[go: up one dir, main page]

JPH0122257B2 - - Google Patents

Info

Publication number
JPH0122257B2
JPH0122257B2 JP54044411A JP4441179A JPH0122257B2 JP H0122257 B2 JPH0122257 B2 JP H0122257B2 JP 54044411 A JP54044411 A JP 54044411A JP 4441179 A JP4441179 A JP 4441179A JP H0122257 B2 JPH0122257 B2 JP H0122257B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
nitroso
diphenylhydroxylamine
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54044411A
Other languages
Japanese (ja)
Other versions
JPS54138527A (en
Inventor
Berukufueruto Manfureeto
Georuku Tsuengeru Hansu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzo NV
Original Assignee
Akzo NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akzo NV filed Critical Akzo NV
Publication of JPS54138527A publication Critical patent/JPS54138527A/en
Publication of JPH0122257B2 publication Critical patent/JPH0122257B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • C07C209/26Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/49Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton
    • C07C211/50Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton with at least two amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はp−ニトロソ−ジフエニルヒドロキシ
ルアミンを、水素及び水素添加触媒としての炭素
上のパラジウム又は硫化白金の存在下に、アルデ
ヒド又はケトンで還元的にアルキル化することに
よる非対称N−フエニル−N′−置換パラフエニ
レンジアミンの製法に関する。 ニトロソ化合物を、水素及び水素添加触媒の存
在下にアルデヒド又はケトンと反応させることに
より、還元的にアルキル化することは、すでに、
公知である。この際、水素添加触媒として特定の
金属化合物、例えば、亜クロム酸銅(英国特許第
804113号明細書、ソビエト連邦特許第230828号明
細書)、硫化ニツケル(西ドイツ国特許出願公告
第1542171号公報)、セレン化物、テルル化物又は
ニツケル−クロム−触媒(チエコスロバキア特許
第119336号明細書)又は重金属の鉄、マンガン、
銅、クロム、ニツケル、銀、セリウム及び鉛の酸
化物、水酸化物又は炭酸化物の形でのこれら2種
類以上から成る混合物(西ドイツ国特許出願公開
第1941009号公報)を使用した。しかしながら、
これら公知のすべての触媒は、副反応、特に、ア
ルデヒドもしくはケトンの相応するアルコールへ
の還元に作用する。 英国特許第1295672号明細書に公知の方法によ
れば、N−フエニル−N′−アルキル−p−フエ
ニレンジアミンの製造のために、p−ニトロソ−
ジフエニルヒドロキシルアミンを水素及びアルデ
ヒド又はケトンと、水素添加触媒の存在下に室温
〜200℃の範囲の温度で反応させる。水素添加触
媒として周期律表の第族の金属、例えば、ニツ
ケル、コバルト、ルテニウム、パラジウム及び白
金を、所望の場合不活性担体、例えば炭素、酸化
アルミニウム又はシリカゲル上に担持させて使用
する。確かに、この方法では、N−フエニル−
N′−アルキル−及びN−フエニル−N′−シクロ
アルキル−p−フエニレンジアミンの収率が理論
値の約95%となるが、この生成物の工業的製造に
とつて、今まで達成した収率及び選択性はまだ不
十分である。更に、高すぎる触媒量が必要であ
り、これにより触媒損失も相当ある。 本発明の課題は、p−ニトロソ−ジフエニルヒ
ドロキシルアミンを、水素及び炭素上のパラジウ
ム又は硫化白金の存在下に、かつ場合により不活
性溶剤の存在下に、アルデヒド又はケトンで還元
的にアルキル化することにより、非対称N−フエ
ニル−N′−置換p−フエニレンジアミンを製造
する方法であり、これは水素添加触媒を、使用p
−ニトロソジフエニルヒドロキシルアミンに対し
パラジウムもしくは硫化白金1重量%以下の量
で、及び共触媒として、少なくとも700m2/gの
比表面積を有し、灰分含量7.5%以下の活性炭を
使用することによりなる。 p−ニトロソ−ジフエニルヒドロキシルアミン
はニトロソベンゾールの触媒二量化により、容易
に手に入る化合物である。新規の、特に有利な方
法によれば、触媒として、pka値1以下のスルホ
ン酸、例えばメタン−、エタン−又はトリフルオ
ルメタンスルホン酸又は過塩素酸又はトリフルオ
ル酢酸を使用する時、実際にはほとんど定量的な
収率でこれが得られる(西ドイツ国特許出願
p2703919号明細書)。p−ニトロソ−ジフエニル
ヒドロキシルアミンの製造に必要なニトロソベン
ゾールは、同様に、容易に手に入り、これはニト
ロベンゾールの接触還元により得られる。還元
は、同様に新規方法により、還元剤として脂肪
族、脂環式、オレフイン系又は芳香族の炭化水素
を使用する際に、高い変換率及び高い選択性で進
行する(西ドイツ国特許出願p2713602号明細
書)。 本発明により得られる化合物は、いずれの場合
にも、N−原子に置換分としてフエニル基1個
を、それに反し、N′−原子に脂肪族、脂環式又
は芳香族置換分1個又は2個を有し、この際、後
者の場合、置換分は同一又は異つていてもよい。
使用するためのアルデヒド又はケトンの選択は、
当然、所望p−フエニレンジアミン誘導体に依り
決まる。N−フエニル−N′−モノ置換p−フエ
ニレンジアミンの製造のためにはアルデヒドを、
N−フエニル−N′−ジ置換p−フエニレンジア
ミンの製造のためにはケトンを使用する。好適な
カルボニル化合物の例は、脂肪族アルデヒド、例
えば、ホルムアルデヒド、アルキル−アルキル−
ケトン例えばアセトン、環状ケトン、例えば、シ
クロブタノン、アリール−アリール−ケトン、例
えば、ベンゾフエノン、アルキル−アリール−ケ
トン、例えば、アセトフエノン及びメチルベンジ
ルケトン、アルキル−シクロアルキル−ケトン、
例えば、メチルシクロヘキシルケトン、アリール
−シクロアルキル−ケトン、例えば、フエニルシ
クロヘキシルケトン、芳香族アルデヒド、例え
ば、ベンズアルデヒド、環状アルデヒド、例え
ば、シクロヘキシルアルデヒド並びにジケトン、
例えば、2,4−ペンタンジオンである。 本発明方法をN−フエニル−N′−モノアルキ
ル−p−フエニレンジアミン、N−フエニル−
N′−ジアルキル−p−フエニレンジアミンの製
造のため、及びN−フエニル−N′−シクロアル
キル−p−フエニレンジアミンの製造のために使
用するのが、有利である。このためにはアルデヒ
ド、アルキル−アルキル−ケトンもしくは環状ケ
トンが必要である。 好適なアルデヒドの例は、ホルムアルデヒド、
アセトアルデヒド、プロピオンアルデヒド、ブチ
ルアルデヒド、バレルアルデヒドである。好適な
アルキル−アルキル−ケトンの例は、アセトン、
メチル−エチル−ケトン、メチル−プロピル−ケ
トン、メチル−ブチル−ケトン、メチル−イソブ
チル−ケトン、メチル−アミル−ケトン、メチル
−イソアミル−ケトン、メチル−ヘキシル−ケト
ン、メチル−ヘプチル−ケトン、メチル−オクチ
ル−ケトン、ジエチル−ケトン、エチル−プロピ
ル−ケトン、エチル−ブチル−ケトン、エチル−
アミル−ケトン、エチル−ヘキシル−ケトン、エ
チル−ヘプチル−ケトン、5−メチル−ヘプタノ
ン−(3)、ジプロピルケトン、ジブチルケトン、ジ
イソブチルケトン、ジアミルケトン、ジヘキシル
ケトン、ジヘプチルケトン、ジイソデシルケトン
である。好適な環状ケトンの例は、シクロブタノ
ン、シクロペンタノン、シクロヘキサノン及びシ
クロオクタノンである。 純粋な水素を使用することは必らずしも必要で
はなく、むしろキヤリヤーガス、例えば窒素を一
緒に使用することもできる。同様に、水素以外に
一酸化炭素をも含むガス混合物、例えば、水性ガ
スや発生炉ガスを使用することもできる。この場
合、一酸化炭素は同様に還元に関与する、しかし
ながら、完全な還元を保証するだけの水素が存在
していなければならない。 水素添加触媒としては、常用のパラジウム又は
硫化白金を使用する、すなわち、担体として常用
の炭素類、例えば炭、スス及び活性炭を有する触
媒である。硫化白金とは白金の硫化により得られ
る、市販の“硫化された白金”を表わす。ここで
限定された硫化白金が重要なのではないのである
が、この種の触媒を工業上便宜的に硫化白金とい
う(Robert I.Peterson著、Hydrogenation
Catalysts、Noyes Data社、Parkridge New
Jersey在、USA1977年第256〜261頁参照)。担体
材料の種類は共触媒として添加する活性炭の種類
とは異なりあまり重要でない。しかしながら、担
体材料としても、少なくとも700m2/gの比表面
積で、灰分含量7.5重量%以下の活性炭を使用す
るのが有利である。 p−ニトロソ−ジフエニルヒドロキシルアミン
の還元的アルキル化は、従来の方法におけるよう
に、出発物質に対しパラジウム又は硫化白金1重
量%以上を有する触媒量を使用する場合に、全く
問題なく進行する。しかしながら、このように高
い触媒量は合成費用を著しく高め、特に、高い触
媒量における触媒損失は著しい。更に、この際す
でに過剰水素添加により、所望のN−フエニル−
N′−置換p−フエニレンジアミンから分離する
のに困難な、大量の核水素添加生成物が生じる。
付加的に、場合により溶剤として使用される過剰
カルボニル化合物の不所望なアルコールへの継続
的な水素添加も行なわれる(比較例を参照)。そ
れに対し、本発明方法では、水素添加触媒を、使
用p−ニトロソ−ジフエニルヒドロキシルアミン
に対し、パラジウムもしくは硫化白金1重量%以
下に相応する量、すなわち、有利に、使用p−ニ
トロソ−ジフエニルヒドロキシルアミンに対しパ
ラジウムもしくは硫化白金0.05〜0.2重量%の量
で使用する。この際、場合により過剰のカルボニ
ル化合物の、水素添加によるアルコールの形成
は、完全に抑制される。同様に、この条件下で
は、所望N−フエニル−N′−置換p−フエニレ
ンジアミンの核水素添加も起らない。 パラジウム又は硫化白金及び担体材料炭から成
る水素添加触媒はパラジウムもしくは硫化白金
0.05〜10重量%を含有していてよい。有利には、
パラジウムもしくは硫化白金の含量は0.5〜5重
量%であり、特に、パラジウムもしくは硫化白金
約1〜5重量%を含有する市販貴金属/炭−触媒
を使用するのが良い。従つて、p−ニトロソ−ジ
フエニルヒドロキシルアミンに対し水素添加触媒
の量は、それぞれ貴金属含有量により、最高0.1
重量%(10%−貴金属−含有量の場合)〜20重量
%(0.05%貴金属−含有量の場合)である。 意想外にも、本発明により触媒として活性炭を
一緒に使用する場合、還元的アルキル化の選択性
も収率も著しく上昇され、連続的方法の際の、こ
の触媒系の耐用期間は著しく高められるというこ
とが明らかになつた。奇異なことに、この効果は
パラジウム及び硫化白金触媒においてのみきわだ
つており、他の触媒金属の場合、この効果はほと
んど現われない。 共触媒として使用するための活性炭の性質は、
本発明の主要なものである。触媒活性は高活性活
性炭類においてのみ生じるということが判明し
た。活性炭の比表面積は少なくとも700m2/gで
あるべきである。活性炭の灰分含有量も活性炭の
触媒活性にとつて重要であり、これは7.5重量%
以下でなければならない。灰分含有量とは不溶性
灰分成分も可溶性灰分成分も表わす。天然の出発
物質、例えば、褐炭、泥炭、木材、骨等から得ら
れた活性炭類は、一般に、多量の灰分を含有して
おり、従つて、本発明方法における使用のため
に、そのままでは好適でない。しかしながら、酸
で十分に洗浄することにより、灰分含有量を7.5
重量%以下に減少させ、これが所望な大きさの比
表面積を有するとき、これは同様に考慮される。
痕跡量元素は、炭素触媒の活性に、全く影響を与
えないか又はせいぜい低い影響を及ぼす。 従つて、好適な炭素種類の選択は二つの前記基
準に依り決まる。比表面積700m2/g以上で、灰
分含量7.5%以下のすべての活性炭が、本発明方
法で活性を示すのではあるが、石油、天然ガス、
石炭又はセルロースから製造された活性炭は、そ
の純粋性の故に有利である。 本発明により共触媒として使用すべき活性炭−
触媒の量は、使用p−ニトロソ−ジフエニルヒド
ロキシルアミンに対し、10〜200重量%である。
これは、p−ニトロソ−ジフエニルヒドロキシル
アミンに対する貴金属量及び水素添加触媒の貴金
属−含有量並びに貴金属/担体炭素の量比に依り
決まる。同様な収率を得るために、貴金属量を下
げる場合には、活性炭−触媒量を高めることが必
要である。水素添加触媒の貴金属−含有量と活性
炭触媒の必要量の間には次のような関連がある:
水素添加触媒の貴金属−含有量が約1〜10重量%
の範囲である場合、同様な変換率に必要な活性炭
触媒の量は低下する貴金属−含有量に応じて低下
する。貴金属−含有量が約0.05〜1重量%の範囲
である場合、同様な変換率を達成するためには、
低下する貴金属−含有量に応じて上昇する活性炭
触媒の量が必要である。 本発明方法の有利な実施形式の場合貴金属0.05
〜0.2重量%を有するパラジウム−炭素−触媒又
は硫化白金−炭素−触媒0.01〜20重量%及び共触
媒として活性炭10〜200重量%を使用する。 アルデヒドもしくはケトン量は、p−ニトロソ
−ジフエニルヒドロキシルアミン1当量当り1〜
10当量、有利に2〜10当量である。多量のアルデ
ヒドもしくはケトンを使用することも可能である
が、この場合、過剰分は溶剤として使われる。 所望の場合、他の不活性溶剤(補助−溶剤)、
例えば脂肪族又は芳香族炭化水素、そのハロゲン
誘導体又はエーテル、例えば、トルオール、モノ
クロルベンゾール、ジクロルベンゾール、1,
2,4−トリクロルベンゾール、又は1,1,2
−トリフルオル−1,1,2−トリクロルエタン
を使用することもできる。特に好適な不活性溶剤
は低級アルコール例えばメタノール、エタノー
ル、イソプロパノール、プロパノール、ブタノー
ル、ペンタノール、イソペンタノール及び4−メ
チルペンタノール−2である。不活性溶剤の使用
は、反応の経過中に形成された反応水が使用ケト
ンもしくはアルデヒド中に不溶であるか又は少し
しか溶けなために、有機相の他に水相が生じる場
合に、特に有利である。アルデヒドもしくはケト
ンが水と、第2の相を形成しない程度に混合可能
である場合には、付加的に溶剤を使用しないのが
有利である。本発明方法で、水100重量%まで有
する湿つたp−ニトロソ−ジフエニルヒドロキシ
ルアミンを使用することも可能である。この場
合、水も同様に一つの補助−溶剤を形成する。p
−ニトロソ−ジフエニルヒドロキシルアミンが溶
解した形で存在する、すなわち反応が均質相で行
なわれる必要はない。反応を不均質相で実施する
のが有利である。これは、反応容量が比較的小さ
く、反応混合物の処理が容易となるという利点を
有する。 本発明方法は回分式でも、連続的にも実施する
ことができる。反応温度及び反応圧は厳密ではな
い。すでに、本発明方法は常圧、室温で実施する
ことができるが、反応速度への圧力及び温度の影
響のために、高めた温度及び高めた圧力で実施す
るのが有利である。20〜150℃の温度範囲で実施
することが好ましい。有利な反応温度は25〜125
℃、特に40〜100℃である。水素圧は広範囲、例
えば、1〜150バールであつてよい。有利に5〜
15バール、特に7〜12バールである。反応時間
は、一般に15分〜5時間、有利に0.5〜3時間で
ある。 反応混合物の後処理は常法で行なわれる。先
ず、触媒を別し、場合により溶剤を留去し、引
き続きアミンを蒸留又は結晶させる。それぞれ好
適な方法はアミンの物理的特質及び使用溶剤に依
り決まる。触媒を循環させることができる。 従来の方法では、行なわれた還元的アルキル化
に後に、触媒は一部活性を失なつている。再使用
の際、これは減少した活性度を示すので、実際に
は、一定量の新鮮な触媒を補なわなければならな
い。これに対し、本発明方法の場合は、使用水素
添加触媒は、活性炭触媒の付加によりその活性を
著しく保ち、更に使用する際、もとの活性を得る
ために、全く新鮮な水素添加触媒を添加しなくて
よいか又は比較的僅かな量添加するだけでよい。
例えば、本発明方法による還元的アルキル化の
際、一番目の反応サイクルで、p−ニトロソ−ジ
フエニルヒドロキシルアミンに対しパラジウム
0.2重量%を有する触媒を使用すると、2番号の
反応サイクルでは、使用した水素添加触媒に付加
的に、p−ニトロソ−ジフエニルヒドロキシルア
ミンに対して、更にパラジウム0.01重量%のみが
必要になる。更に、数回の反応サイクルの後、同
様な触媒活性に必要な新鮮な触媒添加量はわずか
0.005重量%に低下する。最後に、更に多くの反
応サイクルは新しい水素添加触媒の添加なしに実
施することができる。新たな反応サイクル毎に、
新しい活性炭−触媒を導入することだけが必要で
ある。従つて、平均に、反応サイクル毎の水素添
加触媒使用量は、使用p−ニトロソ−ジフエニル
ヒドロキシルアミンに対してパラジウム0.01重量
%以下である。例えば、メチルイソブチルケトン
の場合に、最初の反応サイクルで、p−ニトロソ
−ジフエニルヒドロキシルアミンに対して硫化白
金0.2重量%を有する触媒及び活性炭100重量%を
使用する場合、触媒系が全く活性損失をすること
なしに、更に15回反応サイクルを実施することが
できる。活性炭なしにこの同じ系列を行なう場
合、最初のサイクルにおけるN−(1,3−ジメ
チルブチル)−N′−フエニル−p−フエニレンジ
アミン(DBPPD)の収率は、わずか理論値の60
%であり(これに対し、活性炭の存在する場合、
理論値の95%である)、すでに2番目のサイクル
では理論値の38%に下がる(これに対し、活性炭
の存在する場合、収率は理論値の95%で、変化し
ない)。 本発明方法は英国特許第1295672号明細書にく
らべ著しい利点を有する。英国特許明細書の実施
例1によれば、例えばN−イソプロピル−N′−
フエニル−p−フエニレンジアミン(IPPD)が
収率93%で得られる。しかしながら、ここでは実
際には、所望の置換p−フエニレンジアミンの本
当の収率ではなく、むしろ溶剤の留去後に残つた
反応生成物の量を、不当にも、ただ所望の物質の
みからなるとして見なしたのである。この例に従
つた作業で明らかとなるように、確かに、出発物
質の定量的変換が行なわれるが、しかしながら反
応生成物はN−イソプロピル−N′−フエニル−
p−フエニレンジアミン(IPPD)をわずか約78
%の配分で有する物質混合物である。更に、この
際、p−ニトロソジフエニルヒドロキシルアミン
に対し、パラジウム0.3重量%という高い量及び
長い反応時間を必要とし、更に、圧力50バールで
作業しなければならない。このことにより、N−
イソプロピル−N′−フエニル−p−フエニレン
ジアミン(IPPD)がN−イソプロピル−N′−シ
クロヘキシル−p−フエニレンジアミン
(ICPPD)まで引き続き水素添加されるので、
IPPDの多量の損失が得られるだけでなく、過剰
ケトンの不所望なアルコールへの継続的還元も行
なわれる。これに対し、本発明の場合低圧及び低
温、僅かな量の貴金属−触媒及び著しく短かい反
応時間を必要とし、更に、所望の置換p−フエニ
レンジアミンの形成に関する選択性は著しく高
く、カルボニル化合物の還元によるアルコールの
形成は起らない。英国特許明細書をより低い温
度、例えば150℃以下で、より低い圧力、例えば
50バール以下で実施する場合、反応は、より激し
い条件下よりも著しく低い選択性で進行する。つ
まり、この際副生成物としてアルキル化してない
還元生成物約25〜50%及びケチミン約2.5〜10%
が得られる。所望の置換p−フエニレンジアミン
の収率は、わずか12〜70%であり、残りは非置換
出発化合物及び前記副生成物から成る。従つて、
本発明方法は、比較的低い温度及び圧力で実施さ
れ、貴金属の使用量が非常に低く、かつ短かい反
応時間、高い変換率及び高い選択性で所望の生成
物に導びくという点で優れている。 本発明方法で得られた化合物は産業上、ゴム酸
化防止剤又はゴムオゾン亀裂防止剤として多量に
必要である。 例1〜9 (比較例) 反応は、底部流出弁、ガス導入管、流動破砕機
及びプロペラ撹拌機(電磁的撹拌)を装備してあ
る1−ガラスオートクレーブ中で行なつた。p
−ニトロソ−ジフエニルヒドロキシルアミン
(NDHA)20g(93.2mMol)及びアセトン200ml
を使用した。反応は30〜75℃の間で実施し、水素
圧は9〜10バールの間であり、反応時間は1時
間、撹拌速度は1500r.p.mであつた。先ず、オー
トクレーブを排気し、次いで水素を吹き込んだ。
次いで、オートクレーブに反応媒体の半量を装入
し、最後にp−ニトロソ−ジフエニルヒドロキシ
ルアミン(NDHA)をパラジウム/炭−触媒と
一緒に反応媒体の残分中に懸濁させて、入口弁を
介して添加した。その後、水素9〜10バールをオ
ートクレーブに圧入し、注意深く加熱した。パラ
ジウムの量により、反応は20〜70℃の間で開始し
た。反応熱の減少後、なお75℃まで後加熱し、反
応時間は全体で1時間であつた。 次の第1表中にN−イソプロピル−N′−フエ
ニル−P−フエニレンジアミン(IPPD)の収率
に対する貴金属量の影響を示す。パラジウム/炭
−触媒の組成、使用p−ニトロソ−ジフエニルヒ
ドロキシルアミンに対する金属量並びに非対称N
−フエニル−N′−置換P−フエニレンジアミン
の収率及び副生成物として生じたケチミン及びア
ルキル化p−フエニレンジアミン誘導体の量を第
1表中に一緒に記載してある。 表中、次の略語を使用する。 NDHA=p−ニトロソ−ジフエニルヒドロキシ
ルアミン ADA =4−アミノ−ジフエニルアミン IPPD=N−イソプロピル−N′−フエニル−P−
フエニレンジアミン ケチミン=N−イソプロピリデン−N′−フエニ
ル−P−フエニレンジアミン
The present invention relates to the asymmetric N-phenyl-N The present invention relates to a method for producing '-substituted paraphenylene diamine. The reductive alkylation of nitroso compounds by reaction with aldehydes or ketones in the presence of hydrogen and hydrogenation catalysts has already been described.
It is publicly known. In this case, specific metal compounds such as copper chromite (British patent no.
804113, Soviet Union Patent No. 230828), nickel sulfide (West German Patent Application No. 1542171), selenides, tellurides or nickel-chromium catalysts (Ciechoslovakia Patent No. 119336) or heavy metals iron, manganese,
Mixtures of two or more of copper, chromium, nickel, silver, cerium and lead in the form of oxides, hydroxides or carbonates (DE 1941009) were used. however,
All these known catalysts act on side reactions, in particular the reduction of aldehydes or ketones to the corresponding alcohols. According to the process known from GB 1295672, p-nitroso-
Diphenylhydroxylamine is reacted with hydrogen and an aldehyde or ketone in the presence of a hydrogenation catalyst at temperatures ranging from room temperature to 200°C. Metals from groups of the Periodic Table, such as nickel, cobalt, ruthenium, palladium and platinum, are used as hydrogenation catalysts, if desired supported on inert supports, such as carbon, aluminum oxide or silica gel. Indeed, in this method, N-phenyl-
The yields of N'-alkyl- and N-phenyl-N'-cycloalkyl-p-phenylenediamines are approximately 95% of the theoretical value, which has not been achieved until now for the industrial production of this product. Yield and selectivity are still insufficient. Furthermore, too high catalyst amounts are required, which also results in considerable catalyst losses. The object of the present invention is to reductively alkylate p-nitroso-diphenylhydroxylamines with aldehydes or ketones in the presence of hydrogen and palladium or platinum sulfide on carbon and optionally in the presence of an inert solvent. This is a method for producing asymmetric N-phenyl-N'-substituted p-phenylenediamine by
- in an amount of not more than 1% by weight of palladium or platinum sulfide, based on nitrosodiphenylhydroxylamine, and by using as cocatalyst activated carbon with a specific surface area of at least 700 m 2 /g and an ash content of not more than 7.5%; . p-Nitroso-diphenylhydroxylamine is a compound readily available by catalytic dimerization of nitrosobenzoles. According to a new and particularly advantageous process, when using as catalyst a sulfonic acid with a pka value below 1, such as methane-, ethane- or trifluoromethanesulfonic acid or perchloric acid or trifluoroacetic acid, practically no This can be achieved in quantitative yields (West German patent application
p2703919 specification). The nitrosobenzoles required for the preparation of p-nitroso-diphenylhydroxylamine are likewise readily available and are obtained by catalytic reduction of nitrobenzole. The reduction likewise proceeds in a novel manner with high conversions and high selectivities when using aliphatic, cycloaliphatic, olefinic or aromatic hydrocarbons as reducing agents (West German Patent Application No. 2713602). Specification). The compounds obtainable according to the invention contain in each case one phenyl group as a substituent on the N-atom and, on the contrary, one or two aliphatic, cycloaliphatic or aromatic substituents on the N′-atom. In this case, in the latter case, the substituents may be the same or different.
The choice of aldehyde or ketone for use is
Of course, it depends on the desired p-phenylenediamine derivative. For the production of N-phenyl-N'-monosubstituted p-phenylenediamine, aldehydes are
Ketones are used for the preparation of N-phenyl-N'-disubstituted p-phenylenediamines. Examples of suitable carbonyl compounds are aliphatic aldehydes, such as formaldehyde, alkyl-alkyl-
Ketones such as acetone, cyclic ketones such as cyclobutanone, aryl-aryl-ketones such as benzophenone, alkyl-aryl-ketones such as acetophenone and methylbenzylketone, alkyl-cycloalkyl-ketones,
For example, methylcyclohexylketone, aryl-cycloalkyl-ketones, such as phenylcyclohexylketone, aromatic aldehydes, such as benzaldehyde, cyclic aldehydes, such as cyclohexylaldehyde, as well as diketones,
For example, 2,4-pentanedione. The method of the present invention is applied to N-phenyl-N'-monoalkyl-p-phenylenediamine, N-phenyl-
Preference is given to using them for the preparation of N'-dialkyl-p-phenylenediamines and for the preparation of N-phenyl-N'-cycloalkyl-p-phenylenediamines. For this purpose, aldehydes, alkyl-alkyl-ketones or cyclic ketones are required. Examples of suitable aldehydes are formaldehyde,
These are acetaldehyde, propionaldehyde, butyraldehyde, and valeraldehyde. Examples of suitable alkyl-alkyl-ketones are acetone,
Methyl-ethyl-ketone, methyl-propyl-ketone, methyl-butyl-ketone, methyl-isobutyl-ketone, methyl-amyl-ketone, methyl-isoamyl-ketone, methyl-hexyl-ketone, methyl-heptyl-ketone, methyl- Octyl-ketone, diethyl-ketone, ethyl-propyl-ketone, ethyl-butyl-ketone, ethyl-ketone
These are amyl-ketone, ethyl-hexyl-ketone, ethyl-heptyl-ketone, 5-methyl-heptanone-(3), dipropyl ketone, dibutyl ketone, diisobutyl ketone, diamyl ketone, dihexyl ketone, diheptyl ketone, and diisodecyl ketone. Examples of suitable cyclic ketones are cyclobutanone, cyclopentanone, cyclohexanone and cyclooctanone. It is not absolutely necessary to use pure hydrogen; rather, a carrier gas, for example nitrogen, can also be used together. It is likewise possible to use gas mixtures which, in addition to hydrogen, also contain carbon monoxide, for example water gas or generator gas. In this case, carbon monoxide likewise takes part in the reduction; however, sufficient hydrogen must be present to ensure complete reduction. As hydrogenation catalysts, the customary palladium or platinum sulfides are used, ie catalysts with customary carbons as carriers, such as charcoal, soot and activated carbon. Platinum sulfide refers to commercially available "sulfurized platinum" obtained by sulfurizing platinum. Although the limited platinum sulfide is not important here, this type of catalyst is called platinum sulfide for industrial convenience (Robert I. Peterson, Hydrogenation
Catalysts, Noyes Data, Parkridge New
Jersey, USA, 1977, pp. 256-261). The type of support material is not very important, unlike the type of activated carbon added as a cocatalyst. However, it is advantageous to use activated carbon as support material as well, with a specific surface area of at least 700 m 2 /g and an ash content of up to 7.5% by weight. The reductive alkylation of p-nitroso-diphenylhydroxylamine proceeds without any problems if, as in conventional processes, catalyst amounts having 1% or more of palladium or platinum sulfide, based on the starting materials, are used. However, such high catalyst amounts significantly increase the synthesis costs, and in particular the catalyst losses at high catalyst amounts are significant. Furthermore, in this case, the desired N-phenyl-
Large amounts of nuclear hydrogenation products are produced which are difficult to separate from the N'-substituted p-phenylenediamines.
Additionally, there is also a continuous hydrogenation of the excess carbonyl compound optionally used as a solvent to form the undesired alcohol (see Comparative Example). In contrast, in the process of the invention, the hydrogenation catalyst is preferably present in an amount corresponding to less than 1% by weight of palladium or platinum sulfide, based on the p-nitroso-diphenylhydroxylamine used. Palladium or platinum sulfide is used in an amount of 0.05 to 0.2% by weight relative to hydroxylamine. In this case, the formation of alcohol by hydrogenation of any excess carbonyl compound is completely suppressed. Similarly, under these conditions, nuclear hydrogenation of the desired N-phenyl-N'-substituted p-phenylenediamine also does not occur. A hydrogenation catalyst consisting of palladium or platinum sulfide and carbon carrier material is palladium or platinum sulfide.
It may contain 0.05 to 10% by weight. Advantageously,
The content of palladium or platinum sulfide is from 0.5 to 5% by weight, and it is particularly advantageous to use commercial noble metal/charcoal catalysts containing about 1 to 5% by weight of palladium or platinum sulfide. Therefore, the amount of hydrogenation catalyst for p-nitroso-diphenylhydroxylamine can be up to 0.1, depending on the respective noble metal content.
% by weight (for a 10% precious metal content) to 20% by weight (for a 0.05% precious metal content). Surprisingly, when activated carbon is used together with activated carbon as a catalyst according to the invention, both the selectivity and the yield of the reductive alkylation are significantly increased and the service life of this catalyst system in continuous processes is significantly increased. It became clear that. Strangely, this effect is only pronounced for palladium and platinum sulfide catalysts, and is hardly noticeable for other catalyst metals. The properties of activated carbon for use as a cocatalyst are:
This is the main feature of the present invention. It has been found that catalytic activity occurs only in highly activated carbons. The specific surface area of the activated carbon should be at least 700 m 2 /g. The ash content of activated carbon is also important for the catalytic activity of activated carbon, which is 7.5% by weight
Must be less than or equal to Ash content refers to both insoluble and soluble ash components. Activated carbons obtained from natural starting materials, such as lignite, peat, wood, bone, etc., generally contain large amounts of ash and are therefore not suitable as such for use in the process of the invention. . However, by thorough washing with acid, the ash content can be reduced to 7.5
This is likewise taken into account when reducing the weight to below %, which has a specific surface area of the desired magnitude.
Trace elements have no or at most a low influence on the activity of the carbon catalyst. Therefore, the selection of a suitable carbon type depends on the two aforementioned criteria. Although all activated carbons with a specific surface area of 700 m 2 /g or more and an ash content of 7.5% or less show activity in the method of the present invention, petroleum, natural gas,
Activated carbon made from coal or cellulose is advantageous because of its purity. Activated carbon to be used as cocatalyst according to the invention -
The amount of catalyst is from 10 to 200% by weight, based on the p-nitroso-diphenylhydroxylamine used.
This depends on the amount of noble metal relative to p-nitroso-diphenylhydroxylamine and on the noble metal content of the hydrogenation catalyst and the noble metal/support carbon ratio. In order to obtain similar yields, it is necessary to increase the amount of activated carbon-catalyst when lowering the amount of noble metal. There is a relationship between the precious metal content of the hydrogenation catalyst and the required amount of activated carbon catalyst:
Precious metals in the hydrogenation catalyst - content of approximately 1-10% by weight
, the amount of activated carbon catalyst required for similar conversions decreases with decreasing noble metal content. To achieve similar conversion rates, when the precious metal content ranges from about 0.05 to 1% by weight,
An increasing amount of activated carbon catalyst is required as the noble metal content decreases. In a preferred embodiment of the process according to the invention, the precious metal 0.05
0.01-20% by weight of palladium-carbon catalyst or platinum-sulfide-carbon catalyst with ~0.2% by weight and 10-200% by weight of activated carbon as cocatalyst are used. The amount of aldehyde or ketone is 1 to 1 per equivalent of p-nitroso-diphenylhydroxylamine.
10 equivalents, preferably 2 to 10 equivalents. It is also possible to use larger amounts of aldehyde or ketone, in which case the excess is used as solvent. If desired, other inert solvents (co-solvents),
For example aliphatic or aromatic hydrocarbons, their halogen derivatives or ethers, such as toluene, monochlorobenzole, dichlorobenzole, 1,
2,4-trichlorobenzole, or 1,1,2
-Trifluoro-1,1,2-trichloroethane can also be used. Particularly suitable inert solvents are lower alcohols such as methanol, ethanol, isopropanol, propanol, butanol, pentanol, isopentanol and 4-methylpentanol-2. The use of inert solvents is particularly advantageous if the water of reaction formed during the course of the reaction is insoluble or only slightly soluble in the ketone or aldehyde used, so that an aqueous phase forms in addition to the organic phase. It is. If the aldehyde or ketone is miscible with water to such an extent that no second phase is formed, it is advantageous not to additionally use a solvent. In the process of the invention it is also possible to use wet p-nitroso-diphenylhydroxylamine having up to 100% by weight of water. In this case, water likewise forms a co-solvent. p
It is not necessary that the -nitroso-diphenylhydroxylamine be present in dissolved form, ie that the reaction be carried out in a homogeneous phase. It is advantageous to carry out the reaction in a heterogeneous phase. This has the advantage that the reaction volume is relatively small and the reaction mixture is easy to work up. The process according to the invention can be carried out both batchwise and continuously. The reaction temperature and reaction pressure are not critical. Although the process according to the invention can already be carried out at normal pressure and room temperature, because of the influence of pressure and temperature on the reaction rate it is advantageous to carry out it at elevated temperature and pressure. Preferably, it is carried out at a temperature range of 20 to 150°C. Favorable reaction temperature is 25-125
℃, especially 40-100℃. The hydrogen pressure may vary over a wide range, for example from 1 to 150 bar. advantageously 5~
15 bar, especially 7 to 12 bar. The reaction time is generally between 15 minutes and 5 hours, preferably between 0.5 and 3 hours. Work-up of the reaction mixture is carried out in a customary manner. First, the catalyst is separated off, the solvent is optionally distilled off, and the amine is subsequently distilled or crystallized. The respective preferred method depends on the physical properties of the amine and the solvent used. The catalyst can be circulated. In conventional methods, the catalyst has partially lost its activity after the reductive alkylation carried out. Upon reuse, it exhibits a reduced activity, so that in practice it must be supplemented with a certain amount of fresh catalyst. On the other hand, in the case of the method of the present invention, the hydrogenation catalyst used retains its activity significantly by adding an activated carbon catalyst, and when it is further used, a completely fresh hydrogenation catalyst is added in order to obtain the original activity. It may be omitted or only added in relatively small amounts.
For example, during reductive alkylation according to the method of the present invention, palladium is added to p-nitroso-diphenylhydroxylamine in the first reaction cycle.
Using a catalyst with 0.2% by weight, reaction cycle number 2 requires only a further 0.01% by weight of palladium, based on p-nitroso-diphenylhydroxylamine, in addition to the hydrogenation catalyst used. Furthermore, after several reaction cycles, only a small amount of fresh catalyst addition is required for similar catalyst activity.
It decreases to 0.005% by weight. Finally, more reaction cycles can be carried out without the addition of fresh hydrogenation catalyst. With each new reaction cycle,
It is only necessary to introduce a new activated carbon catalyst. Therefore, on average, the amount of hydrogenation catalyst used per reaction cycle is less than 0.01% by weight of palladium, based on the p-nitroso-diphenylhydroxylamine used. For example, in the case of methyl isobutyl ketone, if in the first reaction cycle a catalyst with 0.2% by weight of platinum sulfide and 100% by weight of activated carbon is used for p-nitroso-diphenylhydroxylamine, the catalyst system loses no activity. A further 15 reaction cycles can be carried out without further addition. When this same series is run without activated carbon, the yield of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (DBPPD) in the first cycle is only 60% of the theoretical value.
% (whereas in the presence of activated carbon,
95% of theory), already in the second cycle it drops to 38% of theory (in contrast, in the presence of activated carbon, the yield is 95% of theory and unchanged). The method according to the invention has significant advantages over GB 1295672. According to Example 1 of the British patent specification, for example N-isopropyl-N'-
Phenyl-p-phenylenediamine (IPPD) is obtained with a yield of 93%. However, here we are not actually talking about the true yield of the desired substituted p-phenylenediamine, but rather the amount of reaction product remaining after distillation of the solvent, which incorrectly consists only of the desired material. It was regarded as such. As will become clear when working with this example, a quantitative conversion of the starting material does take place, however, the reaction product is N-isopropyl-N'-phenyl-
Only about 78 p-phenylenediamine (IPPD)
It is a substance mixture having a proportion of %. Furthermore, this requires a high amount of palladium, 0.3% by weight, based on p-nitrosodiphenylhydroxylamine, and long reaction times, and, moreover, it is necessary to work at a pressure of 50 bar. Due to this, N-
As isopropyl-N′-phenyl-p-phenylenediamine (IPPD) is subsequently hydrogenated to N-isopropyl-N′-cyclohexyl-p-phenylenediamine (ICPPD),
Not only is a large loss of IPPD obtained, but also a continuous reduction of excess ketones to undesired alcohols. In contrast, the present invention requires low pressures and low temperatures, small amounts of noble metal catalysts and significantly shorter reaction times; furthermore, the selectivity for the formation of the desired substituted p-phenylene diamines is significantly higher and the carbonyl compounds No formation of alcohol by reduction of . British Patent Specifications at lower temperatures, e.g. below 150°C, and at lower pressures, e.g.
When carried out below 50 bar, the reaction proceeds with significantly lower selectivity than under more aggressive conditions. In other words, the by-products at this time are about 25-50% of the reduction product that is not alkylated and about 2.5-10% of ketimine.
is obtained. The yield of the desired substituted p-phenylenediamine is only 12-70%, the remainder consisting of the unsubstituted starting compound and the above-mentioned by-products. Therefore,
The process of the invention is advantageous in that it is carried out at relatively low temperatures and pressures, uses very low amounts of precious metals, and leads to the desired products with short reaction times, high conversions and high selectivities. There is. The compound obtained by the method of the present invention is industrially required in large quantities as a rubber antioxidant or rubber antiozonant. Examples 1 to 9 (Comparative Examples) The reactions were carried out in a 1-glass autoclave equipped with a bottom outflow valve, a gas inlet pipe, a fluidized crusher and a propeller stirrer (magnetic stirring). p
- Nitroso-diphenylhydroxylamine (NDHA) 20g (93.2mMol) and acetone 200ml
It was used. The reaction was carried out between 30 and 75°C, the hydrogen pressure was between 9 and 10 bar, the reaction time was 1 hour, and the stirring speed was 1500 rpm. First, the autoclave was evacuated and then flushed with hydrogen.
The autoclave is then charged with half of the reaction medium and finally p-nitroso-diphenylhydroxylamine (NDHA) is suspended in the remainder of the reaction medium together with the palladium/charcoal catalyst and the inlet valve is closed. Added via. 9-10 bar of hydrogen was then pressurized into the autoclave and carefully heated. Depending on the amount of palladium, the reaction started between 20 and 70°C. After the heat of reaction had subsided, further heating was carried out to 75° C., and the total reaction time was 1 hour. Table 1 below shows the influence of the amount of noble metal on the yield of N-isopropyl-N'-phenyl-P-phenylenediamine (IPPD). The composition of the palladium/charcoal catalyst, the amount of metal relative to the p-nitroso-diphenylhydroxylamine used and the asymmetric N
The yield of -phenyl-N'-substituted p-phenylenediamine and the amounts of ketimine and alkylated p-phenylenediamine derivatives formed as by-products are listed together in Table 1. The following abbreviations are used in the table: NDHA = p-nitroso-diphenylhydroxylamine ADA = 4-amino-diphenylamine IPPD = N-isopropyl-N'-phenyl-P-
Phenylenediamine ketimine = N-isopropylidene-N'-phenyl-P-phenylenediamine

【表】 この比較実験の結果は、使用p−ニトロソ−ジ
フエニルヒドロキシルアミンに対しパラジウム1
重量%に相当する触媒量を使用する場合に、還元
的アルキル化はまだ比較的高い選択性で行なわ
れ、所望のN−イソプロピル−N′−フエニル−
p−フエニレンジアミンになるということを明確
に示す。これに対し、少量の触媒を使用する場
合、N−イソプロピル−N′−フエニル−p−フ
エニレンジアミンの形成に関する選択性は急速に
減少する。パラジウム0.20重量%の触媒量では、
すでに著しく、10%以下になる。 例 10〜21 本発明方法に従い、少なくとも700m2/gの表
面積及び7.5重量%以下の灰分含量を有する活性
炭の添加により達成した変換率並びに選択性の上
昇は第2表の例及び比較例から明らかに知ること
ができる。この目的のために第1表の比較例7
を、活性炭を添加し、及び添加しないで繰り返
し、それぞれ異なつた反応時間後、変換率及び収
率を定量的に測定した。 それぞれp−ニトロソ−ジフエニルヒドロキシ
ルアミン(NDHA)60g(280mMol)とアセト
ン600mlとを、パラジウム含有量1.01重量%、比
表面積1100m2/g、かつ灰分含量0.5重量%以下
のパラジウム−炭−触媒(Degussa社製E10R)
6.0gの存在下に、例1〜9に記載された方法で
反応させた。 例えば、例17,19及び21の場合には、N−イソ
プロピル−N′−フエニル−p−フエニレンジア
ミンの収率は、例15の場合よりも少さい、それと
いうのは長い反応時間により、すでに所望の生成
物の一部が、更に還元され、N−イソプロピル−
N′−シクロヘキシル−p−フエニレンジアミン
になつたからである。
[Table] The results of this comparative experiment show that palladium 1
When using catalyst amounts corresponding to % by weight, the reductive alkylation still takes place with relatively high selectivity and yields the desired N-isopropyl-N'-phenyl-
It clearly shows that it becomes p-phenylenediamine. In contrast, when using small amounts of catalyst, the selectivity for the formation of N-isopropyl-N'-phenyl-p-phenylenediamine decreases rapidly. At a catalyst amount of 0.20% by weight of palladium,
It is already significantly lower than 10%. Examples 10 to 21 The increase in conversion and selectivity achieved according to the process according to the invention by the addition of activated carbon with a surface area of at least 700 m 2 /g and an ash content of up to 7.5% by weight is evident from the examples and comparative examples in Table 2. can be known. For this purpose, Comparative Example 7 in Table 1
was repeated with and without the addition of activated carbon, and the conversion and yield were determined quantitatively after different reaction times. 60 g (280 mmol) of p-nitroso-diphenylhydroxylamine (NDHA) and 600 ml of acetone were each mixed into a palladium-charcoal catalyst (with a palladium content of 1.01% by weight, a specific surface area of 1100 m 2 /g, and an ash content of 0.5% by weight or less). Degussa E10R)
The reaction was carried out as described in Examples 1-9 in the presence of 6.0 g. For example, in the case of Examples 17, 19 and 21, the yield of N-isopropyl-N'-phenyl-p-phenylenediamine is lower than in Example 15, because of the longer reaction time. Part of the already desired product is further reduced to N-isopropyl-
This is because it became N'-cyclohexyl-p-phenylenediamine.

【表】 例 22〜32 プロペラ撹拌器、温度計、ガス導入管、圧力
計、流動破砕機、排気弁、底部排出弁及びフイル
ターシリンダーを装備している1.5ガラスオー
トクレーブに、先ず、p−ニトロソ−ジフエニル
ヒドロキシルアミン20g及びパラジウム−含有量
5%のパラジウム/炭−触媒(Degussa社製造、
E10R)0.8gから成る懸濁液p−ニトロソジフエ
ニルヒドロキシルアミンに対しPd0.20%)並びに
活性炭(メルク社製造、粉末状、乾燥した、比表
面積1050m2/g、灰分含量5重量%以下)25g及
びメチルイソブチルケトン200mlを装入した。何
回も排気及び水素での換気を繰り返した後、反応
を水素圧9〜10バールで開始した。還元的アルキ
ル化は約40℃で開始し、発熱反応の冷却後、撹拌
速度1500r.p.m.で75℃に全体で1時間保持した。
反応終了後、水素圧下にフイルターシリンダーに
より、基質を水素添加触媒及び活性炭触媒から分
離し、引き続きこれらをメチルイソブチルケトン
でオートクレーブ中に洗い戻した。その後、次の
チヤージ(p−ニトロソ−ジフエニルヒドロキシ
ルアミン20gと全体でメチルイソブチルケトン
200gからなる)を活性炭−触媒及び場合により
新鮮な水素添加触媒と混合し、再び75〜80℃で、
かつ水素圧9〜10バールで1時間反応させた。こ
の実験を全体で10回以上実施し、こうして反応の
終わりに、全部でp−ニトロソ−ジフエニルヒド
ロキシルアミン220gが還元的にアルキル化され
た。 水素添加触媒量(使用p−ニトロソ−ジフエニ
ルヒドロキシルアミン全量に対するパラジウム重
量%で表わす)並びに活性炭触媒量、並びにN−
(1,3−ジメチルブチル)−N′−フエニル−p
−フエニレンジアミン(DBPPD)、p−アミノ
−ジフエニルアミン(ADA)及びケチミンの得
られた収率を次の第3表に記載した。結果は、少
数回の反応サイクルの後、新しく添加すべき水素
添加触媒及び活性炭の量が著しく減少するという
ことを明らかに示している。
[Table] Examples 22-32 A 1.5 glass autoclave equipped with a propeller stirrer, a thermometer, a gas inlet pipe, a pressure gauge, a fluidized crusher, an exhaust valve, a bottom exhaust valve and a filter cylinder was first charged with p-nitrosate. 20 g of diphenylhydroxylamine and a palladium/charcoal catalyst with a palladium content of 5% (manufactured by Degussa,
E10R) suspension consisting of 0.8 g p-nitrosodiphenylhydroxylamine (Pd 0.20%) and activated carbon (manufactured by Merck & Co., powder, dry, specific surface area 1050 m 2 /g, ash content not more than 5% by weight) 25 g and 200 ml of methyl isobutyl ketone were charged. After a number of evacuations and venting with hydrogen, the reaction was started at a hydrogen pressure of 9-10 bar. The reductive alkylation was initiated at approximately 40°C and after cooling of the exothermic reaction was maintained at 75°C for a total of 1 hour with a stirring speed of 1500 rpm.
After the end of the reaction, the substrate was separated from the hydrogenation catalyst and activated carbon catalyst by means of a filter cylinder under hydrogen pressure and subsequently washed back into the autoclave with methyl isobutyl ketone. Then the next charge (20 g of p-nitroso-diphenylhydroxylamine and a total of methyl isobutyl ketone)
200 g) with activated carbon-catalyst and optionally fresh hydrogenation catalyst, again at 75-80 °C.
The reaction was then carried out for 1 hour at a hydrogen pressure of 9-10 bar. This experiment was carried out over 10 times in total, so that at the end of the reaction a total of 220 g of p-nitroso-diphenylhydroxylamine had been reductively alkylated. The amount of hydrogenation catalyst (expressed in % by weight of palladium based on the total amount of p-nitroso-diphenylhydroxylamine used) and the amount of activated carbon catalyst, as well as the amount of N-
(1,3-dimethylbutyl)-N'-phenyl-p
The obtained yields of -phenylenediamine (DBPPD), p-amino-diphenylamine (ADA) and ketimine are listed in Table 3 below. The results clearly show that after a small number of reaction cycles, the amount of freshly added hydrogenation catalyst and activated carbon is significantly reduced.

【表】 例 33〜45 次の例並びに比較例は還元的アルキル化の経過
に対する、使用活性炭量の影響(例33〜36)及び
活性炭種類の影響(例37〜45)を表わす。 反応を例1〜9で記載した方法で実施した。そ
れぞれp−ニトロソ−ジフエニルヒドロキシルア
ミン(NDHA)20g及びメチルイソブチルケト
ン(MIBK)150mlを使用した。水素添加触媒と
してはパラジウム含有量1.02重量%を有するパラ
ジウム−炭−触媒(Degussa社製のE106R)を使
用した。活性炭として、異なる比表面積及び灰分
含有量を有するデグサ(Degussa)社もしくはメ
ルク(Merck)社の合成活性炭並びに天然原料
からの種々の活性炭を使用した。 比較例42〜45は、小さすぎる比表面積の場合
も、活性炭の高すぎる灰分含有量の場合もN−
(1,3−ジメチルブチル)−N′−フエニル−p
−フエニレンジアミン(DBPPD)の収率が低く
なることを明らかに示している。
TABLE Examples 33-45 The following examples and comparative examples illustrate the influence of the amount of activated carbon used (Examples 33-36) and the type of activated carbon (Examples 37-45) on the course of the reductive alkylation. The reactions were carried out as described in Examples 1-9. 20 g of p-nitroso-diphenylhydroxylamine (NDHA) and 150 ml of methyl isobutyl ketone (MIBK) were used respectively. A palladium-charcoal catalyst (E106R manufactured by Degussa) with a palladium content of 1.02% by weight was used as the hydrogenation catalyst. As activated carbon, synthetic activated carbons from Degussa or Merck with different specific surface areas and ash contents as well as various activated carbons from natural raw materials were used. Comparative Examples 42 to 45 show that N-
(1,3-dimethylbutyl)-N'-phenyl-p
- It clearly shows that the yield of phenylenediamine (DBPPD) is lower.

【表】【table】

【表】 X 比較例
例 46〜55 結果が第5表中に示されている次の例は、本発
明方法の際、活性炭触媒を添加すると、使用水素
添加触媒は、多量のN−フエニル−N′−置換P
−フエニレンジアミン(最終生成物)の存在にお
いても、その活性を十分に保持するので、同じ物
を更に使用する際、新しい水素添加触媒を全く加
えないか又は比較的少量加えるだけで、本来の活
性に再び達するということを示している。更に、
生じる反応水が還元的アルキル化に使用したケト
ンに全く溶けないか又はほんの僅かしかとけず、
補助溶剤の添加なしには第2の水性相を形成する
ような場合には、付加的な、不活性溶剤(補助溶
剤)は有利な影響を示す。 反応は、既に例22〜32に記載の1.5−装置中
で実施した。反応温度は75〜100℃、水素圧は9
〜10バール、反応時間は1.5時間、撹拌速度は
1000〜1500r.p.mであつた。それぞれのサイクル
の後、反応混合物の分析測定のために少量の試料
をそれぞれ採取し、次いで、それぞれp−ニトロ
ソ−ジフエニルヒドロキシルアミン(NDHA)
10g、シクロヘキサノン及び補助溶剤各50mlから
成る次のチヤージ、並びにそれぞれの実験により
活性炭触媒又は新しいパラジウム−炭−触媒の付
加量を入口弁を介し、すでに反応し終わつた反応
混合物中にH2−圧下に導入した。この実験を全
体で10回以上実施すると、反応の終りにp−ニト
ロソ−ジフエニルヒドロキシルアミン(NDHA)
全100gがシクロヘキサノンと還元的アルキル化
を行なつた。
[Table] N′-substitution P
- It retains its activity well in the presence of phenylenediamine (final product), so that when the same is used further, no or only a relatively small amount of fresh hydrogenation catalyst is added, and the original This indicates that it has regained its activity. Furthermore,
The resulting water of reaction is completely insoluble or only slightly soluble in the ketone used in the reductive alkylation,
Additional, inert solvents (co-solvents) have a beneficial effect in those cases in which a second aqueous phase would be formed without the addition of co-solvents. The reaction was carried out in the 1.5-apparatus already described in Examples 22-32. Reaction temperature is 75-100℃, hydrogen pressure is 9
~10 bar, reaction time 1.5 h, stirring speed
It was 1000-1500r.pm. After each cycle, a small sample is taken for analytical determination of the reaction mixture and then each p-nitroso-diphenylhydroxylamine (NDHA)
A subsequent charge consisting of 10 g, cyclohexanone and 50 ml each of cosolvent, and in each experiment an additional amount of activated carbon catalyst or fresh palladium on charcoal catalyst, was added via the inlet valve into the already reacted reaction mixture under H 2 -pressure. It was introduced in If this experiment is performed more than 10 times in total, p-nitroso-diphenylhydroxylamine (NDHA) is produced at the end of the reaction.
A total of 100 g underwent reductive alkylation with cyclohexanone.

【表】【table】

【表】 CPPD=N−フエニル−N′−シクロヘキシル−p
−フエニレンジアミン
例56 (比較例) 英国特許第1295672号明細書例1の追実験 p−ニトロソ−ジフエニルヒドロキシルアミン
(NDHA)50gを活性炭上の3%パラジウム5g
(E10R、Degussa:NDHAに対し0.3%Pdに相
当)と共に、錨型撹拌機、ガス導入管、圧力計、
過圧弁及び底部流出弁を装備している2−特殊
鋼オートクレーブ中でアセトン790ml中に懸濁さ
せた。オートクレーブから完全に酸素痕跡を除去
した後、水素50バールを圧入し、60℃に加熱する
(加熱時間15分)ことにより反応を開始させた。
60℃で1時間保持した後、30分以内に温度を150
℃に高め、その後95℃に低下させ(15分)、95℃
に6時間保持した。その後、反応器を冷却し、水
素保護ガス下に、内容物を触媒から過により分
離した。溶剤を留去した後に、灰褐色の固体物質
93.25%(所望N−イソプロピル−N′−フエニル
−p−フエニレンジアミン(IPPD)に対し)が
残留した。この反応混合物を定量的に分析測定し
た。これは次の組成を有した。 N−イソプロピル−N′−フエニル−p−フエ
ニレンジアミン 77.90% N−イソプロピル−N′−シクロヘキシル−p
−フエニレンジアミン 6.95% 4−アミノ−ジフエニルアミン 2.10% N,N′−ジイソプロピル−p−フエニレンジ
アミン 0.96% N−フエニル−N,N′−ジイソプロピル−p
−フエニレンジアミン 0.95% N−フエニル−N′−ジイソプロピル−p−フ
エニレンジアミン 0.65% p−アニリノ−シクロヘキサノン 0.65% 更に、この混合物は、主に4−イソプロピルア
ミノ−ジフエニルアミン−単位から成るポリマー
化合物2.84%を含有した。特に、高圧及び高温に
おいて生じる、所望N−イソプロピル−N′−フ
エニル−p−フエニレンジアミンから非常に分離
することの困難な、核水素化された化合物が存在
する。更に、使用アセトンの約18%がイソプロパ
ノールに変換した。 例 57〜68 例1〜9で記載した方法でp−ニトロソ−ジフ
エニルヒドロキシルアミン(NDHA)20g
(93.2mMol)をメチルイソブチルケトン
(MIBK)及び硫化白金−触媒(Degussa社製の
F103RS、硫化白金−含有量5重量%)と最高温
度100℃及び水素圧9〜10バールで反応させた。
撹拌速度は1500r.p.m.であつた。反応時間は45分
間。活性炭は比表面積1050m2/gで灰分含有量
0.6%(メルク社製の活性炭“純粋”)であつた。 40〜50℃に冷却した後、オートクレーブの圧力
を除去し、僅かな窒素圧下に触媒及び場合により
活性炭から別した。常用の方法パラメーター及
び得られた反応混合物のガスクロマトグラフイに
より定量的に調べた組成を次の第6表に示す。
[Table] CPPD=N-phenyl-N'-cyclohexyl-p
-Phenylenediamine Example 56 (Comparative example) Follow-up experiment to Example 1 of British Patent No. 1295672 50 g of p-nitroso-diphenylhydroxylamine (NDHA) and 5 g of 3% palladium on activated carbon
(E10R, Degussa: equivalent to 0.3% Pd for NDHA), along with an anchor stirrer, gas introduction pipe, pressure gauge,
Suspended in 790 ml of acetone in a 2-stainless steel autoclave equipped with an overpressure valve and a bottom drain valve. After completely removing traces of oxygen from the autoclave, the reaction was started by pressurizing 50 bar of hydrogen and heating to 60° C. (heating time 15 minutes).
After holding at 60℃ for 1 hour, increase the temperature to 150℃ within 30 minutes.
Increase to 95°C, then lower to 95°C (15 min), 95°C
It was held for 6 hours. Thereafter, the reactor was cooled and the contents were separated from the catalyst by filtration under hydrogen protective gas. After distilling off the solvent, a gray-brown solid substance
93.25% (based on desired N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD)) remained. The reaction mixture was analyzed quantitatively. It had the following composition: N-isopropyl-N'-phenyl-p-phenylenediamine 77.90% N-isopropyl-N'-cyclohexyl-p
-Phenylenediamine 6.95% 4-Amino-diphenylamine 2.10% N,N'-diisopropyl-p-phenylenediamine 0.96% N-phenyl-N,N'-diisopropyl-p
-phenylenediamine 0.95% N-phenyl-N'-diisopropyl-p-phenylenediamine 0.65% p-anilino-cyclohexanone 0.65% In addition, this mixture contains a polymeric compound consisting mainly of 4-isopropylamino-diphenylamine units 2.84 %. In particular, there are nuclear hydrogenated compounds which occur at high pressures and temperatures and are very difficult to separate from the desired N-isopropyl-N'-phenyl-p-phenylenediamine. Additionally, approximately 18% of the acetone used was converted to isopropanol. Examples 57-68 20 g p-nitroso-diphenylhydroxylamine (NDHA) as described in Examples 1-9.
(93.2mMol) of methyl isobutyl ketone (MIBK) and platinum sulfide catalyst (Degussa)
F103RS, platinum sulfide - content 5% by weight) at a maximum temperature of 100 DEG C. and a hydrogen pressure of 9-10 bar.
The stirring speed was 1500 rpm. Reaction time is 45 minutes. Activated carbon has a specific surface area of 1050 m 2 /g and ash content.
0.6% (activated carbon “pure” manufactured by Merck & Co.). After cooling to 40-50°C, the autoclave was depressurized and separated from the catalyst and optionally activated carbon under slight nitrogen pressure. The conventional process parameters and the composition determined quantitatively by gas chromatography of the reaction mixture obtained are shown in Table 6 below.

【表】【table】

Claims (1)

【特許請求の範囲】 1 p−ニトロソ−ジフエニルヒドロキシルアミ
ンを、水素と炭素上のパラジウム又は硫化白金と
の存在下に、かつ場合により不活性溶剤の存在下
に、アルデヒド又はケトンで還元的にアルキル化
することにより非対称N−フエニル−N′−置換
p−フエニレンジアミンを製造するにあたり、水
素添加触媒を、使用p−ニトロソ−ジフエニルヒ
ドロキシルアミンに対しパラジウムもしくは硫化
白金1重量%以下の量で、かつ共触媒として、少
なくとも700m2/gの比表面積を有し、灰分含量
7.5重量%以下の活性炭を使用することを特徴と
する、非対称N−フエニル−N′−置換p−フエ
ニレンジアミンの製法。 2 水素添加触媒として、パラジウム又は硫化白
金を使用p−ニトロソ−ジフエニルヒドロキシル
アミンに対し0.05〜0.2重量%の量で使用する、
特許請求の範囲第1項記載の方法。 3 活性炭−触媒の量が使用p−ニトロソ−ジフ
エニルヒドロキシルアミンに対して10〜200重量
%である、特許請求の範囲第1項又は第2項記載
の方法。 4 アルデヒドもしくはケトン量がp−ニトロソ
−ジフエニルヒドロキシルアミン1当量当り2〜
10当量である、特許請求の範囲第1項から第3項
までのいずれか1項に記載の方法。 5 反応を不活性溶剤の存在において実施する、
特許請求の範囲第1項から第4項までのいずれか
1項に記載の方法。 6 不活性溶剤として、メタノール、エタノー
ル、イソプロパノール、プロパノール、ブタノー
ル、ペンタノール、イソペンタノール又は4−メ
チルペンタノール−2を使用する、特許請求の範
囲第5項記載の方法。 7 反応を、温度25〜125℃で、水素圧1〜150バ
ールで実施する、特許請求の範囲第1項から第6
項までのいずれか1項に記載の方法。 8 反応を、温度40〜100℃で、水素圧7〜12バ
ールで実施する、特許請求の範囲第1項から第7
項までのいずれか1項に記載の方法。
[Claims] 1. p-Nitroso-diphenylhydroxylamine is reductively treated with an aldehyde or ketone in the presence of hydrogen and palladium on carbon or platinum sulfide, and optionally in the presence of an inert solvent. In producing the asymmetric N-phenyl-N'-substituted p-phenylenediamine by alkylation, the hydrogenation catalyst is added in an amount of up to 1% by weight of palladium or platinum sulfide based on the p-nitroso-diphenylhydroxylamine used. and as a cocatalyst, having a specific surface area of at least 700 m 2 /g and an ash content of
A process for producing asymmetric N-phenyl-N'-substituted p-phenylenediamine, characterized in that 7.5% by weight or less of activated carbon is used. 2 Palladium or platinum sulfide is used as a hydrogenation catalyst in an amount of 0.05 to 0.2% by weight based on p-nitroso-diphenylhydroxylamine,
A method according to claim 1. 3. Process according to claim 1 or 2, wherein the amount of activated carbon catalyst is 10 to 200% by weight, based on the p-nitroso-diphenylhydroxylamine used. 4 The amount of aldehyde or ketone is 2 to 1 equivalent of p-nitroso-diphenylhydroxylamine.
A method according to any one of claims 1 to 3, wherein the amount is 10 equivalents. 5. carrying out the reaction in the presence of an inert solvent;
A method according to any one of claims 1 to 4. 6. The method according to claim 5, wherein methanol, ethanol, isopropanol, propanol, butanol, pentanol, isopentanol or 4-methylpentanol-2 is used as the inert solvent. 7. Claims 1 to 6, wherein the reaction is carried out at a temperature of 25 to 125°C and a hydrogen pressure of 1 to 150 bar.
The method described in any one of the preceding paragraphs. 8. Claims 1 to 7, wherein the reaction is carried out at a temperature of 40 to 100°C and a hydrogen pressure of 7 to 12 bar.
The method described in any one of the preceding paragraphs.
JP4441179A 1978-04-15 1979-04-13 Manufacture of asymmetrical nnphenylln**substituted ppphenylenediamine Granted JPS54138527A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2816460A DE2816460C3 (en) 1978-04-15 1978-04-15 Process for the preparation of asymmetric N-phenyl-N`-substituted p-phenylenediamines

Publications (2)

Publication Number Publication Date
JPS54138527A JPS54138527A (en) 1979-10-27
JPH0122257B2 true JPH0122257B2 (en) 1989-04-25

Family

ID=6037096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4441179A Granted JPS54138527A (en) 1978-04-15 1979-04-13 Manufacture of asymmetrical nnphenylln**substituted ppphenylenediamine

Country Status (19)

Country Link
US (1) US4210602A (en)
JP (1) JPS54138527A (en)
AT (1) AT364812B (en)
BE (1) BE875518A (en)
BR (1) BR7902231A (en)
CA (1) CA1127665A (en)
CS (1) CS203958B2 (en)
DD (1) DD142874A5 (en)
DE (1) DE2816460C3 (en)
ES (1) ES479319A1 (en)
FR (1) FR2422623B1 (en)
GB (1) GB2018775B (en)
HU (1) HU182842B (en)
IT (1) IT1116482B (en)
NL (1) NL7902971A (en)
PL (1) PL117614B1 (en)
RO (1) RO76936A (en)
SU (1) SU841580A3 (en)
ZA (1) ZA791590B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463191A (en) * 1983-09-26 1984-07-31 The Goodyear Tire & Rubber Company Process for the reductive alkylation of aromatic nitro-containing compounds with ketones or aldehydes
JPS60130551A (en) * 1983-12-16 1985-07-12 Kao Corp Preparation of tertiary amine
US7361788B2 (en) * 2006-01-24 2008-04-22 Chemtura Corporation Direct alkylation of N-alkyl-N′-phenyl-p-phenylenediamine
US7531596B2 (en) * 2006-11-30 2009-05-12 The Goodyear Tire & Rubber Company Rubber composition containing antidegradant and MIBK adsorbing activated carbon, and pneumatic tire with component
CN103008008B (en) * 2011-09-22 2015-12-09 江苏圣奥化学科技有限公司 The preparation method of sulfur-bearing Pd/carbon catalyst, its preparation method and p phenylenediamine type antioxidant
EP2841413B1 (en) * 2012-04-26 2017-07-26 Bayer Cropscience AG Process for preparing n-(5-chloro-2-isopropylbenzyl)cyclopropanamine
CN103962155B (en) * 2013-02-05 2018-09-07 圣奥化学科技有限公司 The regeneration method of charcoal supported noble metal catalyst
CN114054057A (en) * 2021-10-26 2022-02-18 中石化南京化工研究院有限公司 Preparation method and evaluation method of catalyst for synthesizing age resister 6PPD (p-phenylene sulfide) sulfide precious metal
CN116351412B (en) * 2023-01-17 2024-05-28 西安凯立新材料股份有限公司 Supported bimetallic catalyst for antioxidant 44PD synthesis and catalytic method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1456497A (en) * 1964-05-25 1966-10-28 Monsanto Co Catalytic condensation of carbonyl compounds with amines
GB1295672A (en) * 1969-01-27 1972-11-08

Also Published As

Publication number Publication date
PL214889A1 (en) 1980-01-14
IT1116482B (en) 1986-02-10
GB2018775B (en) 1982-09-22
FR2422623B1 (en) 1986-05-09
ZA791590B (en) 1980-04-30
ES479319A1 (en) 1980-01-01
RO76936A (en) 1982-03-24
CS203958B2 (en) 1981-03-31
PL117614B1 (en) 1981-08-31
IT7948696A0 (en) 1979-04-11
DE2816460C3 (en) 1981-11-12
CA1127665A (en) 1982-07-13
FR2422623A1 (en) 1979-11-09
NL7902971A (en) 1979-10-17
HU182842B (en) 1984-03-28
AT364812B (en) 1981-11-25
DE2816460A1 (en) 1979-10-25
SU841580A3 (en) 1981-06-23
BE875518A (en) 1979-07-31
ATA200779A (en) 1981-04-15
DD142874A5 (en) 1980-07-16
BR7902231A (en) 1979-12-04
GB2018775A (en) 1979-10-24
DE2816460B2 (en) 1981-04-02
JPS54138527A (en) 1979-10-27
US4210602A (en) 1980-07-01

Similar Documents

Publication Publication Date Title
WO2013041061A1 (en) Sulfur-containing palladium/carbon catalyst, preparation method therefor, and method for preparing p-phenylenediamine antioxidant
IL118312A (en) Process for the catalytic hydrogenation of aromatic nitro compounds using a vanadium compound as co-catalyst
US20130079560A1 (en) Solid base catalyst and method for making and using the same
CZ20004297A3 (en) Process for preparing 4-aminodiphenylamines
KR20090031623A (en) Direct Amination of Hydrocarbons
US20150175523A1 (en) Method for pretreating and using copper-based catalyst
US7323599B2 (en) Process for reductively aminating ketones and aldehydes with aqueous amines and catalysts suitable therefor
JPH0122257B2 (en)
JPS5915021B2 (en) Method for producing catalyst containing nickel and/or cobalt and zinc oxide
JPS596699B2 (en) supported ruthenium catalyst
JPH10511371A (en) Process for producing aliphatic alpha, omega-aminonitrile
US5475141A (en) Process for preparing primary amines from aldehydes
US5196592A (en) Process for the preparation of diphenylamines
CN109180497B (en) Preparation method of N-alkylation product
CA2328116A1 (en) Modification of a hydrogenation catalyst
EP0908447B1 (en) Process for the preparation of cyanoarylmethylamine
CZ46697A3 (en) Process for preparing a mixture of cyclohexyl amine and dicyclohexyl amine
JPH0363249A (en) Production of n-alkyl substituted aminophenols
JPH0322859B2 (en)
JPH08510234A (en) Method for selective hydrogenation of dinitrile compound
US3989743A (en) Process for the preparation of 4,4'-diaminostilbene-2,2'-disulphonic acid
Lanini et al. Synthesis of β-picoline from 2-methylglutaronitrile over supported noble metal catalysts I. Catalyst activity and selectivity
JP2000513269A (en) Catalyst for dehydrogenation of cyclohexanol
CA2029499C (en) Process for preparing n-alkylaminophenols
JP4419636B2 (en) A method for regenerating a reduction catalyst and a method for producing (alkylamino) diphenylamines.