[go: up one dir, main page]

JPH01222218A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH01222218A
JPH01222218A JP4894488A JP4894488A JPH01222218A JP H01222218 A JPH01222218 A JP H01222218A JP 4894488 A JP4894488 A JP 4894488A JP 4894488 A JP4894488 A JP 4894488A JP H01222218 A JPH01222218 A JP H01222218A
Authority
JP
Japan
Prior art keywords
liquid crystal
cell
degrees
angle
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4894488A
Other languages
Japanese (ja)
Inventor
Chiyoaki Iijima
千代明 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4894488A priority Critical patent/JPH01222218A/en
Publication of JPH01222218A publication Critical patent/JPH01222218A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To perform a white-and-black display by specifying the product of the layer thickness and optical anisotropy of nematic liquid crystal and providing the optical anisotropic body other than the nematic liquid crystal between a couple of polarizing plates. CONSTITUTION:This device is equipped with liquid crystal cells 2 and 6 formed by sandwiching the twist-oriented nematic liquid crystal between electrode substrates 3 and 4, and 7 and 8 which are arranged oppositely to each other and the couple of polarizing plates 1 and 10 which are arranged oppositely to each other across the liquid crystal cells 2 and 6, and the nematic liquid crystal is 120-330 deg. in twist angle. Here, the product DELTAn.d of the layer thickness (d) and optical anisotropy DELTAn of the nematic liquid crystal is 1.0-2.0. Then at least one optical anisotropic body is arranged between the couple of polarizing plates 1 and 10. Therefore, the hue at the time of selective voltage application is made black and that at the time of nonselection voltage application is made white. Consequently, the contrast is improved and there is no coloring, so this is adapted to VDT operation.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は液晶表示装置に関する。液晶表示装置は薄形化
、軽9化、省電力化が可能な表示装置としてポータプル
コンピュータ、ワードプロセッサ笠に広く利用されてい
る。
The present invention relates to a liquid crystal display device. Liquid crystal display devices are widely used in portable computers and word processors as display devices that can be made thinner, lighter, and more power efficient.

【従来の技術J 従来のスーパーツィステッドネマチック形液晶表示装置
は、特開昭60−50511号公報のように液晶分子の
ねじれ角が90度以上であり、液晶セルの上下に一対の
偏光板を設け、これらの偏光軸(吸収軸)と、 Tis
基板に隣接する液晶分子の分子軸方向とがなす挟角が3
0度から60度の範囲であった。そのために、液晶セル
に対して電圧無印加状態での外観の色相は白色でなく、
緑色から黄赤色にかけての色相になった。また、選択電
圧印加状態での外観の色相は黒色でなく青色となった。 そのため、非常に見にくく、VDT作業にはむかない。 ここで第3図に従来の液晶表示装置の液晶セルと偏光板
の偏光軸(吸収軸)の方向の関係を示す。 同図において、22は液晶セルの上g14電礪基板のラ
ビング方向、23は液晶セルの下側電極基板のラビング
方向、24は上側偏光板の偏光軸(吸収軸)の方法、2
5は下側偏光板の偏光軸(吸収軸)の方向、26は液晶
セルの液晶分子のねじれ角の方向とその角度、ねじれは
上から下に向かう、27は下側電極基板のラビング方向
22と上側偏光板の偏光軸(吸収軸)の方向24とのな
す角、28は下側電極基板のラビング方向23と下側偏
光板の偏光軸(吸収軸)の方向25とのなす角を示す。 第3図において、角度26を約200度、角度27を4
0度から50度の範囲、角度28を40度から50度の
範囲、さらに液晶のΔn−dを約0.9μmとした時の
液晶表示装置の外観のスペクトルを第4図に示す。同図
において、カーブ■は電圧無印加状態、カーブ1!はl
 / l OOd u t。 y駆動による選択電圧印加状態でのスペクトルであるこ
とを示す。 【発明が解決しようとする課題】 従来技術では液晶表示装置の外観の色相を白くすること
ができなく、緑色から黄赤色にかけての色相で、表示装
置として心理的に受は入れられ難いものであった。更に
選択電圧印加時の色相も黒でなく音色となりこれも表示
装置としては好ましい色相でなかった。そこで、本発明
はこのような問題点を解決するものであり、その目的と
するところは白黒表示ができる液晶表示装置を提供する
ことにある。 〔課題を解決するための手段J 本発明の液晶表示装置は対向して配置する2枚の電極基
板間にねじれ配向したネマチック液晶を挟持してなる液
晶セルと前記液晶セルを挟んで両側に配置された一対の
偏光板を備え、前記ネマチック液晶はねじれ角が120
度から330度の範囲を有する液晶表示装置において、
前記ネマチック液晶の厚層dと前記ネマチック液晶の光
学異方性Δnの積Δn−dが1.0から20の範囲を有
し、前記一対の偏光板の間にす(なくとも−枚の、光?
異方体を備えていることを特徴とする。 〔作 用〕 本発明の液晶表示装置では、一対の偏光板の一方を通過
してきた直線偏光は表示用の液晶セルの液晶層とすくな
くとも一枚の光学異方体を通過することにより、約40
0nmから約70 、On mの範囲の波長域では長軸
方向のほぼそろった楕円偏光となる。楕円偏光の長軸方
向がほぼそろっているために、もう一方の偏光板を通過
した時には、ある波長域だけが吸収されることがない、
そのため偏光板を通過した光は白色に近い色を持つこと
ができる。 しかし、このとき表示用の液晶セルの液晶のねじれ角が
120度未満である場合には十分なコントラストが得ら
れない、また330度より大きいと視野角が狭くなって
しまうという傾向にある。 〔実施例1〕 第1図に、本発明の液晶表示装置の構造をモデル的に示
した断面図を示す、第1図において、lは上側偏光板、
2は光学異方体としての液晶セル(以後、第2セル)、
3は第2セルの上側基板。 4は第2セルの下側基板、5は第2セルの液晶、6は電
圧印加により表示を行なう第1の液晶セル(以後、第1
セル)、7は第1セルの下側電極基板、8は第1セルの
下側電極基板、9は第1セルの液晶、10は下側偏光板
を示したものである。 ここで、第1セルと第2セルは第1図に示す配置とは上
下逆になってもかまわない、第2図は本発明の液晶表示
装置の各軸の関係を示した図である6基板に接する液晶
分子軸の方向を以後ラビング方向として示す、同図にお
いて11は第1セルの下側型4基板のラビング方向、1
2は第1セルの上側7「纒基板のラビング方向、13は
第2セルの下側基板のラビング方向、14は第2セルの
上側基板のラビング方向、15は下側偏光板の偏光軸(
吸収軸)の方向、16は上側偏光板の偏光軸(吸収軸)
の方向、17は上側偏光板の偏光軸(吸収軸)の方向1
6と第2セルの上側基板のラビング方向14とのなす角
度、18は第2セル内の液晶のねじれ角の大きさ、19
は第2セルの下側基板のラビング方向13と第1セル上
側電極基板のラビング方向12とのなす角度、20は第
!セル内の液晶のねじれ角の大きさ、21は第1セルの
下側重陽基板のラビング方向11と下側偏光板の偏光軸
(吸収軸)の方向15とのなす角度である。以後各セル
内の液晶分子のねじれ方向はセルの上から下に向かって
左のねじれ方向を正とする。 又、l/1oOduLy駆動による非選択電圧印加によ
り、透過光量の多い状態をOFF状態、選択電圧印加に
より、透過光量の少ない状態をON状態と記すこととす
る。尚、本光明は1/l 00duty駆動に限定され
たものではない。 第1セルおよび第2セルの液晶としてミクロヘキサン系
液晶を用い、更にねじれ配向をするために、ZLI−8
11(メルク製)、、CB−15(BDH製)を用いた
。 第1セルの液晶のねじれ角20を約200度、Δn−d
を約1.5μm、角度19を約90度、角度17を30
度から60度まで、角度21を30rxか660度まで
の範囲とし、更に第2セルの液晶のねじれ角18を一2
00度、Δn−dを約1.5μmとする時のOFF状態
及びON状態の分光特性を第5図に示す、第5図におい
てカーブ■はOFF状態、カーブ!IはON状態”を示
す、第5図より明らかな様に、OFF状態では各波長域
で高い透過率を示しているため白く、ON状態では各波
長域で低い透過率を示しているため黒くなっている。
[Prior Art J] As disclosed in Japanese Patent Laid-Open No. 60-50511, a conventional super twisted nematic type liquid crystal display device has a twist angle of liquid crystal molecules of 90 degrees or more, and has a pair of polarizing plates above and below a liquid crystal cell. and these polarization axes (absorption axes) and Tis
The included angle between the molecular axis direction of the liquid crystal molecules adjacent to the substrate is 3
It ranged from 0 degrees to 60 degrees. Therefore, the external hue of the liquid crystal cell when no voltage is applied is not white;
The color ranged from green to yellow-red. Furthermore, the external hue in the selective voltage application state was not black but blue. Therefore, it is very difficult to see and is not suitable for VDT work. Here, FIG. 3 shows the relationship between the directions of the polarization axes (absorption axes) of the liquid crystal cell and the polarizing plate of a conventional liquid crystal display device. In the figure, 22 is the rubbing direction of the upper electrode substrate of the liquid crystal cell, 23 is the rubbing direction of the lower electrode substrate of the liquid crystal cell, 24 is the method of the polarization axis (absorption axis) of the upper polarizing plate, 2
5 is the direction of the polarization axis (absorption axis) of the lower polarizing plate, 26 is the direction and angle of the twist angle of the liquid crystal molecules of the liquid crystal cell, the twist is from top to bottom, and 27 is the rubbing direction 22 of the lower electrode substrate. and the direction 24 of the polarization axis (absorption axis) of the upper polarizing plate, and 28 represents the angle between the rubbing direction 23 of the lower electrode substrate and the direction 25 of the polarization axis (absorption axis) of the lower polarizing plate. . In Figure 3, the angle 26 is about 200 degrees and the angle 27 is about 4 degrees.
FIG. 4 shows the spectrum of the appearance of the liquid crystal display device when the angle 28 is in the range of 0 degrees to 50 degrees, the angle 28 is in the range of 40 degrees to 50 degrees, and Δn-d of the liquid crystal is about 0.9 μm. In the same figure, curve ■ is a state in which no voltage is applied, and curve 1! is l
/ l OOd u t. The spectrum is shown in a state where a selective voltage is applied by y drive. [Problems to be Solved by the Invention] In the conventional technology, it is not possible to make the external hue of a liquid crystal display device white, and the hue ranges from green to yellowish red, which is psychologically difficult to accept as a display device. Ta. Furthermore, the hue upon application of the selection voltage was not black but a tone color, which was also not a desirable hue for a display device. SUMMARY OF THE INVENTION The present invention is intended to solve these problems, and its purpose is to provide a liquid crystal display device that can display black and white images. [Means for Solving the Problems J] The liquid crystal display device of the present invention comprises a liquid crystal cell formed by sandwiching twisted oriented nematic liquid crystal between two electrode substrates disposed facing each other, and a liquid crystal cell disposed on both sides with the liquid crystal cell sandwiched therebetween. The nematic liquid crystal has a twist angle of 120
In a liquid crystal display device having a range from 330 degrees to 330 degrees,
The product Δn−d of the thick layer d of the nematic liquid crystal and the optical anisotropy Δn of the nematic liquid crystal is in the range of 1.0 to 20, and there is at least one light beam between the pair of polarizing plates.
It is characterized by having an anisotropic body. [Function] In the liquid crystal display device of the present invention, the linearly polarized light that has passed through one of the pair of polarizing plates passes through the liquid crystal layer of the display liquid crystal cell and at least one optically anisotropic body, so that about 40
In the wavelength range from 0 nm to about 70 nm, the light becomes elliptically polarized light whose long axis direction is almost uniform. Because the long axes of elliptically polarized light are almost aligned, only a certain wavelength range will not be absorbed when it passes through the other polarizing plate.
Therefore, the light that passes through the polarizing plate can have a color close to white. However, if the twist angle of the liquid crystal in the display liquid crystal cell is less than 120 degrees, sufficient contrast cannot be obtained, and if it is greater than 330 degrees, the viewing angle tends to be narrow. [Example 1] FIG. 1 shows a cross-sectional view schematically showing the structure of the liquid crystal display device of the present invention. In FIG. 1, l is an upper polarizing plate;
2 is a liquid crystal cell (hereinafter referred to as the second cell) as an optically anisotropic body;
3 is the upper substrate of the second cell. 4 is the lower substrate of the second cell, 5 is the liquid crystal of the second cell, and 6 is the first liquid crystal cell (hereinafter referred to as the first liquid crystal cell) that performs display by applying a voltage.
7 is a lower electrode substrate of the first cell, 8 is a lower electrode substrate of the first cell, 9 is a liquid crystal of the first cell, and 10 is a lower polarizing plate. Here, the first cell and the second cell may be arranged upside down from the arrangement shown in FIG. 1. FIG. 2 is a diagram showing the relationship of each axis of the liquid crystal display device of the present invention6. The direction of the liquid crystal molecule axis in contact with the substrate will be hereinafter referred to as the rubbing direction. In the figure, 11 is the rubbing direction of the lower mold 4 substrate of the first cell, 1
2 is the rubbing direction of the upper side 7" substrate of the first cell, 13 is the rubbing direction of the lower substrate of the second cell, 14 is the rubbing direction of the upper substrate of the second cell, and 15 is the polarization axis of the lower polarizing plate (
16 is the polarization axis (absorption axis) of the upper polarizing plate
17 is the direction 1 of the polarization axis (absorption axis) of the upper polarizing plate.
6 and the rubbing direction 14 of the upper substrate of the second cell, 18 is the twist angle of the liquid crystal in the second cell, 19
20 is the angle formed by the rubbing direction 13 of the lower substrate of the second cell and the rubbing direction 12 of the upper electrode substrate of the first cell, and 20 is the angle formed by the rubbing direction 13 of the lower substrate of the second cell and the rubbing direction 12 of the upper electrode substrate of the first cell. The twist angle 21 of the liquid crystal in the cell is the angle between the rubbing direction 11 of the lower double positive substrate of the first cell and the direction 15 of the polarization axis (absorption axis) of the lower polarizing plate. Hereinafter, regarding the twist direction of the liquid crystal molecules in each cell, the left twist direction from the top to the bottom of the cell is assumed to be positive. Further, a state in which a large amount of transmitted light is produced by applying a non-selective voltage by l/1oOduLy driving is referred to as an OFF state, and a state in which a small amount of transmitted light is produced by applying a selective voltage is referred to as an ON state. Note that the present invention is not limited to 1/l 00 duty drive. Microhexane-based liquid crystals were used as the liquid crystals in the first and second cells, and ZLI-8 was used to achieve twisted orientation.
11 (manufactured by Merck), and CB-15 (manufactured by BDH) were used. The twist angle 20 of the liquid crystal of the first cell is approximately 200 degrees, Δn-d
is approximately 1.5 μm, angle 19 is approximately 90 degrees, and angle 17 is approximately 30 degrees.
The angle 21 is in the range from 30rx to 660 degrees, and the twist angle 18 of the liquid crystal of the second cell is set to 12 degrees.
Fig. 5 shows the spectral characteristics of the OFF state and ON state when 00 degrees and Δn-d is about 1.5 μm. In Fig. 5, curve ■ is in the OFF state, curve ! As is clear from Figure 5, in the OFF state, it shows high transmittance in each wavelength range, so it is white, and in the ON state, it shows low transmittance in each wavelength range, so it is black. It has become.

【実施例2】 実施例1において第2セルの液晶のねじれ角18を−1
00度、Δn−dを約1.0とし、他の条件は実施例1
と同様に行なう、すると実施例1よりON状態でより黒
色に近い表示ができた。 〔実施例3J 同様にして、実施例1において第2セルの液晶のねじれ
角18を一400度から+100度の範囲、第2セルの
Δn−dを1.0から2.0の範囲とした時、第6図の
斜線の部分において、OFF状態でより白く、ON状態
でより黒くなっており、望ましい範囲が確認された。こ
こで、第6図の斜線以外の部分は表示ができない範囲を
示すものではない。 【実施例4] 実施例1において第1の液晶のねじれ角20を約200
度、第1セルのΔn−dを約2.0μm、角度19を約
90度、角度lフを30度から60度まで、角度2Iを
30度から60度までの範囲とすると第2セルのねじれ
角18とΔn−dを第7図の斜線の部分に示したとき、
OFF状態でより白く、ON状態でより黒くなった。こ
こでいう斜線の領域も、前述したように、表示ができな
い領域ではなく、斜線領域に比べて、コントラストが劣
るところである。従って、表示装置として見た場合には
斜線領域が望ましい。 (実施例5] 実施例1において、第2セルの代わりにポリカーボネー
トからなるl軸性高分子フィルムを用い、フィルムのΔ
n−dは約1.5μmであった。このとき、視野角は狭
くなったが、OFF状態で白く、ON状態で黒くなった
。1軸性高分子フィルムとしては、DAC,PET、二
酢酸セルロース、PVA、ポリアミド、ポリエーテルサ
ルフォン、アクリル、ポリサルフォン、ポリイミド、ポ
リオレフィン系などのl@延伸フィルムが゛使用できる
。 〔実施例6] 実施例1において、下側偏光板10の下に、アルミ蒸着
したフィルムを設け、反射型の液晶表示装置とした。こ
の場合も、同様に白黒表示が得られた。 〔実施例7〕 実施例1において、第1セルの液晶のねじれ角20を約
130度、第1セルのΔn−dを約1゜5μm、角度1
9を約90度、角度17を30度から60度まで、角度
21を30度から60度。 第2セルの液晶のねじれ角18を一120度、第2セル
のΔn−dを約1.3μmとした。実施例1に比べ、コ
ントラストが悪くなるものの、白黒表示が得られ、実に
明るい外観となった。 〔実施例8〕 実施例1において、第1セルの液晶のねじれ角20を約
270度、Δn−dを約1.0μm、角lXl9を約9
0度、角度17を20度から50度まで、角度21を2
0度から50度、第2セルの液晶のねじれ角18を一2
70度、Δn−dを約10とした。白黒表示が得られ、
更に実施例1に比ベコントラストが向−卜した。 〔実 施 例 9〕 実施例5において、Δn−dが約0.8μmである一軸
性高分子フィルムを二枚重ねた。実施例5と同様な結果
が得られた。 〔実  施  例  +03 実施例9で用いた二枚のフィルムを軸方向のなす角が3
0度になるように設けた。すると実施例9に比べ、コン
トラストが良くなった。 〔実施例11) 実施例1において、第2セルの代わりに、コレステリッ
クフィルムを用いた。すると、外観が白くなった。 (実施例12] 実施例1において、上側偏光板lをグレータイプからパ
ープルカラー偏光板を用いた。すると、外観がより白色
になり、明るくなった。 【発明の効果〕 以に述ぺたように本発明によれば2選択電圧印加時の色
相を黒く、非選択電圧印加時の色相を白くすることがで
きる。それによりコントラストが良くなり、また色付き
がないのでVDT作業に適している。
[Example 2] In Example 1, the twist angle 18 of the liquid crystal of the second cell is -1
00 degrees, Δn-d is approximately 1.0, and other conditions are as in Example 1.
In the same manner as in Example 1, a display closer to black could be obtained in the ON state than in Example 1. [Example 3J Similarly, in Example 1, the twist angle 18 of the liquid crystal of the second cell was set in the range of -400 degrees to +100 degrees, and Δn-d of the second cell was set in the range of 1.0 to 2.0. At the time, the shaded area in FIG. 6 was whiter in the OFF state and blacker in the ON state, confirming a desirable range. Here, the areas other than the hatched areas in FIG. 6 do not indicate areas that cannot be displayed. [Example 4] In Example 1, the twist angle 20 of the first liquid crystal was set to about 200.
If Δn-d of the first cell is approximately 2.0 μm, angle 19 is approximately 90 degrees, angle l is in the range of 30 degrees to 60 degrees, and angle 2I is in the range of 30 degrees to 60 degrees, then the second cell is When the torsion angle 18 and Δn-d are shown in the shaded area in Fig. 7,
It became whiter in the OFF state and blacker in the ON state. As mentioned above, the shaded area here is not an area that cannot be displayed, but is an area where the contrast is inferior to the shaded area. Therefore, when viewed as a display device, the shaded area is desirable. (Example 5) In Example 1, an l-axis polymer film made of polycarbonate was used instead of the second cell, and the Δ of the film was
nd was approximately 1.5 μm. At this time, the viewing angle became narrower, but it became white in the OFF state and black in the ON state. As the uniaxial polymer film, oriented films of DAC, PET, cellulose diacetate, PVA, polyamide, polyethersulfone, acrylic, polysulfone, polyimide, polyolefin, etc. can be used. [Example 6] In Example 1, an aluminum vapor-deposited film was provided under the lower polarizing plate 10 to obtain a reflective liquid crystal display device. In this case, a black and white display was similarly obtained. [Example 7] In Example 1, the twist angle 20 of the liquid crystal of the first cell was approximately 130 degrees, the Δn-d of the first cell was approximately 1°5 μm, and the angle 1
9 is about 90 degrees, angle 17 is from 30 degrees to 60 degrees, and angle 21 is from 30 degrees to 60 degrees. The twist angle 18 of the liquid crystal of the second cell was set to 1120 degrees, and Δn-d of the second cell was set to about 1.3 μm. Although the contrast was worse than in Example 1, a black and white display was obtained, resulting in a truly bright appearance. [Example 8] In Example 1, the twist angle 20 of the liquid crystal of the first cell was approximately 270 degrees, Δn-d was approximately 1.0 μm, and the angle lXl9 was approximately 9
0 degrees, angle 17 from 20 degrees to 50 degrees, angle 21 to 2
From 0 degrees to 50 degrees, the twist angle of the second cell's liquid crystal is 18 - 2
70 degrees, and Δn-d was approximately 10. A black and white display is obtained,
Furthermore, the contrast was improved compared to Example 1. [Example 9] In Example 5, two uniaxial polymer films with Δn-d of about 0.8 μm were stacked. Similar results to Example 5 were obtained. [Example +03 The angle between the two films used in Example 9 in the axial direction was 3
It was set so that it was 0 degrees. As a result, the contrast was improved compared to Example 9. [Example 11] In Example 1, a cholesteric film was used instead of the second cell. Then, the appearance became white. (Example 12) In Example 1, a purple color polarizing plate was used instead of the gray type for the upper polarizing plate l.As a result, the appearance became whiter and brighter. [Effects of the invention] As described below. According to the present invention, the hue when two selection voltages are applied can be made black, and the hue when non-selection voltages are applied can be made white.This improves the contrast, and since there is no coloration, it is suitable for VDT work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の液晶表示装置の構造をモデル的に説明
した断面図、同図において、lは上側偏光板、2は第2
セル、3は第2セルの上側基板、4は第2セルの下側基
板、5は第2セルの液晶、6は第1セル、7は第1セル
の上側重陽基板、8は第1セルの丁側電陽基板、9は第
1セルの液晶、10は一ド側偏光板を示したものである
。 第2図は、本発明の液晶表示装置の各軸の関係を示した
図である。同図において、11は第1セルのFlIII
I電陽晶仮のラビング方向、12は第1セルのト側電極
基板のラビング方向、13は第2セルの下側基板のラビ
ング方向、14は第2セルの上側基板のラビング方向、
15は下側偏光板の偏光軸(吸収軸)の方向、16は上
側偏光板の偏光軸(吸収軸)の方向、17は上側偏光板
の偏光軸(吸収軸)の方向と第2セルの上側基板のラビ
ング方向とのなす角度、18は第2セルの液晶分子のね
じれ角の大きさ、19は第2セルの下側基板のラビング
方向と第1セルの上側重陽基板のラビング方向とのなす
角度、20は第1セルの液晶分子のねじれ角の大きさ、
21は第1セルの下側重陽基板のラビング方向と下側偏
光板の偏光軸(吸収軸)とのなす角度を示したものであ
る。 第3図は従来の液晶表示装置の各軸の関係を示した図。 第4図は従来の液晶表示装置における波長と透過光強度
との関係を示した図。 第5図は本発明の液晶表示装置における波長と透過光強
度との関係を示した図。 第6図は本発明の実施例の第1セルと第2セルの関係を
示した図。 第7図は本発明の実施例の第1セルと第2セルの関係を
示した図。 以上 出願人 セイコーエプソン株式会社 第1図 第2図 ψ 第3図 張長 第4図 (%) 第5図 第1 r= ILfl針ist、t Zoo度第6図
FIG. 1 is a cross-sectional view illustrating the structure of the liquid crystal display device of the present invention as a model. In the figure, l is the upper polarizing plate, 2 is the second
3 is the upper substrate of the second cell, 4 is the lower substrate of the second cell, 5 is the liquid crystal of the second cell, 6 is the first cell, 7 is the upper doublet substrate of the first cell, 8 is the first cell 9 is the liquid crystal of the first cell, and 10 is the polarizing plate on the first side. FIG. 2 is a diagram showing the relationship between each axis of the liquid crystal display device of the present invention. In the same figure, 11 is FlIII of the first cell.
12 is the rubbing direction of the G-side electrode substrate of the first cell, 13 is the rubbing direction of the lower substrate of the second cell, 14 is the rubbing direction of the upper substrate of the second cell,
15 is the direction of the polarization axis (absorption axis) of the lower polarizing plate, 16 is the direction of the polarization axis (absorption axis) of the upper polarizing plate, and 17 is the direction of the polarization axis (absorption axis) of the upper polarizing plate and the direction of the second cell. 18 is the angle formed by the rubbing direction of the upper substrate, 18 is the size of the twist angle of the liquid crystal molecules of the second cell, and 19 is the angle between the rubbing direction of the lower substrate of the second cell and the rubbing direction of the upper double positive substrate of the first cell. The angle 20 is the size of the twist angle of the liquid crystal molecules in the first cell,
21 indicates the angle between the rubbing direction of the lower double Yang substrate of the first cell and the polarization axis (absorption axis) of the lower polarizing plate. FIG. 3 is a diagram showing the relationship between each axis of a conventional liquid crystal display device. FIG. 4 is a diagram showing the relationship between wavelength and transmitted light intensity in a conventional liquid crystal display device. FIG. 5 is a diagram showing the relationship between wavelength and transmitted light intensity in the liquid crystal display device of the present invention. FIG. 6 is a diagram showing the relationship between the first cell and the second cell in the embodiment of the present invention. FIG. 7 is a diagram showing the relationship between the first cell and the second cell in the embodiment of the present invention. Applicant: Seiko Epson Corporation Figure 1 Figure 2 ψ Figure 3 Length Figure 4 (%) Figure 5 1 r= ILfl needle ist, t Zoo degree Figure 6

Claims (1)

【特許請求の範囲】[Claims] 対向して配置する2枚の電極基板間にねじれ配向したネ
マチック液晶を挟持してなる液晶セルと、前記液晶セル
を挟んで両側に配置された一対の偏光板とを備え、前記
ネマチック液晶はねじれ角が120度から330度の範
囲を有する液晶表示装置において、前記ネマチック液晶
の層厚dと前記ネマチック液晶の光学異方性Δnの積Δ
n・dが1.0から2.0の範囲を有し、前記一対の偏
光板の間にすくなくとも1枚の前記ネマチック液晶以外
の光学異方体を備えていることを特徴とする液晶表示装
置。
A liquid crystal cell has a twisted oriented nematic liquid crystal sandwiched between two opposing electrode substrates, and a pair of polarizing plates are arranged on both sides of the liquid crystal cell, and the nematic liquid crystal is twisted. In a liquid crystal display device having an angle in the range of 120 degrees to 330 degrees, the product Δ of the layer thickness d of the nematic liquid crystal and the optical anisotropy Δn of the nematic liquid crystal
A liquid crystal display device characterized in that n·d has a range of 1.0 to 2.0, and at least one optically anisotropic body other than the nematic liquid crystal is provided between the pair of polarizing plates.
JP4894488A 1988-03-02 1988-03-02 Liquid crystal display device Pending JPH01222218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4894488A JPH01222218A (en) 1988-03-02 1988-03-02 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4894488A JPH01222218A (en) 1988-03-02 1988-03-02 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH01222218A true JPH01222218A (en) 1989-09-05

Family

ID=12817388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4894488A Pending JPH01222218A (en) 1988-03-02 1988-03-02 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH01222218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013752A1 (en) * 1994-10-26 1996-05-09 Seiko Epson Corporation Liquid crystal device and electronic appliance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013752A1 (en) * 1994-10-26 1996-05-09 Seiko Epson Corporation Liquid crystal device and electronic appliance
US5838408A (en) * 1994-10-26 1998-11-17 Seiko Epson Corporation Liquid crystal device and electronic equipment using the same

Similar Documents

Publication Publication Date Title
US5044732A (en) Liquid-crystal display device
JPH1055003A (en) Twisted liquid crystal device, assembly and liquid crystal device
JPH0219834A (en) Liquid crystal display element
JPH02124529A (en) Two-layer type liquid crystal display device
JPS63271415A (en) liquid crystal display device
JPH01222218A (en) Liquid crystal display device
JP2813222B2 (en) Liquid crystal display device
JP3103223B2 (en) Color liquid crystal display
JP3728409B2 (en) Liquid crystal display device
KR100981870B1 (en) LCD with color polarizer
JP3297606B2 (en) Color liquid crystal display panel
JPH05107534A (en) Liquid crystal display element
JP3295600B2 (en) Color liquid crystal display panel
JPH09258212A (en) Liquid crystal display device
JPH0815696A (en) Color liquid crystal display element
JP2000066191A (en) Liquid crystal display
JPH08190081A (en) Color liquid crystal display element
JPH0373921A (en) Liquid crystal display device
JPH0519251A (en) Liquid crystal display device
JP2825903B2 (en) Liquid crystal display device
JP2825902B2 (en) Liquid crystal display device
JP2645745B2 (en) Ferroelectric liquid crystal display device
JPS63271421A (en) Liquid crystal optical device
JPH01137231A (en) Liquid crystal display element
JPH07175058A (en) Liquid crystal display element