[go: up one dir, main page]

JPH01222469A - Semiconductor memory device and manufacture thereof - Google Patents

Semiconductor memory device and manufacture thereof

Info

Publication number
JPH01222469A
JPH01222469A JP63047945A JP4794588A JPH01222469A JP H01222469 A JPH01222469 A JP H01222469A JP 63047945 A JP63047945 A JP 63047945A JP 4794588 A JP4794588 A JP 4794588A JP H01222469 A JPH01222469 A JP H01222469A
Authority
JP
Japan
Prior art keywords
capacitor
film
electrode
memory device
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63047945A
Other languages
Japanese (ja)
Inventor
Minoru Inoue
實 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63047945A priority Critical patent/JPH01222469A/en
Publication of JPH01222469A publication Critical patent/JPH01222469A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce the area that a capacitor electrode occupies and to enhance high integration of DRAMs by a method wherein a titanium nitride film is provided between a capacitor electrode built of polycrystalline or single-crystal silicon and a dielectric film high in relative dielectric constant. CONSTITUTION:A dynamic memory (DRAM) capacitor of this design employs a highly dielectric film of tantalum oxide or hafnium oxide. A titanium nitride film is positioned between a polycrystalline or single-crystal silicon electrode and the tantalum oxide dielectric film. In the case that one of the capacitor electrodes is made of a high melting-point metal such as W or Si-added W, a W or Si-added W film is selectively deposited on an Si substrate, which is useful in flattening the surfaces on which highly dielectric material is deposited. In this way, a film can be formed very thin, which contributes to the enhancement of capacitor capacity or to the reduction of the capacitor area.

Description

【発明の詳細な説明】 〔概 要〕 本発明は典型的にはITr型DRAMのキャパシタ部の
構造及び製造方法に関し、 キャパシタ電極面積の低減と、それによるDRAMの高
集積化を目的とし、 キャパシタの誘電体膜をT a 20.或いはHf O
zから選ばれた高比誘電率材料、該高比誘電率材料皮膜
と接触する導電体層をTiNとして構成する。
[Detailed Description of the Invention] [Summary] The present invention typically relates to the structure and manufacturing method of a capacitor portion of an ITr type DRAM, and aims to reduce the area of capacitor electrodes and thereby increase the integration of DRAM. A dielectric film of T a 20. Or HfO
A high dielectric constant material selected from Z, and a conductive layer in contact with the high dielectric constant material film are made of TiN.

該TiN層はキャパシタの電極或いはポリSiと’ra
zosの反応を防止するバリヤ膜として機能し、更に、
基板側の電極をWの選択成長で形成する製造方法に於い
ては、該W層が厚く形成されて、上層のカバレッジが改
善される。
The TiN layer is connected to the capacitor electrode or poly-Si.
It functions as a barrier film to prevent the reaction of zos, and
In a manufacturing method in which the electrode on the substrate side is formed by selective growth of W, the W layer is formed thickly, and the coverage of the upper layer is improved.

〔産業上の利用分野〕[Industrial application field]

本発明は典型的には1トランジスタ型のダイナミックメ
モリ装置(D RA M)に関わり、特にそのキャパシ
タの構造及び製造方法に関わる。
The present invention typically relates to a one-transistor type dynamic memory device (DRAM), and particularly relates to the structure and manufacturing method of a capacitor thereof.

1個のMOSトランジスタと1個のキャパシタで構成さ
れるDRAMは高集積化が最も進んでいるICの1つで
あって、1Mビットのメモリ装置が実用に供されつつあ
り、更に4Mビット、16MビットのICが開発される
のも遠い将来ではないと見られている。
DRAM, which consists of one MOS transistor and one capacitor, is one of the most highly integrated ICs, and 1M bit memory devices are being put into practical use, and 4M bit and 16M bit memory devices are being put into practical use. It is believed that the development of bit ICs will not be far in the future.

高集積化は素子の微細化を伴うものであり、1Tr型D
RAMではキャパシタを如何に小型化するかが微細化の
最重要点である。何となれば、キャパシタの静電容量が
小になるとソフトエラーが発生し易くなり、記憶内容に
信顛性を欠くことになるので、容量値を減少させること
なく小型化することが要求されるからである。
High integration is accompanied by miniaturization of elements, and 1Tr type D
In RAM, the most important point in miniaturization is how to miniaturize the capacitor. This is because when the capacitance of a capacitor becomes small, soft errors are more likely to occur and the stored contents become less reliable, so miniaturization is required without reducing the capacitance value. It is.

かかる事情は、複数のトランジスタとキャパシタから成
るメモリセルに於いても同様である。
The same situation applies to memory cells made up of a plurality of transistors and capacitors.

〔従来の技術〕[Conventional technology]

このような相客れない要求を満たす方策として従来開発
されてきたのは、トレンチ型のように基板面に垂直な面
を利用してキャパシタを形成する技術である。即ち、基
板面内の占有面積を小にして且つ電極面積を増すべく、
利用可能な面を深さ方向に得ようとするもので、RIE
のような異方性エツチング技術の進歩によって現実化し
たものである。
A technique that has been developed in the past to meet these unmatched demands is a trench-type capacitor technique in which a capacitor is formed using a surface perpendicular to the substrate surface. That is, in order to reduce the area occupied within the substrate plane and increase the electrode area,
It attempts to obtain usable surfaces in the depth direction, and RIE
This has been made possible by advances in anisotropic etching technology such as .

しかしながら、更に集積密度を向上させるためには、こ
のような形状の改善のみでは十分でなく、他の方策を併
用しなければならない。
However, in order to further improve the integration density, this type of shape improvement alone is not sufficient, and other measures must be used in combination.

そこで考えられるのは、キャパシタの誘電体膜に比誘電
率の大きい材料を用いることによって、電極面積を縮小
することである。通常のDRAMの誘電体膜はSiNと
SiO□を組み合わせたものであるが、これを同じ厚さ
の酸化タンタル(Taミオ、)に替えることができれば
、比誘電率は略S倍であるから、電極面積を約115に
減することが可能となる。TazOsと同じように比誘
電率の大きい材料にHf Ozがある。
A possible solution to this problem is to reduce the electrode area by using a material with a high dielectric constant for the dielectric film of the capacitor. The dielectric film of a normal DRAM is a combination of SiN and SiO□, but if this could be replaced with tantalum oxide (Ta Mio) of the same thickness, the dielectric constant would be approximately S times as large. It becomes possible to reduce the electrode area to about 115. Like TazOs, HfOz is a material with a high dielectric constant.

現実にはTa、O3はSingはどの良好な絶縁性を持
たず、膜厚を大にすることが必要なため、電極面積が上
記数値はど低減されることは期待できない状況にある。
In reality, Ta and O3 do not have any good insulating properties, and it is necessary to increase the film thickness, so it is difficult to expect the electrode area to be reduced by the above numerical value.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

Ta、O,をキャパシタの誘電体膜として利用しようと
する場合、絶縁性が十分でない点以外にも、Stとの反
応を抑制することについての配慮が必要である。T a
 z Osは比較的安定な物質であるが、Siのような
アクティブな物質でキャパシタの電極を形成すると、徐
々に反応が進行して絶縁耐力が低下する。従って第4図
に示されるように、通常のDRAMキャパシタの誘電体
膜をTa、O,に変更するだけでは良好なりRAMを実
現することはできない。該図で1はMOSトランジスタ
、2及び4はキャパシタの電極であってここではポリS
i、3はT a t Os誘電体膜である。
When attempting to use Ta, O, as a dielectric film of a capacitor, in addition to the fact that the insulation properties are insufficient, consideration must be given to suppressing the reaction with St. Ta
Although zOs is a relatively stable substance, when a capacitor electrode is formed of an active substance such as Si, a reaction gradually progresses and the dielectric strength decreases. Therefore, as shown in FIG. 4, it is not possible to realize a good RAM simply by changing the dielectric film of a normal DRAM capacitor to Ta or O. In the figure, 1 is a MOS transistor, 2 and 4 are capacitor electrodes, and here polyS
i, 3 is a T at Os dielectric film.

また、TazOs膜は通常スパッタリングによって堆積
形成されるが、このTa、0.膜は被覆性が悪く、DR
AMのキャパシタのように起伏の大きい表面に被着しな
ければならない場合には、十分な絶縁性を得ることが困
難である。このような事情はHf Ozでも同様である
Further, although the TazOs film is usually deposited by sputtering, this Ta, 0. The film has poor coverage and DR
When it has to be deposited on a highly uneven surface, such as in an AM capacitor, it is difficult to obtain sufficient insulation. The same situation applies to HfOz.

本発明の目的は、高比誘電率材料を誘電体膜とし、ポリ
Siを電極材料とする場合にも、Stとの反応が進行す
ることのないDRAMキャパシタを提供することであり
、他の目的は、高比誘電率材料を誘電体膜として被着形
成すべき表面の起伏を低減して、被覆性の十分でない材
料でも絶縁性の良好なりRAMキャパシタの製造方法を
提供することである。
An object of the present invention is to provide a DRAM capacitor in which reaction with St does not proceed even when a high dielectric constant material is used as a dielectric film and poly-Si is used as an electrode material, and other objects It is an object of the present invention to provide a method for manufacturing a RAM capacitor that reduces the undulations of a surface to be formed by depositing a high dielectric constant material as a dielectric film, and provides good insulation even with a material that does not have sufficient covering properties.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため本発明のDRAMキャパシタは
、 その誘電体膜は酸化タンタル或いは酸化ハフニウムから
選ばれた高誘電材料皮膜であり、該キャパシタの多結晶
或いは単結晶シリコン電極と前記酸化タンタル誘電体膜
との間に窒化チタン皮膜を介在させて成る構造を採って
いる。
To achieve the above object, the DRAM capacitor of the present invention has a dielectric film made of a high dielectric material film selected from tantalum oxide or hafnium oxide, and a polycrystalline or single crystal silicon electrode of the capacitor and the tantalum oxide dielectric film. The structure is such that a titanium nitride film is interposed between the film and the film.

また、キャパシタの一方の電極をW或いはSi添加Wの
ような高融点金属とする場合の製造方法では、CVD法
によってSi基板面にW或いはSi添加Wを選択堆積し
、高誘電率材料を堆積すべき部分の起伏を低減すること
が行われる。
In addition, in a manufacturing method in which one electrode of a capacitor is made of a high melting point metal such as W or Si-doped W, W or Si-doped W is selectively deposited on the Si substrate surface by the CVD method, and a high dielectric constant material is deposited. This is done to reduce the undulations in the desired area.

〔作 用〕[For production]

5tJiiと酸化タンタル或いは酸化ハフニウムとの間
に設けられた窒化チタン膜はバリヤ膜として機能し、両
者の反応を抑止する。また、Wの選択CVD堆積は、S
i基板面が露出した部分のような窪みに対して行われる
ので、その部分の起伏を軽減し、被覆性の悪い材料を堆
積した場合にも厚みの不均一が生じ難くなる。
The titanium nitride film provided between 5tJii and tantalum oxide or hafnium oxide functions as a barrier film and suppresses the reaction between the two. Also, selective CVD deposition of W is
Since it is performed on a depression such as an exposed part of the i-substrate surface, the undulations of that part are reduced, and even if a material with poor coverage is deposited, non-uniformity in thickness is less likely to occur.

〔実施例〕〔Example〕

第1図は本発明の素子の第1の実施例を示す断面模式図
で、1はMOSトランジスタ部分、2及び4はポリSi
電極、3はTa20g膜である。第4図のDRAMと異
なるのは上下のポリSi電極とTa、O,膜の間に夫々
T i Nの薄膜5が介在する点である。
FIG. 1 is a schematic cross-sectional view showing a first embodiment of the device of the present invention, in which 1 is a MOS transistor portion, 2 and 4 are poly-Si
Electrode 3 is a 20g Ta film. The difference from the DRAM of FIG. 4 is that thin films 5 of TiN are interposed between the upper and lower poly-Si electrodes and the Ta, O, and films, respectively.

このようにポリSi[とTa、O,膜との間にTiNの
薄膜を介在させると、TiN膜がバリヤとなってSiと
Ta、0.の反応を抑止するため、誘電体膜の耐圧が低
下せず、信顛性の高いものとなる。
When a thin film of TiN is interposed between the poly-Si[ and Ta, O, . Since this reaction is suppressed, the withstand voltage of the dielectric film does not decrease, resulting in high reliability.

Ta、O,の膜厚は150〜200人程度、TiN薄膜
は500〜1000人でバリヤとしての効果を示す。
The film thickness of Ta, O, and the like is about 150 to 200, and the TiN thin film is effective as a barrier when the thickness is about 500 to 1,000.

ポリSi層の厚さは3000〜4000人である。Ta
、03の比誘電率が大であり、従来の素子と同容量に形
成する場合には素子面積は減することが出来る。
The thickness of the poly-Si layer is 3000-4000. Ta
, 03 have a large dielectric constant, and when formed to have the same capacity as a conventional element, the element area can be reduced.

第2図は本発明の素子の第2の実施例を示す断面模式図
で、1がMOSトランジスタである点は第1図のものと
同じである0本実施例ではSi基板にコンタクトする下
側電極はTi層6であり、Ta、O,膜3との間にTi
Nの薄膜5が設けられている。キャパシタの上側電極は
TiNの薄膜5より厚く形成されたTiN層5′である
。TiNの比抵抗は100μΩ国程度であり、通常のポ
リSiより簿(形成して同程度の導電率とすることがで
き、表面の平坦性を若干改善することが出来る。
FIG. 2 is a schematic cross-sectional view showing a second embodiment of the device of the present invention, in which 1 is the same as the one in FIG. 1 in that it is a MOS transistor. The electrode is a Ti layer 6, and there is a Ti layer between Ta, O, and the film 3.
A thin film 5 of N is provided. The upper electrode of the capacitor is a TiN layer 5' formed thicker than the TiN thin film 5. The specific resistance of TiN is about 100 μΩ, and it can be formed to have the same electrical conductivity as that of ordinary poly-Si, and the surface flatness can be slightly improved.

第3図は本発明の製造方法によって形成されたDRAM
素子の構造を示す断面模式図である。以下該素子の製造
方法を説明するが、MOSトランジスタの部分は通常と
同じ製造方法であるからキャパシタ部分の製造方法のみ
を説明する。
FIG. 3 shows a DRAM formed by the manufacturing method of the present invention.
FIG. 2 is a schematic cross-sectional view showing the structure of an element. The method for manufacturing the device will be described below, but since the MOS transistor portion is manufactured using the same method as usual, only the method for manufacturing the capacitor portion will be described.

MO3I−ランジスタのS/Dでもあるキャパシタ領域
7の表面の絶縁膜を除去し、6弗化タングステンとモノ
シラン(WF4+S i Ha)を原料としHzをキャ
リヤガスとするCVD処理を行う、このCVDではSi
面が露出した部分のみにSt添加Wが選択的に堆積する
ので、キャパシタ領域7上の窪みは堆積するWJti8
で充填される。このSi添添加層層3000人程度0厚
さに堆積することが可能で、これがキャパシタの下側電
極となる。
The insulating film on the surface of the capacitor region 7, which is also the S/D of the MO3I-transistor, is removed, and a CVD process is performed using tungsten hexafluoride and monosilane (WF4+S i Ha) as raw materials and Hz as a carrier gas.
Since St-doped W is selectively deposited only on the exposed surface, the depressions above the capacitor region 7 are covered with deposited WJti8.
filled with. This Si-added layer can be deposited to a thickness of about 3000, and this becomes the lower electrode of the capacitor.

以下公知の堆積法によってTiNの薄膜5、誘電体膜で
あるTazO,膜3、キャパシタの上側電極であるTi
N層5′を形成すれば、第3図の構造の素子が出来上が
る。
The TiN thin film 5, the TazO dielectric film 3, and the Ti film 3, which is the upper electrode of the capacitor, are then deposited by a known deposition method.
By forming the N layer 5', an element having the structure shown in FIG. 3 is completed.

該実施例の製造方法によって形成されたDRAM素子で
は、Taxes膜が比較的起伏の少ない面に堆積される
ことからカバレッジの問題が軽減され、より薄い皮膜と
することが出来る。従ってキャパシタの静電容量を大に
するか、或いはキャパシタの面積を低減・することが可
能である。
In the DRAM device formed by the manufacturing method of this embodiment, the Taxes film is deposited on a relatively flat surface, which reduces coverage problems and allows for a thinner film. Therefore, it is possible to increase the capacitance of the capacitor or reduce the area of the capacitor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明のDRAM素子は、公知の素
子に比べ、より小さい素子面積で同容量のキャパシタを
有することになる。また、本発明のDRAM素子の製造
方法によれば、公知のDRAM素子よりも小型のDRA
M素子が実現する。
As explained above, the DRAM element of the present invention has a smaller element area and a capacitor of the same capacity than the known element. Further, according to the method of manufacturing a DRAM element of the present invention, a DRAM element that is smaller than known DRAM elements can be manufactured.
M element is realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の実施例の素子の構造を示す断面模式図、 第2図は第2の実施例の素子の構造を示す断面模式図、 第3図は本発明の製造方法による素子の構造を示す断面
模式図、 第4図は公知の素子の構成材料を変更したDRAM素子
の断面模式図 であって、 図に於いて 1はMO3Tr部分、 2.4はポリSi層、 3はTa205膜、 5はTiN薄膜、 5′はTiN層、 6はTi層、 7はキャパシタ領域、 8はW層 である。 第1の実施例の素子の構造を示す断面模式図第1図 第2の実施例の素子の構造を示す断面模式図第2図 1  MO5Tr部分 本発明の製造方法による素子の構造を示す断面模式図第
3図 I  MOSTr部分 公知の素子の構成材料を変更したDRAM素子の断面模
式図第4図
FIG. 1 is a schematic cross-sectional diagram showing the structure of the device of the first embodiment, FIG. 2 is a schematic cross-sectional diagram showing the structure of the device of the second embodiment, and FIG. 3 is a schematic cross-sectional diagram showing the structure of the device of the second embodiment. Fig. 4 is a schematic cross-sectional view of a DRAM element in which the constituent materials of a known element are changed; 5 is a TiN thin film, 5' is a TiN layer, 6 is a Ti layer, 7 is a capacitor region, and 8 is a W layer. FIG. 1 is a cross-sectional schematic diagram showing the structure of the device of the first embodiment. FIG. 2 is a schematic cross-sectional diagram showing the structure of the device of the second embodiment. FIG. Figure 3 I Schematic cross-sectional diagram of a DRAM element in which the constituent material of the known element in the MOSTr part is changed Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)MOSトランジスタとキャパシタで構成される半
導体記憶装置に於いて、 前記キャパシタの誘電体膜は酸化タンタル或いは酸化ハ
フニウムから選ばれた高比誘電率材料皮膜であり、 該キャパシタの多結晶或いは単結晶シリコン電極と前記
高比誘電率誘電体膜との間に窒化チタン皮膜を介在させ
て成ることを特徴とする半導体記憶装置。
(1) In a semiconductor memory device composed of a MOS transistor and a capacitor, the dielectric film of the capacitor is a film of a high dielectric constant material selected from tantalum oxide or hafnium oxide, and the dielectric film of the capacitor is a polycrystalline or monocrystalline material film selected from tantalum oxide or hafnium oxide. 1. A semiconductor memory device comprising a titanium nitride film interposed between a crystalline silicon electrode and the high relative permittivity dielectric film.
(2)MOSトランジスタとキャパシタで構成される半
導体記憶装置に於いて、 前記キャパシタの誘電体膜は酸化タンタル或いは酸化ハ
フニウムから選ばれた高誘電材料皮膜であり、 該キャパシタの一方の電極は窒化チタンであり、他方の
電極は高融点金属であって、 該高融点金属電極と前記高比誘電率材料皮膜との間に窒
化チタン皮膜を介在させて成ることを特徴とする半導体
記憶装置。
(2) In a semiconductor memory device composed of a MOS transistor and a capacitor, the dielectric film of the capacitor is a high dielectric material film selected from tantalum oxide or hafnium oxide, and one electrode of the capacitor is made of titanium nitride. A semiconductor memory device, wherein the other electrode is a high melting point metal, and a titanium nitride film is interposed between the high melting point metal electrode and the high relative dielectric constant material film.
(3)MOSトランジスタとキャパシタで構成される半
導体記憶装置の前記キャパシタが形成される領域のシリ
コン基板上に、 選択CVD法によりタングステンを主成分とする層を堆
積した後、 窒化チタン皮膜、前記高比誘電率材料皮膜を順次被着し
てパターニングし、 更に窒化チタン電極層を堆積する工程を包含することを
特徴とする半導体記憶装置の製造方法。
(3) After depositing a layer containing tungsten as a main component by selective CVD on a silicon substrate in a region where the capacitor of a semiconductor memory device composed of a MOS transistor and a capacitor is formed, a titanium nitride film and the above-mentioned 1. A method for manufacturing a semiconductor memory device, comprising the steps of sequentially depositing and patterning a dielectric constant material film, and further depositing a titanium nitride electrode layer.
JP63047945A 1988-03-01 1988-03-01 Semiconductor memory device and manufacture thereof Pending JPH01222469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047945A JPH01222469A (en) 1988-03-01 1988-03-01 Semiconductor memory device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047945A JPH01222469A (en) 1988-03-01 1988-03-01 Semiconductor memory device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01222469A true JPH01222469A (en) 1989-09-05

Family

ID=12789503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047945A Pending JPH01222469A (en) 1988-03-01 1988-03-01 Semiconductor memory device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01222469A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443674A (en) * 1990-06-11 1992-02-13 Matsushita Electron Corp Semiconductor memory device and its manufacture
US5187557A (en) * 1989-11-15 1993-02-16 Nec Corporation Semiconductor capacitor with a metal nitride film and metal oxide dielectric
US5283453A (en) * 1992-10-02 1994-02-01 International Business Machines Corporation Trench sidewall structure
JPH06502967A (en) * 1991-10-15 1994-03-31 モトローラ・インコーポレイテッド Voltage variable capacitor with amorphous dielectric film
US5418180A (en) * 1994-06-14 1995-05-23 Micron Semiconductor, Inc. Process for fabricating storage capacitor structures using CVD tin on hemispherical grain silicon
US5663088A (en) * 1995-05-19 1997-09-02 Micron Technology, Inc. Method of forming a Ta2 O5 dielectric layer with amorphous diffusion barrier layer and method of forming a capacitor having a Ta2 O5 dielectric layer and amorphous diffusion barrier layer
US5665625A (en) * 1995-05-19 1997-09-09 Micron Technology, Inc. Method of forming capacitors having an amorphous electrically conductive layer
FR2775122A1 (en) * 1998-02-13 1999-08-20 United Integrated Circuits Corp METHOD FOR MANUFACTURING A DYNAMIC RAM MEMORY WITH AN UNDERGROUND STRUCTURE
NL1009204C2 (en) * 1998-05-19 1999-11-22 United Integrated Circuits Cor Embedded DRAM produced by simplified, reduced cost process
US6048762A (en) * 1998-02-13 2000-04-11 United Integrated Circuits Corp. Method of fabricating embedded dynamic random access memory
EP1020927A1 (en) * 1999-01-13 2000-07-19 Lucent Technologies Inc. Thin film capacitor comprising a barrier layer between a tantalum pentoxide layer and a copper layer
US6103566A (en) * 1995-12-08 2000-08-15 Hitachi, Ltd. Method for manufacturing semiconductor integrated circuit device having a titanium electrode
US6146959A (en) * 1997-08-20 2000-11-14 Micron Technology, Inc. Method of forming capacitors containing tantalum
US6156638A (en) * 1998-04-10 2000-12-05 Micron Technology, Inc. Integrated circuitry and method of restricting diffusion from one material to another
US6165834A (en) * 1998-05-07 2000-12-26 Micron Technology, Inc. Method of forming capacitors, method of processing dielectric layers, method of forming a DRAM cell
US6191443B1 (en) 1998-02-28 2001-02-20 Micron Technology, Inc. Capacitors, methods of forming capacitors, and DRAM memory cells
US6215144B1 (en) 1998-01-26 2001-04-10 Hitachi, Ltd. Semiconductor integrated circuit device, and method of manufacturing the same
US6239459B1 (en) 1998-05-21 2001-05-29 Micron Technology, Inc. Capacitors, methods of forming capacitors and integrated circuitry
US6281066B1 (en) 1998-12-22 2001-08-28 Hyundai Electronics, Industries Co., Ltd. Method of manufacturing a capacitor in a memory device
WO2004021440A1 (en) * 2002-09-02 2004-03-11 Advanced Micro Devices, Inc. Semiconductor device including a field effect transistor and a passive capacitor having reduced leakage current and an improved capacitance per unit area
US6730559B2 (en) 1998-04-10 2004-05-04 Micron Technology, Inc. Capacitors and methods of forming capacitors
US6821840B2 (en) 2002-09-02 2004-11-23 Advanced Micro Devices, Inc. Semiconductor device including a field effect transistor and a passive capacitor having reduced leakage current and an improved capacitance per unit area
US6953721B2 (en) 2000-02-23 2005-10-11 Micron Technology, Inc. Methods of forming a capacitor with an amorphous and a crystalline high K capacitor dielectric region
JP2007158222A (en) * 2005-12-08 2007-06-21 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
US7773365B2 (en) 2004-04-30 2010-08-10 Hewlett-Packard Development Company, L.P. Dielectric material

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187557A (en) * 1989-11-15 1993-02-16 Nec Corporation Semiconductor capacitor with a metal nitride film and metal oxide dielectric
JPH0443674A (en) * 1990-06-11 1992-02-13 Matsushita Electron Corp Semiconductor memory device and its manufacture
JPH06502967A (en) * 1991-10-15 1994-03-31 モトローラ・インコーポレイテッド Voltage variable capacitor with amorphous dielectric film
US5283453A (en) * 1992-10-02 1994-02-01 International Business Machines Corporation Trench sidewall structure
US5418180A (en) * 1994-06-14 1995-05-23 Micron Semiconductor, Inc. Process for fabricating storage capacitor structures using CVD tin on hemispherical grain silicon
DE19521489A1 (en) * 1994-06-14 1995-12-21 Micron Semiconductor Inc Process for manufacturing a capacitor
DE19521489B4 (en) * 1994-06-14 2005-08-18 Micron Technology, Inc. (N.D.Ges.D. Staates Delaware) Capacitor plate and capacitor, each formed in a semiconductor device, the use of such a capacitor as a storage capacitor of a semiconductor device, methods for producing a capacitor and use of such a method for the production of DRAM devices
US5854734A (en) * 1995-05-19 1998-12-29 Micron Technology, Inc. Capacitor construction
US6103570A (en) * 1995-05-19 2000-08-15 Micron Technology, Inc. Method of forming capacitors having an amorphous electrically conductive layer
US5814852A (en) * 1995-05-19 1998-09-29 Micron Technology, Inc. Method of forming a Ta2 O5 dielectric layer, method of forming a capacitor having a Ta2 O5 dielectric layer, and capacitor construction
US6198124B1 (en) 1995-05-19 2001-03-06 Micron Technology, Inc. Method of forming a Ta2O5 dielectric layer, method of forming a capacitor having a Ta2O5 dielectric layer, and capacitor construction
US5665625A (en) * 1995-05-19 1997-09-09 Micron Technology, Inc. Method of forming capacitors having an amorphous electrically conductive layer
US5663088A (en) * 1995-05-19 1997-09-02 Micron Technology, Inc. Method of forming a Ta2 O5 dielectric layer with amorphous diffusion barrier layer and method of forming a capacitor having a Ta2 O5 dielectric layer and amorphous diffusion barrier layer
US6017789A (en) * 1995-05-19 2000-01-25 Micron Technology, Inc. Method of forming a Ta2 O5 dielectric layer with amorphous diffusion barrier layer and method of forming a capacitor having a b. Ta.su2 O5 dielectric layer with amorphous diffusion barrier layer
US6271558B1 (en) 1995-05-19 2001-08-07 Micron Technology, Inc. Capacitors and capacitor construction
US5812360A (en) * 1995-05-19 1998-09-22 Micron Technology, Inc. Capacitor construction having an amorphous electrically conductive layer
US6103566A (en) * 1995-12-08 2000-08-15 Hitachi, Ltd. Method for manufacturing semiconductor integrated circuit device having a titanium electrode
US6146959A (en) * 1997-08-20 2000-11-14 Micron Technology, Inc. Method of forming capacitors containing tantalum
US6282080B1 (en) 1997-08-20 2001-08-28 Micron Technology, Inc. Semiconductor circuit components and capacitors
US6399438B2 (en) 1998-01-26 2002-06-04 Hitachi, Ltd. Method of manufacturing semiconductor integrated circuit device having a capacitor
US6638811B2 (en) 1998-01-26 2003-10-28 Hitachi, Ltd. Method of manufacturing a semiconductor integrated circuit device having a capacitor
US6215144B1 (en) 1998-01-26 2001-04-10 Hitachi, Ltd. Semiconductor integrated circuit device, and method of manufacturing the same
FR2775122A1 (en) * 1998-02-13 1999-08-20 United Integrated Circuits Corp METHOD FOR MANUFACTURING A DYNAMIC RAM MEMORY WITH AN UNDERGROUND STRUCTURE
US6048762A (en) * 1998-02-13 2000-04-11 United Integrated Circuits Corp. Method of fabricating embedded dynamic random access memory
US6191443B1 (en) 1998-02-28 2001-02-20 Micron Technology, Inc. Capacitors, methods of forming capacitors, and DRAM memory cells
US6891217B1 (en) 1998-04-10 2005-05-10 Micron Technology, Inc. Capacitor with discrete dielectric material
US6995419B2 (en) 1998-04-10 2006-02-07 Micron Technology, Inc. Semiconductor constructions having crystalline dielectric layers
US6730559B2 (en) 1998-04-10 2004-05-04 Micron Technology, Inc. Capacitors and methods of forming capacitors
US6156638A (en) * 1998-04-10 2000-12-05 Micron Technology, Inc. Integrated circuitry and method of restricting diffusion from one material to another
US7166885B2 (en) 1998-04-10 2007-01-23 Micron Technology, Inc. Semiconductor devices
US6165834A (en) * 1998-05-07 2000-12-26 Micron Technology, Inc. Method of forming capacitors, method of processing dielectric layers, method of forming a DRAM cell
NL1009204C2 (en) * 1998-05-19 1999-11-22 United Integrated Circuits Cor Embedded DRAM produced by simplified, reduced cost process
US6255186B1 (en) 1998-05-21 2001-07-03 Micron Technology, Inc. Methods of forming integrated circuitry and capacitors having a capacitor electrode having a base and a pair of walls projecting upwardly therefrom
US6239459B1 (en) 1998-05-21 2001-05-29 Micron Technology, Inc. Capacitors, methods of forming capacitors and integrated circuitry
US6281066B1 (en) 1998-12-22 2001-08-28 Hyundai Electronics, Industries Co., Ltd. Method of manufacturing a capacitor in a memory device
EP1020927A1 (en) * 1999-01-13 2000-07-19 Lucent Technologies Inc. Thin film capacitor comprising a barrier layer between a tantalum pentoxide layer and a copper layer
US7005695B1 (en) 2000-02-23 2006-02-28 Micron Technology, Inc. Integrated circuitry including a capacitor with an amorphous and a crystalline high K capacitor dielectric region
US6953721B2 (en) 2000-02-23 2005-10-11 Micron Technology, Inc. Methods of forming a capacitor with an amorphous and a crystalline high K capacitor dielectric region
US7446363B2 (en) 2000-02-23 2008-11-04 Micron Technology, Inc. Capacitor including a percentage of amorphous dielectric material and a percentage of crystalline dielectric material
US6821840B2 (en) 2002-09-02 2004-11-23 Advanced Micro Devices, Inc. Semiconductor device including a field effect transistor and a passive capacitor having reduced leakage current and an improved capacitance per unit area
WO2004021440A1 (en) * 2002-09-02 2004-03-11 Advanced Micro Devices, Inc. Semiconductor device including a field effect transistor and a passive capacitor having reduced leakage current and an improved capacitance per unit area
CN1299362C (en) * 2002-09-02 2007-02-07 先进微装置公司 Semiconductor device including a field effect transistor and a passive capacitor having reduced leakage current and an improved capacitance per unit area
US7773365B2 (en) 2004-04-30 2010-08-10 Hewlett-Packard Development Company, L.P. Dielectric material
JP2007158222A (en) * 2005-12-08 2007-06-21 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH01222469A (en) Semiconductor memory device and manufacture thereof
JP3207110B2 (en) Capacitor and method of forming the same
US5668041A (en) Method of manufacturing a semiconductor device having a capacitor
JPH08139293A (en) Semiconductor substrate
JP2601022B2 (en) Method for manufacturing semiconductor device
JPH03256358A (en) Semiconductor storage device and its manufacturing method
JP2702121B2 (en) Semiconductor storage device
JP3141231B2 (en) Semiconductor device capacitor and method of manufacturing the same
US6074913A (en) Method for forming a DRAM capacitor
WO2022078004A1 (en) Semiconductor structure and manufacturing method therefor, and memory
JP2002083940A (en) Semiconductor device and manufacturing method thereof
JPH01120050A (en) semiconductor storage device
JP2826717B2 (en) Method for manufacturing capacitor of semiconductor device
JP2001053249A (en) Semiconductor device and manufacture thereof
JPH02260454A (en) Manufacture of memory device
JPH0493067A (en) Semiconductor memory device
US6359296B1 (en) Circuit arrangement with at least one capacitor
KR0180784B1 (en) Method for forming semiconductor capacitor
JPH03230561A (en) Semiconductor device and manufacture thereof
JP3030812B2 (en) Manufacturing method of DRAM capacitor using chemical mechanical polishing method
JPH01289154A (en) Semiconductor integrated circuit device and manufacture thereof
KR100365935B1 (en) Method for forming storage node in semiconductor device
US20230012817A1 (en) Semiconductor structure and method for manufacturing the same, and memory
JP2990824B2 (en) Method for manufacturing semiconductor device
JPH05198743A (en) Semiconductor device