[go: up one dir, main page]

JPH01215722A - Superconducting material and compound thereof - Google Patents

Superconducting material and compound thereof

Info

Publication number
JPH01215722A
JPH01215722A JP63042697A JP4269788A JPH01215722A JP H01215722 A JPH01215722 A JP H01215722A JP 63042697 A JP63042697 A JP 63042697A JP 4269788 A JP4269788 A JP 4269788A JP H01215722 A JPH01215722 A JP H01215722A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting material
composite oxide
powder
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63042697A
Other languages
Japanese (ja)
Inventor
Hisao Hattori
久雄 服部
Naoharu Fujimori
直治 藤森
Hideo Itozaki
糸崎 秀夫
Shuji Yatsu
矢津 修示
Tetsuji Jodai
哲司 上代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63042697A priority Critical patent/JPH01215722A/en
Publication of JPH01215722A publication Critical patent/JPH01215722A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a high-temperature superconductor material capable of reducing restriction concerning utilization of superconductor technique by cooling equipment and stably utilizing superconducting phenomenon, by forming a complex oxide having specific composition of Bi-(Ca and Sr)-Cu system. CONSTITUTION:The aimed superconducting material mainly contains a complex oxide having composition expressed by the formula Bi2-x(Ca and Sr)1-xCu2O7-y (ratio of Sr to Ca is 10-90atom.% and x and y are numbers each satisfying the equations 0<=x<=1, 0<=y<=1). The superconducting material is obtained according to the following method: Process sintering a blend obtained by blending raw material powders selected from each element of Sr, Ca, Bi, and Cu and compounds containing at least one among these element so as to contain all of these elements or calcined powder obtained by calcining the above-mentioned blend and then pulverizing the calcined product at least once.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導材料およびその製造方法に関する。よ
り詳細には、本発明は、極めて高い温度で超電導現象を
示す新規な超電導材料並びにその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to superconducting materials and methods for producing the same. More particularly, the present invention relates to a novel superconducting material that exhibits superconducting phenomena at extremely high temperatures, and a method for producing the same.

従来の技術 特定の物質は、超電導現象下で反磁性を示し、内部に有
限な定常電流が流れているにも関わらず電位差が現れな
くなる。
BACKGROUND OF THE INVENTION Certain materials exhibit diamagnetic properties under superconducting phenomena, and no potential difference appears even though a finite steady current flows inside them.

この超電導現象の応用分野は、MHD発電、電力送電、
電力貯蔵等の電力分野、或いは、磁気浮上列車、電磁気
推進船舶等の動力分野、更に、磁場、高周波、放射線等
の超高感度センサとしてNMR,π中間子治療、高エネ
ルギー物理実験装置などの計測の分野等、極めて広範な
分野に渡っており、更に、ジョセフソン素子に代表され
るエレクトロニクスの分野でも、単に消費電力の低減の
みならず、動作の極めて高速な素子を実現し得る技術と
して期待されている。
The fields of application of this superconducting phenomenon are MHD power generation, power transmission,
It can be used in the power field such as power storage, or in the power field such as magnetic levitation trains and electromagnetic propulsion ships.It is also used as an ultra-sensitive sensor for magnetic fields, high frequencies, radiation, etc. for measurements such as NMR, pi-meson therapy, and high-energy physical experiment equipment. Furthermore, in the field of electronics such as Josephson devices, it is expected that this technology will not only reduce power consumption but also realize devices that operate at extremely high speeds. There is.

ところで、嘗て超電導は超低温下においてのみ観測され
る現象であった。即ち、従来の超電導材料として最も高
い超電導臨界温度Tcを有するといわれていたNb、G
eにおいても23.2 Kという極めて低い温度が長期
間に亘らて超電導臨界温度の限界とされていた。
By the way, superconductivity was once a phenomenon observed only at extremely low temperatures. That is, Nb and G, which are said to have the highest superconducting critical temperature Tc among conventional superconducting materials,
For a long time, an extremely low temperature of 23.2 K was considered to be the limit of superconducting critical temperature.

それ故、従来は、超電導現象を実現するために、沸点が
4.2にの液体ヘリウムを用いて超電導材料をTc以下
まで冷却していた。しかしながら、液体ヘリウムの使用
は、液化設備を含めた冷却設備による技術的負担並びに
コスト的負担が極めて大きく、超電導技術の実用化への
妨げとなっていた。
Therefore, conventionally, in order to realize the superconducting phenomenon, superconducting materials have been cooled to below Tc using liquid helium with a boiling point of 4.2. However, the use of liquid helium imposes an extremely large technical burden and cost burden due to cooling equipment including liquefaction equipment, which has hindered the practical application of superconducting technology.

ところが、近年に到って複合酸化物焼結体が高い臨界温
度で超電導体となり得ることが報告され、非低温超電導
体による超電導技術の実用化が俄かに促進されようとし
ている。既に報告されている例では、Y−Ba−C1系
等の3元素系複合酸化物でペロブスカイト型に類似した
結晶構造を有するものが、液体窒素温度以上で超電導現
象を示すものとして報告されている。
However, in recent years, it has been reported that composite oxide sintered bodies can become superconductors at high critical temperatures, and the practical application of superconducting technology using non-low temperature superconductors is rapidly gaining momentum. In already reported examples, three-element complex oxides such as Y-Ba-C1 that have a crystal structure similar to a perovskite type exhibit superconducting phenomena at temperatures above liquid nitrogen temperature. .

発明が解決しようとする課題 液体窒素は、人手が比較的容易で廉価なので、液体窒素
温度で動作する超電導材料の発見を以って超電導技術の
実用化が大きく進歩したことは事実である。しかしなが
ら、これとても基本的な冷却設備の構成は変わらず、専
ら冷却媒体の低価格化による超電導技術の低コスト化を
実現し得たに過ぎない。
Problems to be Solved by the Invention Since liquid nitrogen is relatively easy to use and inexpensive, it is true that the discovery of superconducting materials that operate at liquid nitrogen temperatures has made great progress in the practical application of superconducting technology. However, the very basic configuration of the cooling equipment has not changed, and the cost reduction of superconducting technology has only been realized by lowering the cost of the cooling medium.

また、超電導状態の安定性を考慮すると、冷却媒体の温
度(特に沸点)とその材料の超電導臨界温度Tcとの間
に十分な差があることが望ましく、実用的には超電導材
料の臨界温度をより向上する必要がある。
In addition, considering the stability of the superconducting state, it is desirable that there is a sufficient difference between the temperature of the cooling medium (especially the boiling point) and the superconducting critical temperature Tc of the material. We need to improve further.

そこで、本発明は、冷却設備による超電導技術利用の制
限を軽減し、安定に超電導現象を利用することのできる
、更に高温で超電導特性を示す新規な超電導材料とその
製造方法を提供することを目的としている。
Therefore, an object of the present invention is to provide a new superconducting material that exhibits superconducting properties at high temperatures and a method for manufacturing the same, which can alleviate the restrictions on the use of superconducting technology due to cooling equipment and stably utilize the superconducting phenomenon. It is said that

課題を解決するための手段 即ち、本発明に従い、 式:  Bi2−M (Ca、 Sr) l−X Cu
2Ch−y〔但し、Caに対する元素Srの比率は10
〜90原子%であり、xlyはそれぞれ0≦X≦1.0
くy≦1を満たす数である〕 で示される組成を有する複合酸化物を主として含むこと
を特徴とする超電導材料が提供される。
Means for solving the problem, namely according to the present invention, Formula: Bi2-M (Ca, Sr) l-X Cu
2Ch-y [However, the ratio of element Sr to Ca is 10
~90 atomic%, and xly is 0≦X≦1.0, respectively
y≦1] A superconducting material is provided that is characterized by mainly containing a composite oxide having a composition represented by the following formula.

本発明の好ましい一態様に従えば、上記式において、y
はy■x/2を満たすことが好ましく、更に、Xはx■
1を満たす数であることが好ましい。また、本発明の好
ましい態様に従えば、上式において、Caに対する元素
Srの比率は原子比で1:1であることが有利である。
According to a preferred embodiment of the present invention, in the above formula, y
preferably satisfies y■x/2, and furthermore, X satisfies x■x/2.
It is preferable that the number satisfies 1. Further, according to a preferred embodiment of the present invention, in the above formula, it is advantageous that the ratio of element Sr to Ca is 1:1 in atomic ratio.

また、上記超電導材料を製造する方法として、本発明に
より、前記Sr、 Ca5Bi並びにCuの各単体、該
元素のうちの少なくともひとつを含む化合物から選択し
た原料粉末を該元素を全て含むように混合した混合物、
あるいは、該混合物を焼成焼成後に粉砕して得た焼成体
粉末を焼結する工程を少なくとも1回含むことを特徴と
する超電導材料の製造方法が提供される。
Further, as a method for manufacturing the above-mentioned superconducting material, according to the present invention, raw material powders selected from the above-mentioned individual Sr, Ca5Bi, and Cu, and compounds containing at least one of the elements are mixed so as to contain all of the elements. blend,
Alternatively, there is provided a method for producing a superconducting material, which includes at least one step of sintering a sintered body powder obtained by pulverizing the mixture after firing.

ここで、原料粉末としては、各元素の単体の他に、前記
元素群から選択された少なくとも1種以上の元素の酸化
物、炭酸塩、硫酸塩、硝酸塩または蓚酸塩の粉末を使用
することができるが、特に製品の品質を考慮すると酸化
物が、また、原料粉末の調製の容易さを考慮すると炭酸
塩等が有利である。また、最終焼結に付すものは、所望
の形状に成形して焼結することが望ましい。
Here, as the raw material powder, in addition to each element alone, powders of oxides, carbonates, sulfates, nitrates, or oxalates of at least one element selected from the above element groups may be used. However, from the viewpoint of product quality, oxides are preferred, and from the viewpoint of ease of preparation of raw material powder, carbonates are preferred. Further, it is desirable that the material to be subjected to final sintering is formed into a desired shape and sintered.

本発明に従う超電導材料の製造方法において、本発明の
好ましい態様に従うと、前記焼成体の粉砕並びに該焼成
体粉末を整形して焼結する工程は、2回以上に亘って反
復することができる。また、焼成または焼結に付される
成形体を形成する複合酸化物を含む粉末の粒径は10μ
m以下とすることが有利であり、より好ましくはI乃至
5μmの範囲とすることが好ましい。
In the method for producing a superconducting material according to the present invention, according to a preferred embodiment of the present invention, the steps of pulverizing the sintered body, shaping and sintering the sintered body powder can be repeated two or more times. In addition, the particle size of the powder containing the composite oxide that forms the compact that is subjected to firing or sintering is 10 μm.
It is advantageous that the thickness is less than m, more preferably in the range of I to 5 μm.

焼成並びに焼結工程における焼結温度は、700℃以上
の温度であって、使用する原料粉末のうち最も融点の低
い化合物の融点を上限とする温度範囲で行うことが好ま
しく、また焼結時間は、1時間乃至50時間保持するこ
とが好ましい。
The sintering temperature in the firing and sintering process is preferably 700°C or higher, with the upper limit being the melting point of the compound with the lowest melting point among the raw material powders used, and the sintering time is , preferably for 1 hour to 50 hours.

さて、本発明に従って提供される超電導材料は、更に本
発明により提供される前記焼成体または焼結体をターゲ
ットとして、物理蒸着法によって所定の基板上に薄膜を
成長させることを特徴とする超電導薄膜の製造方法によ
って、薄膜として得ることもできる。
Now, the superconducting material provided according to the present invention is further characterized in that a thin film is grown on a predetermined substrate by a physical vapor deposition method using the fired body or sintered body provided according to the present invention as a target. It can also be obtained as a thin film using the manufacturing method described above.

但し、ターゲットの組成は、形成される薄膜の組成が前
記超電導材料の組成となるように、ターゲットを構成す
る各元素の蒸発速度等に応じて調整することが好ましい
。尚、この本発明による方法において、本発明の一実施
態様に従うと、前記物理蒸着としては、スパッタリング
法、電子ビーム法、イオンプレーティング法の何れかを
選択することができる。また、薄膜を成長させる基板と
しては、MgO1SrTiO3,5iCh 、サファイ
ヤ、YSZ等を好ましいものとして例示することができ
る。
However, the composition of the target is preferably adjusted according to the evaporation rate of each element constituting the target, etc. so that the composition of the thin film to be formed is the composition of the superconducting material. In addition, in the method according to the present invention, according to one embodiment of the present invention, any one of sputtering method, electron beam method, and ion plating method can be selected as the physical vapor deposition method. Further, as a substrate on which a thin film is grown, MgO1SrTiO3,5iCh, sapphire, YSZ, etc. can be exemplified as preferable substrates.

作用 尚、本発明の方法により得られる超電導材料は、式: 
 B12−X (Ca、 Sr) 1ull Cu20
t−Y〔但し、Caに対する元素Srの比率は10〜9
0原子%であり、xlyはそれぞれ0≦X≦1.0くy
≦1を満たす数である〕 で示される組成を主として含むことを主要な特徴として
いる。
Function: The superconducting material obtained by the method of the present invention has the formula:
B12-X (Ca, Sr) 1ull Cu20
t-Y [However, the ratio of element Sr to Ca is 10 to 9
0 atomic %, and xly is 0≦X≦1.0×y, respectively.
A number that satisfies ≦1.

ここで、本発明に従う超電導材料は、上述のような式で
示される複合酸化物を主として含むが、必ずしも厳密に
この比に限定されるものではなく、これらの比から±5
0%の範囲、さらに好ましくは±20%の範囲内の組成
を有するものでも有効な超電導特性を示す場合がある。
Here, the superconducting material according to the present invention mainly contains a composite oxide represented by the above formula, but is not necessarily strictly limited to this ratio, and ±5 from these ratios.
Even those having a composition within a range of 0%, more preferably within a range of ±20%, may exhibit effective superconducting properties.

即ち、特許請求の範囲において「上記の式で表される複
合酸化物を主として含む」という表現は、本発明の方法
によって作製された超電導薄膜が、上記式で定義される
原子比以外のものも含むということを意味している。
That is, in the claims, the expression "mainly contains a complex oxide represented by the above formula" means that the superconducting thin film produced by the method of the present invention may have an atomic ratio other than that defined by the above formula. It means including.

この本発明に従う超電導材料は、具体的に後述するよう
に、極めて優れた超電導特性を示すと共に、安定性の点
でも優れており、待機中でも長期間に亘って有効な超電
導特性を発揮する。
As will be specifically described below, the superconducting material according to the present invention exhibits extremely excellent superconducting properties and is also excellent in stability, exhibiting effective superconducting properties over a long period of time even during standby.

尚、本発明に従う超電導材料は、上記組成以外の元素、
即ち、ppmオーダーで混入する不可避的不純物あるい
は得られる焼結体または薄膜の他の特性を向上させる目
的で添加される第3成分を含有していてもよい。具体的
な第3成分としては、周期律表IIA族元素、]]Ja
族元素を例示することができる。
Note that the superconducting material according to the present invention contains elements other than the above composition,
That is, it may contain unavoidable impurities mixed in on the order of ppm or a third component added for the purpose of improving other properties of the obtained sintered body or thin film. Specific examples of the third component include Group IIA elements of the periodic table, ]]Ja
Examples include group elements.

上述のような複合酸化物を主として含む超電導材料は、
焼結体としであるいは薄膜として得ることができる。
Superconducting materials mainly containing composite oxides as described above are
It can be obtained as a sintered body or as a thin film.

焼結体としての複合酸化物材料を製造する場合、本発明
者等の研究によれば、超電導材料として高い特性を発揮
する焼結体を製造するには以下のような点についての厳
重な管理が必要である。
When manufacturing a composite oxide material as a sintered body, according to research by the present inventors, in order to manufacture a sintered body that exhibits high characteristics as a superconducting material, the following points must be strictly controlled. is necessary.

■原料粉末の粒径 ■焼成温度 ■焼成処理並びに粉砕後の焼成体粉末の粒径■焼結温度 即ち、焼成処理前の原料粉末の平均粒径が、10pmを
越えると、焼結後の粉砕工程を経た後も、結晶粒の十分
な微細化ができない。従って、結晶粒径の微細化を図る
ためには原料粉末の粒径が10μm以下、好ましくはl
乃至5μmの範囲であることが好ましい。尚、1乃至5
μmとした理由は、5μm以下とすることによって粉末
の細粒化の降下が顕著に得られる一方、1μm以下に粉
砕することは、作業時間の点や不純物の混入等の点から
工業的に不利であるからである。また、特に最終焼結に
付す粉末の細粒化は、製品の結晶粒径に直接的な影響が
あるので、この点に特に留意すべきである。また、これ
ら一連の〔焼成→粉砕→成形〕工程を複数回繰り返すこ
とによって、原料粉末あるいは焼成体を均質化すること
ができ、品質の高い製品を得ることができる。
■ Particle size of raw material powder ■ Firing temperature ■ Particle size of fired body powder after firing treatment and crushing ■ Sintering temperature, that is, if the average particle size of raw material powder before firing treatment exceeds 10 pm, crushing after sintering Even after the process, crystal grains cannot be sufficiently refined. Therefore, in order to reduce the crystal grain size, the particle size of the raw material powder should be 10 μm or less, preferably l
The thickness is preferably in the range of 5 μm to 5 μm. In addition, 1 to 5
The reason for choosing µm is that while grinding to 5 µm or less will significantly reduce the fineness of the powder, grinding to 1 µm or less is industrially disadvantageous in terms of working time and contamination with impurities. This is because. In addition, particular attention should be paid to the refinement of the powder to be subjected to final sintering, as this has a direct effect on the crystal grain size of the product. Furthermore, by repeating these series of steps (firing → crushing → molding) multiple times, the raw material powder or the fired body can be homogenized and a high quality product can be obtained.

焼結温度は、超電導材料を製造する際の重要な制御因子
であり、焼結中に材料に溶融が生ずることなく固相反応
のみで焼結が進行すること、並びに、焼結して形成され
た複合酸化物の結晶成長が過大とならないように制御す
る必要がある。従って、焼結温度は焼成体粉末の融点を
越えない温度で行う必要がある。但し、焼結温度が低す
ぎると十分な焼結反応が得られないので、少なくとも5
00℃以上に加熱する必要がある。また、焼結時間は、
−数的に長い程好ましい組成が得られるが、実際的には
1時間乃至50時間程度が好ましい。
The sintering temperature is an important controlling factor when producing superconducting materials, and it is important that sintering proceeds only by solid-phase reaction without melting of the material during sintering, and that the material is formed by sintering. It is necessary to control the crystal growth of the composite oxide so that it does not become excessive. Therefore, the sintering must be carried out at a temperature that does not exceed the melting point of the sintered powder. However, if the sintering temperature is too low, sufficient sintering reaction will not be obtained, so at least
It is necessary to heat it to 00°C or higher. In addition, the sintering time is
- The longer the time is numerically, the more preferable the composition can be obtained, but in practice, about 1 hour to 50 hours is preferable.

更に、上述の焼結処理の制御と同様の理由で焼成処理の
管理も厳重に管理さるべきものである。
Furthermore, for the same reason as the control of the sintering process described above, the management of the firing process should also be strictly controlled.

即ち、焼成温度が500℃に達しない場合は焼成反応が
十分に進行せず、所望の組成物が得られない。
That is, if the firing temperature does not reach 500°C, the firing reaction will not proceed sufficiently and the desired composition will not be obtained.

一方、加熱温度が原料粉末の融点を越えることが好まし
くないことは前述の通りである。
On the other hand, as mentioned above, it is not preferable for the heating temperature to exceed the melting point of the raw material powder.

上述のような多元素系複合酸化物超電導材料は、物理蒸
着によって基板上に薄膜として成長させることもできる
。この場合、蒸発源としては、超電導材料を形成する各
元素そのもの、またはこれらの元素の各化合物の粉末の
混合物はもとより、これらを混合して焼成することによ
って得られる焼成体またはその粉末、あるいは、この焼
成体粉末または前記各化合物粉末を焼結して得られる焼
結体またはその粉末を用いることができる。物理蒸着は
、スパッタリング法、電子ビーム法、イオンプレーティ
ング法等を具体的な例として挙げることができる。
The multi-element complex oxide superconducting material as described above can also be grown as a thin film on a substrate by physical vapor deposition. In this case, the evaporation source may include each element forming the superconducting material itself, a powder mixture of each compound of these elements, a fired body obtained by mixing and firing these elements, or its powder, This sintered body powder or a sintered body obtained by sintering each of the above compound powders or a powder thereof can be used. Specific examples of physical vapor deposition include sputtering, electron beam, and ion plating.

尚、成膜する複合酸化物の組成比が適切な組成比を有す
るように、各元素の蒸着効率に応じて蒸発源の各元素の
組成比および/または酸素分圧を調整してふくことが好
ましい。また、成膜に際して用いる基板は、形成する複
合酸化物と結晶構造の類似したものを用いることが有利
である。
In addition, the composition ratio of each element and/or oxygen partial pressure of the evaporation source may be adjusted and wiped according to the vapor deposition efficiency of each element so that the composition ratio of the composite oxide to be formed has an appropriate composition ratio. preferable. Furthermore, it is advantageous to use a substrate used for film formation that has a similar crystal structure to the composite oxide to be formed.

以下に本発明を実施例により具体的に説明するが、以下
の開示は本発明の一実施例に過ぎず、本発明の技術的範
囲を何隻制限するものではない。
The present invention will be specifically explained below with reference to examples, but the following disclosure is only one example of the present invention, and does not limit the technical scope of the present invention.

実施例 市販のBi2O,粉末、5rC03粉末、CaCO3粉
末、CuO粉末を以下の第1表に示すような割合で混合
し、ボールミルによって4μm以下まで粉砕/混合した
後、1000kg/ciの圧力でプレス成形した。得ら
れた成形体を850℃で8時間焼結してバルク状の試料
を得た。
Example: Commercially available Bi2O, powder, 5rC03 powder, CaCO3 powder, and CuO powder were mixed in the proportions shown in Table 1 below, ground/mixed to a particle size of 4 μm or less using a ball mill, and then press-molded at a pressure of 1000 kg/ci. did. The obtained molded body was sintered at 850° C. for 8 hours to obtain a bulk sample.

第1表 以上のようにして作製した試料の超電導臨界温度を測定
したところ、試料は115にで急激に抵抗を減じ始め、
100Kにおいて電気抵抗が検出できなくなった。尚、
この臨界温度の測定は、定法に従って試料の両端にAg
導電ペーストにて電極を付け、タラビオスタット中での
4端子法によって行った。温度はキャリブレーション済
みのAu(Fe) −Ag熱電対を用いて監視した。ま
た、この試料は、作製後20日間に亘って空気中に放置
したが、その後に行った再測定においても超電導特性に
有意な差は顕れなかった。
When the superconducting critical temperature of the sample prepared as shown in Table 1 was measured, the resistance of the sample began to decrease rapidly at 115.
Electrical resistance could no longer be detected at 100K. still,
The measurement of this critical temperature is carried out using Ag at both ends of the sample according to the standard method.
Electrodes were attached using conductive paste, and the test was carried out using a four-terminal method in a Taraviostat. Temperature was monitored using a calibrated Au(Fe)-Ag thermocouple. Further, although this sample was left in the air for 20 days after its preparation, no significant difference in superconducting properties was found in subsequent remeasurements.

発明の効果 以上詳述の如く、本発明に従う多元素系複合酸化物超電
導材料は、従来の超電導材料に比較して顕著に高い臨界
温度で超電導体となる。また、この超電導材料は、長期
間に亘って特性が維持される点で、従来の複合酸化物系
超電導材料よりも浸れている。
Effects of the Invention As detailed above, the multi-element composite oxide superconducting material according to the present invention becomes a superconductor at a significantly higher critical temperature than conventional superconducting materials. Furthermore, this superconducting material is superior to conventional composite oxide-based superconducting materials in that its properties are maintained over a long period of time.

このように、本発明に従えば、安定した高い臨界温度を
有する新規な超電導材料が得られるため、経済的な冷却
設備によって超電導現象を利用することができる。これ
ら本発明に従う超電導材料は、薄板材、細線材あるいは
小部品として、また、スパッタリング等により薄膜とし
て形成することによって、ジョセフソン素子、5QUI
D、超電導磁石、各種センサ等広範な分野に適用できる
Thus, according to the present invention, a novel superconducting material having a stable and high critical temperature is obtained, so that the superconducting phenomenon can be utilized with economical cooling equipment. These superconducting materials according to the present invention can be formed into Josephson elements, 5QUI
D, can be applied to a wide range of fields such as superconducting magnets and various sensors.

特許出願人  住友電気工業株式会社Patent applicant: Sumitomo Electric Industries, Ltd.

Claims (9)

【特許請求の範囲】[Claims] (1)式:Bi_2_−_x(Ca,Sr)_1_+_
xCu_2O_7_−_y〔但し、Caに対するSrの
比率は10〜90原子%であり、x、yはそれぞれ0≦
x≦1、0<y≦1を満たす数である〕 で示される組成を有する複合酸化物を主として含むこと
を特徴とする超電導材料。
(1) Formula: Bi_2_−_x(Ca,Sr)_1_+_
xCu_2O_7_-_y [However, the ratio of Sr to Ca is 10 to 90 at%, and x and y are each 0≦
x≦1, 0<y≦1] A superconducting material characterized by mainly containing a composite oxide having a composition represented by the following.
(2)第1請求項に記載の超電導材料であって、式:B
i_2_−_x(Ca,Sr)_1_+_xCu_2O
_7_−_y〔但し、yはy■x/2を満たす数である
〕で示される組成の複合酸化物を主として含むことを特
徴とする超電導材料。
(2) The superconducting material according to the first claim, which has the formula: B
i_2_−_x(Ca,Sr)_1_+_xCu_2O
A superconducting material characterized by mainly containing a composite oxide having a composition represented by _7_-_y [where y is a number satisfying yx/2].
(3)第1請求項または第2請求項に記載の超電導材料
であって、 式:Bi_2_−_x(Ca,Sr)_1_+_xCu
_2O_7_−_y〔但し、x■1を満たす数である〕 で示される組成の複合酸化物を主として含むことを特徴
とする超電導材料。
(3) The superconducting material according to the first claim or the second claim, which has the following formula: Bi_2_−_x(Ca,Sr)_1_+_xCu
_2O_7_-_y [However, the number satisfies x■1] A superconducting material characterized by mainly containing a composite oxide having the composition shown in the following.
(4)第1請求項から第3請求項までの何れか1項に記
載の超電導材料であって、 式:Bi_2_−_x(Ca,Sr)_1_+_xCu
_2O_7_−_y〔但し、Caに対する元素Srの比
率が、原子比で1:1である〕 で示される組成の複合酸化物を主として含むことを特徴
とする超電導材料。
(4) The superconducting material according to any one of the first to third claims, wherein the formula: Bi_2_−_x(Ca,Sr)_1_+_xCu
_2O_7_-_y [However, the ratio of element Sr to Ca is 1:1 in atomic ratio] A superconducting material characterized by mainly containing a composite oxide having a composition shown in the following.
(5)第1請求項から第4請求項までの何れか1項に記
載の超電導材料を製造する方法であって、前記Sr、C
a、Bi並びにCuの各単体、該元素のうちの少なくと
もひとつを含む化合物から選択した原料粉末を該元素を
全て含むように混合した混合物、あるいは、該混合物を
焼成焼成後に粉砕して得た焼成体粉末を焼結する工程を
少なくとも1回含むことを特徴とする超電導材料の製造
方法。
(5) A method for manufacturing the superconducting material according to any one of claims 1 to 4, comprising:
a, a mixture of raw material powders selected from each element of Bi and Cu, and a compound containing at least one of the elements so as to contain all of the elements, or a fired mixture obtained by pulverizing the mixture after firing. 1. A method for producing a superconducting material, comprising at least one step of sintering body powder.
(6)第5請求項に記載の超電導材料の製造方法であっ
て、原料粉末、焼結体または焼結体粉末を成形した後に
最終焼結を実施することを特徴とする超電導材料の製造
方法。
(6) A method for manufacturing a superconducting material according to claim 5, characterized in that final sintering is performed after forming the raw material powder, sintered body, or sintered body powder. .
(7)第5請求項または第6請求項に記載の超電導材料
の製造方法であって、前記原料粉末が、前記Sr、Ca
、Bi並びにCuの酸化物または炭酸塩を含むことを特
徴とする超電導材料の製造方法。
(7) The method for producing a superconducting material according to claim 5 or 6, in which the raw material powder contains the Sr, Ca,
, Bi, and Cu oxide or carbonate.
(8)第5請求項から第7請求項までの何れか1項に記
載の方法によって得られた複合酸化物を含む前記焼成体
または焼結体をターゲットとして、物理蒸着法によって
所定の基板上に薄膜を成長させることを特徴とする超電
導薄膜の製造方法。
(8) The fired body or sintered body containing the composite oxide obtained by the method according to any one of claims 5 to 7 is used as a target and deposited on a predetermined substrate by physical vapor deposition. 1. A method for producing a superconducting thin film, which comprises growing a thin film.
(9)第8請求項に記載の方法であって、前記物理蒸着
法がスパッタリング法またはイオンプレーティング法を
含むことを特徴とする超電導薄膜の製造方法。
(9) The method of manufacturing a superconducting thin film according to claim 8, wherein the physical vapor deposition method includes a sputtering method or an ion plating method.
JP63042697A 1988-02-25 1988-02-25 Superconducting material and compound thereof Pending JPH01215722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63042697A JPH01215722A (en) 1988-02-25 1988-02-25 Superconducting material and compound thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63042697A JPH01215722A (en) 1988-02-25 1988-02-25 Superconducting material and compound thereof

Publications (1)

Publication Number Publication Date
JPH01215722A true JPH01215722A (en) 1989-08-29

Family

ID=12643242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63042697A Pending JPH01215722A (en) 1988-02-25 1988-02-25 Superconducting material and compound thereof

Country Status (1)

Country Link
JP (1) JPH01215722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234328A (en) * 1988-03-15 1989-09-19 Toray Ind Inc Superconductor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188456A (en) * 1988-01-20 1989-07-27 Natl Res Inst For Metals Oxide high temperature superconductor
JPH01201025A (en) * 1988-02-05 1989-08-14 Matsushita Electric Ind Co Ltd Oxide superconducting material
JPH01206675A (en) * 1988-02-15 1989-08-18 Matsushita Electric Ind Co Ltd Superconductor
JPH01208328A (en) * 1988-02-15 1989-08-22 Matsushita Electric Ind Co Ltd Sputtering target and production of superconductor thin film
JPH01226737A (en) * 1988-02-05 1989-09-11 Hoechst Ag Superconductor and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188456A (en) * 1988-01-20 1989-07-27 Natl Res Inst For Metals Oxide high temperature superconductor
JPH01201025A (en) * 1988-02-05 1989-08-14 Matsushita Electric Ind Co Ltd Oxide superconducting material
JPH01226737A (en) * 1988-02-05 1989-09-11 Hoechst Ag Superconductor and its production
JPH01206675A (en) * 1988-02-15 1989-08-18 Matsushita Electric Ind Co Ltd Superconductor
JPH01208328A (en) * 1988-02-15 1989-08-22 Matsushita Electric Ind Co Ltd Sputtering target and production of superconductor thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234328A (en) * 1988-03-15 1989-09-19 Toray Ind Inc Superconductor

Similar Documents

Publication Publication Date Title
US5100866A (en) Process for producing compound oxide high temperature superconducting material Tly Cul-y O3-z where RE=Y or La
JP2002211916A (en) Intermetallic compound superconductor comprising magnesium and boron, alloy superconductor containing the intermetallic compound and method for producing these
JP2571789B2 (en) Superconducting material and its manufacturing method
KR0125876B1 (en) Superconducting Materials and Methods of Manufacturing the Same
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JPH0881221A (en) Oxide superconductor and its production
JPH01224229A (en) Superconducting materials and their manufacturing methods
JPH01215722A (en) Superconducting material and compound thereof
JPH02167820A (en) Method for forming T1-based composite oxide superconductor thin film
JP3219563B2 (en) Metal oxide and method for producing the same
JP2817170B2 (en) Manufacturing method of superconducting material
US8060169B1 (en) Superconductive compounds having high transition temperature, and methods for their use and preparation
JPH01215716A (en) Superconducting material and production thereof
JPH01215717A (en) Superconducting material and production thereof
US5378682A (en) Dense superconducting bodies with preferred orientation
JP3034267B2 (en) Oxide superconductor
HU217018B (en) Super conducting composition contain bismuth, strontium, copper and oxygen, process for producing this composition, and process for conducting an electrical current within a conductor material without electrical resistive losses and josephson-effect ...
JP2590370B2 (en) Superconducting material and manufacturing method thereof
JPH10510799A (en) Improved superconductor
JP2555505B2 (en) Metal oxide material
US5278139A (en) Compound oxide high temperature superconducting material and a method for preparing same
JPH07187670A (en) Oxide superconductor and its production
JPH04124032A (en) Superconductor and its synthesis
JPH0234515A (en) Superconducting materials and their manufacturing methods
JP2761727B2 (en) Manufacturing method of oxide superconductor