Example 2 Cadmium 25w/o and bismuth 1.0w/o in silver
A molten alloy made by adding o was cast into a mold to make a billet with a diameter of 50 mm and a length of 45 mm.The billet was then removed from the mold, extruded and drawn into a wire rod with a diameter of 2 mm, and then This is cut to a length of 2 mm to make a chip, and then this chip is internally oxidized in an oxygen atmosphere at 9 atmospheres and 700°C to form a composite of silver-cadmium oxide-bismuth oxide. At this time, all of the cadmium in the chip was oxidized due to the effect of adding bismuth. This composite is then compressed, sintered, extruded and drawn to a diameter of 2.
A rivet-type electrical contact with a head diameter of 4 mm, a head thickness of 1.1 mm, a leg diameter of 2 mm, and a leg height of 1.5 mm was obtained by making a wire rod with a diameter of 4 mm and a header. Example 3 Cadmium 25w/o and bismuth 1.0w/o in silver
A molten alloy made by adding O and nickel 0.05 w/o is cast into a mold to make a billet with a diameter of 50 mm and a length of 45 mm.The billet is then removed from the mold, extruded, and drawn to a diameter of 2 mm. This was then cut into 2 mm lengths to make chips, and the chips were then internally oxidized in an oxygen atmosphere at 9 atmospheres and 700°C to form a composite of silver, cadmium oxide, bismuth oxide, and nickel oxide. Nasu. At this time, all of the cadmium in the chip was oxidized by the addition of bismuth, and the cadmium oxide and bismuth oxide were uniformly and finely dispersed by the addition of nickel. Next, this composite was compressed and sintered, then extruded and drawn into a wire rod with a diameter of 2 mm, and then processed into a wire rod with a head diameter of 4 mm, a head thickness of 1.1 mm, a leg diameter of 2 mm, and a wire rod with a diameter of 2 mm.
A rivet-type electrical contact with a leg height of 1.5 mm was obtained. [Conventional example] A mixed powder made by mixing silver powder and cadmium oxide powder in a ratio of 70:30 by weight is compressed, sintered, extruded and drawn into a wire rod with a diameter of 2 mm, and then the head is formed by header processing. Part diameter: 4mm, head thickness
A rivet-type electrical contact with a diameter of 1.1 mm, a head diameter of 2 mm, and a leg height of 1.5 mm was obtained. Nine rivet-type electrical contacts of Examples 1, 2, and 3 and the conventional example were subjected to opening/closing tests under the following test conditions. When we measured the number of openings and closings until welding occurred, we obtained the results shown in the table below. Test conditions Voltage: AC100V, 50Hz Current: Closing current 71A, steady current 5A Switching frequency: 20 times/min Load: Resistive load Switching frequency: Until welding occurs

【表】 上記表の数値で明らかなように実施例1、2、
3の複合電気接点材料にて作つた電気接点は、従
来例の複合電気接点材料にて作つた電気接点に比
し、溶着発生までの開閉回数が遥かに多く、耐溶
着性が一段と優れていることが判る。 以上詳記した通り本発明による複合電気接点材
料は、従来の銀−酸化カドミウム系の複合電気接
点材料に比べ耐溶着性が一段と優れているので、
最近の電気及び電子機器の小型化に伴う苛酷な使
用条件にも対応し得る接点性能を備えた画期的な
複合電気接点材料と言える。
[Table] As is clear from the numerical values in the table above, Examples 1, 2,
Electrical contacts made using the composite electrical contact material No. 3 can be opened and closed much more times before welding occurs, and have much better welding resistance than electrical contacts made using conventional composite electrical contact materials. I understand that. As detailed above, the composite electrical contact material according to the present invention has much better welding resistance than the conventional silver-cadmium oxide composite electrical contact material.
It can be said to be an epoch-making composite electrical contact material with contact performance that can withstand the harsh operating conditions associated with the recent miniaturization of electrical and electronic equipment.

Claims (1)

【特許請求の範囲】 1 銀中に、カドミウム20〜35w/oとビスマス
0.01〜2.0w/oを添加せしめた合金を、内部酸化
せしめて成る複合電気接点材料。 2 銀中に、カドミウム20〜35w/oとビスマス
0.01〜2.0w/oとニツケル0.01〜1.0w/oを添加
せしめた合金を、内部酸化せしめて成る複合電気
接点材料。
[Claims] 1. Cadmium 20-35w/o and bismuth in silver
A composite electrical contact material made by internally oxidizing an alloy to which 0.01 to 2.0 w/o is added. 2 Cadmium 20~35w/o and bismuth in silver
A composite electrical contact material made by internally oxidizing an alloy to which 0.01~2.0w/o and nickel 0.01~1.0w/o are added.
JP55117322A 1980-08-26 1980-08-26 Composite electrical contact material Granted JPS5741338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55117322A JPS5741338A (en) 1980-08-26 1980-08-26 Composite electrical contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55117322A JPS5741338A (en) 1980-08-26 1980-08-26 Composite electrical contact material

Publications (2)

Publication Number Publication Date
JPS5741338A JPS5741338A (en) 1982-03-08
JPH0122341B2 true JPH0122341B2 (en) 1989-04-26

Family

ID=14708869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55117322A Granted JPS5741338A (en) 1980-08-26 1980-08-26 Composite electrical contact material

Country Status (1)

Country Link
JP (1) JPS5741338A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185750A (en) * 1983-04-07 1984-10-22 Tanaka Kikinzoku Kogyo Kk Electrical contact material
JP2564417B2 (en) * 1990-04-27 1996-12-18 大協株式会社 Patterned synthetic resin molding
CN111020268A (en) * 2019-11-22 2020-04-17 桂林金格电工电子材料科技有限公司 Preparation method of silver tin oxide indium oxide contact material with uniform structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330412A (en) * 1976-08-31 1978-03-22 Siemens Ag Method of producing moulded piece for use as electrical contact
JPS5382610A (en) * 1976-12-27 1978-07-21 Siemens Ag Production of sintered contact material comprising silver and added metal oxides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330412A (en) * 1976-08-31 1978-03-22 Siemens Ag Method of producing moulded piece for use as electrical contact
JPS5382610A (en) * 1976-12-27 1978-07-21 Siemens Ag Production of sintered contact material comprising silver and added metal oxides

Also Published As

Publication number Publication date
JPS5741338A (en) 1982-03-08

Similar Documents

Publication Publication Date Title
JPH0122341B2 (en)
JPH0151530B2 (en)
JPH0124851B2 (en)
JPS6231058B2 (en)
JPS5938346A (en) Electrical contact material
JPS5914218A (en) Contact material for vacuum breaker
JPS5938347A (en) Electrical contact material
JPS6237104B2 (en)
JPH0250975B2 (en)
JPS6411700B2 (en)
JPH0250972B2 (en)
JPS58210137A (en) Electrical contact material
JPS6350413B2 (en)
JPH0127137B2 (en)
JPS6058770B2 (en) electrical contact materials
JPH0250971B2 (en)
JPS59205435A (en) Electric contact material
JPH0250973B2 (en)
JPH024671B2 (en)
JPS6231057B2 (en)
JPH024668B2 (en)
JPS59205436A (en) Electric contact material
JPH0521961B2 (en)
JPS5935305A (en) Electric contact material
JPH0147536B2 (en)