[go: up one dir, main page]

JPH01213537A - Inside-cylinder pressure detector for internal combustion engine - Google Patents

Inside-cylinder pressure detector for internal combustion engine

Info

Publication number
JPH01213537A
JPH01213537A JP63039909A JP3990988A JPH01213537A JP H01213537 A JPH01213537 A JP H01213537A JP 63039909 A JP63039909 A JP 63039909A JP 3990988 A JP3990988 A JP 3990988A JP H01213537 A JPH01213537 A JP H01213537A
Authority
JP
Japan
Prior art keywords
current
cylinder pressure
output
capacitor
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63039909A
Other languages
Japanese (ja)
Inventor
Toshio Iwata
俊雄 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63039909A priority Critical patent/JPH01213537A/en
Priority to KR1019890001746A priority patent/KR920006455B1/en
Priority to DE3905824A priority patent/DE3905824A1/en
Publication of JPH01213537A publication Critical patent/JPH01213537A/en
Priority to US07/503,072 priority patent/US5062294A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To obtain stable inside-cylinder pressure waveforms by receiving the output signals of a piezo-electric type inside-cylinder pressure sensor in the form of electric currents and integrating the currents after converting them into voltage or current values. CONSTITUTION:The output electric charge of a piezo-electric inside-cylinder pressure sensor 1 is converted into a voltage value under the feedback control of an operational amplifier 51 and an electric current is made to flow from the output of the amplifier 51 to the inverted into of another operational amplifier 52 through a capacitor 54 and resistance 55. The electrostatic capacity of the capacitor 54 is sufficiently large so that the impedance can become smaller against the current changing rate caused by pressure changes. Therefore, the current at the capacitor 54 is decided by the voltage of the amplifier 51 and resistance value of the resistance 55. The value of a resistance 57 is set in such a way that the current made to flow through the resistance 57 can become smaller to a negligible degree as compared with the current at the capacitor 54. The output voltage of the amplifier 52 is proportional to the output electric charge of the sensor 1 and the output signal of the amplifier 52 corresponds to the inside-cylinder pressure itself. By inputting the output signal of the sensor 1 as current values and integrating signals corresponding to the current values in such way, stable inside-cylinder pressure waves which do not change even if a leak current is produced can be obtained.

Description

【発明の詳細な説明】 〔座業上の利用分野〕 こD発明は内燃機関の燃焼気筒内の圧力情報を計測する
内燃機関の筒内圧力検出4に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of sedentary use] This invention relates to a cylinder pressure detection system 4 for measuring pressure information in a combustion cylinder of an internal combustion engine.

〔従来の技術〕[Conventional technology]

内ea関の燃焼状1帖や回転サイクル毎の動作を計測す
るために一般に燃@気筒内の圧力が測定される。この測
定に用いられる面内圧力センサとして圧電形筒内圧セン
サがよく利用されている。この圧゛成形筒内圧センサは
圧力に感応して電荷全発生する圧電素子に直接的あるい
は間接的に気筒内の圧力が印加されて、印加圧力に応じ
次電荷ilを出力するものである。例えば、圧電形筒内
圧センサの一例ケ第8図に示〒。第8図においてLu1
lに圧電素子、+121は8枚の圧電素子にはさまれ、
出力信号をリード禰峙に導く電極%a4けセンサの内部
構造部品を覆うケースである◎この圧゛成形筒内圧セン
サはリング状の形状をしており、第4図に示すようにエ
ンジンの燃焼気筒の土壁をなすシリンダヘッド121と
点火プラグ131との間vcg庸される。そして、燃焼
気筒内の圧力が点火プラグ2通じて圧電形部内圧センサ
Il+の圧電素子dυに伝達され、筒内圧力VC応じた
電荷が出力される。
Generally, the pressure inside the cylinder is measured to measure the combustion status of the internal combustion engine and the operation of each rotation cycle. A piezoelectric cylinder pressure sensor is often used as an in-plane pressure sensor used for this measurement. This pressure-formed cylinder pressure sensor is such that the pressure inside the cylinder is directly or indirectly applied to a piezoelectric element that generates a charge in response to pressure, and outputs a subsequent charge il in accordance with the applied pressure. For example, an example of a piezoelectric cylinder pressure sensor is shown in FIG. In Figure 8, Lu1
l is a piezoelectric element, +121 is sandwiched between 8 piezoelectric elements,
This is a case that covers the internal structural parts of the 4-electrode sensor that guides the output signal to the lead surface. This pressure-molded cylinder pressure sensor has a ring-shaped shape, and as shown in Figure 4, it is a case that covers the internal structural parts of the sensor. VCG is pumped between the cylinder head 121, which forms the clay wall of the cylinder, and the spark plug 131. Then, the pressure in the combustion cylinder is transmitted through the spark plug 2 to the piezoelectric element dυ of the piezoelectric internal pressure sensor Il+, and an electric charge corresponding to the cylinder internal pressure VC is output.

ところで、上記圧電形筒内圧センサの筒内圧力に対応す
る出力信号は電荷破であるために、この電荷喰を1気的
処理しゃすい電圧値に変換する必要がある。そこで、電
荷#tを電圧値に変換する手段々して従来では一般にチ
ャージアンプが用いられていた。第5図にチャージアン
プの基本−IMIを示す。第8図において、 +41J
はオペアンプであり、囮はコンデンサである。圧電形筒
内圧センサIl+の出力はオペアンプ(財)の反転入力
に接続され、コンデンサーはオペアンプ(6)の反転入
力と出力との間に接続される。筐たオペアンプ(財)の
非反転入力は接地されている。い1、オペアンプ:41
1 r1反転及び非反転の入力電圧が同レベルになるよ
うに出力1ljllaするものであり、圧電形筒内圧セ
ンサ…から電荷Qが入力されるとオペアンプ(2)ハ′
逼荷Q?すべてコンデンサlId VC光屯するように
1副動作する@従って、コンデセンサーの静電容tをC
とするとV = Q/Cなる゛電圧がオペアンプ(転)
の出力に現われる。ここで電荷@Q#’:I筒内圧力と
比例関係にあるため、オペアンプ(転)の出力電圧Vは
筒内圧力に応じた値となり、エンジン運転中には第6図
に示すような燃焼圧力信号?出力する。
By the way, since the output signal corresponding to the cylinder pressure of the piezoelectric type cylinder pressure sensor is a charge loss, it is necessary to convert this charge loss into a voltage value that can be easily processed in one step. Therefore, in the past, charge amplifiers have generally been used as means for converting the charge #t into a voltage value. FIG. 5 shows the basic IMI of a charge amplifier. In Figure 8, +41J
is an operational amplifier and the decoy is a capacitor. The output of the piezoelectric cylinder pressure sensor Il+ is connected to the inverting input of an operational amplifier (incorporated), and the capacitor is connected between the inverting input and output of the operational amplifier (6). The non-inverting input of the enclosed operational amplifier is grounded. I1, operational amplifier: 41
1r1 The output is 1ljlla so that the inverted and non-inverted input voltages are at the same level, and when the charge Q is input from the piezoelectric cylinder pressure sensor..., the operational amplifier (2)
Load Q? All capacitors lId VC act as 1 sub-operations so that the capacitance t of the capacitor sensor becomes C
Then, V = Q/C, the voltage is
appears in the output of Here, the charge @Q#':I is proportional to the cylinder pressure, so the output voltage V of the operational amplifier will be a value that corresponds to the cylinder pressure, and during engine operation, combustion will occur as shown in Figure 6. Pressure signal? Output.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記チャージアンプにおいては、11M1t
紫直接コンデンサによって電圧値に変換する方式であり
、コンデンサ圏の静電容量が圧電形筒内圧センサill
の圧電素子+1υの静″題容量に合わせて小さく設定さ
れているため圧′1形筒内圧センサ…やその出力信号ラ
インまたはチャージアンプの入力回路等の電流リーク、
あるいは′、オペアンプ四の人力バイアス’[、流等、
入力部に筒内圧力信号以外の電荷移妨、すなわち電流が
あるとオペアンプ+4υの出力−圧が変動し、正確な筒
内圧力の測定が不可能になるという課題があった。
However, in the above charge amplifier, 11M1t
It is a method that converts directly into a voltage value using a purple capacitor, and the capacitance of the capacitor area is the piezoelectric cylinder pressure sensor ill.
Since the piezoelectric element is set small to match the static capacitance of +1υ, current leakage from the pressure'1 type cylinder pressure sensor, its output signal line, or charge amplifier input circuit, etc.
Or ′, human bias of the operational amplifier 4′ [, flow, etc.
If there is a charge transfer other than the in-cylinder pressure signal, that is, a current, in the input section, the output voltage of the operational amplifier +4υ will fluctuate, making it impossible to accurately measure the in-cylinder pressure.

本発明はこのような課題に鑑みてなされたものであり、
圧電形筒内圧センサの出力信号の電圧値等への変換にお
いて、電流リーク等に影響されない正確な計測1に実現
することを目的とする0 〔課題を解決するための手段〕 本発明に係る内燃機関の部内圧力検出装置は、圧電杉圧
カセンサの出力信号を電流の形で受偏し、そこで電圧値
あるいは電流値に変換した後、積分器で微分することに
よって筒内圧力信号を得るものである。
The present invention has been made in view of these problems,
[Means for Solving the Problems] Internal combustion according to the present invention The engine internal pressure detection device receives the output signal of the piezoelectric cedar pressure sensor in the form of current, converts it into a voltage value or current value, and then differentiates it with an integrator to obtain the cylinder pressure signal. be.

〔作用〕[Effect]

本発明にお−ては電流入力口W、を介して積分器を構成
しており、圧電素子の静電容量とは無関係に積分at−
構成できる。
In the present invention, an integrator is configured via the current input port W, and the integrator at-
Can be configured.

〔実施例〕〔Example〕

第1図に本発明の一実施例を示す。第1図において、+
51トMlはオペアンプ、帽、(至)、5″IIは抵抗
、間と順はコンデンサである。圧電形筒内圧センサ…の
出力はオペアンプ・511の反転入力に接続され、抵抗
−はオペアンプ利の反転入力と出力間に接続される。コ
ンデンサ(と抵抗・(至)は直列にオペアンIllの出
力とオペアンプ碩の反転入力との間に接続され、抵抗・
bηとコンデンサ爾は並列にオペアンプ6りの反転入力
と出力との間に接続される。また、オペアンプ61及び
s’4の非反転入力はともに接地される。
FIG. 1 shows an embodiment of the present invention. In Figure 1, +
51 and Ml are operational amplifiers, caps (to), 5''II are resistors, and capacitors are between.The output of the piezoelectric cylinder pressure sensor... is connected to the inverting input of operational amplifier 511, and the resistor - is the operational amplifier input. A capacitor (and a resistor) are connected in series between the output of the op-amp Ill and the inverting input of the op-amp Ill, and the resistor
bη and the capacitor are connected in parallel between the inverting input and output of the operational amplifier 6. Further, the non-inverting inputs of the operational amplifier 61 and s'4 are both grounded.

次に第5図に示した実施例の動作を説明する。Next, the operation of the embodiment shown in FIG. 5 will be explained.

1/−1ま、圧電形筒内圧センサ…の出力から筒内圧力
に対応して電荷Qが出力されると、オペアンプ5唖のフ
ィードバック制御によって、抵抗−に1−tlQ/dt
なる電流がオペアンプ5υから出力される。そして、抵
抗−の電圧降下によってオペアンプ5Dの出力電圧v1
は抵抗嗜の抵抗値をR1とすると、 眞 v、″−R1π となる。すなわち、圧電形筒内圧センサの出力電流(I
Q/idtが電圧値に変換されたものである。
1/-1, when a charge Q is output from the output of the piezoelectric cylinder pressure sensor corresponding to the cylinder pressure, 1-tlQ/dt is applied to the resistance by the feedback control of 5 operational amplifiers.
A current of 5υ is output from the operational amplifier 5υ. Then, due to the voltage drop of the resistor -, the output voltage v1 of the operational amplifier 5D
If the resistance value of the resistor is R1, then it becomes ``v,''-R1π.In other words, the output current (I) of the piezoelectric cylinder pressure sensor is
Q/idt is converted into a voltage value.

このオペアンプ40の出力′1圧vlの信号波形を第2
図の(&1に示す。この波形は筒内圧力を時間微分した
ものに相当する。
The signal waveform of the output '1 voltage vl of this operational amplifier 40 is
This waveform is shown in (&1) in the figure. This waveform corresponds to the time derivative of the cylinder pressure.

その次に、オペアンプJ1の出力からオペアンプ、)乃
の反転入力にはコンデンサ禰と抵抗f4を経て′4流が
流れる。
Next, a current '4 flows from the output of the operational amplifier J1 to the inverting input of the operational amplifier ) through the capacitor wire and the resistor f4.

ここで、コンデンサAは父流結台用として用いられるた
め静電容量は充分大きく設定され筒内圧力変化によるa
dffi化541(メ寸してインピーダンスが慣めて小
さくなるようになっている。それ改、そこに流れる嵐流
工1ri下式のように、オペアンプ−日の出力電圧v1
と抵抗」・の抵抗値R1で決定される。
Here, since capacitor A is used as a main flow connecting table, its capacitance is set sufficiently large so that a
dffi conversion 541 (the impedance gets used to the size and becomes smaller.Then, as shown in the formula below, the output voltage v1 of the operational amplifier is
It is determined by the resistance value R1 of the resistor and the resistor.

vI I HIM −一一一シ・6 ”  Rt   Rg 士 そして、オペアンプf1″aの出力からはフィードバッ
ク制御によってXSの電流が流れる。ここで、抵抗f1
71はオペアンプ色の出力電圧v鵞を零点復帰させるだ
めの抵抗であり、その抵抗値R弯はコンデンサ・1!に
流れる電流に対し無視できる程度の電流となるような高
抵抗値に設定されている。
Then, a current of XS flows from the output of the operational amplifier f1''a by feedback control. Here, resistance f1
71 is a resistor for returning the output voltage V of the operational amplifier to zero point, and its resistance value R is the capacitor 1! The resistance is set to a high value so that the current flowing through the capacitor is negligible.

従って、オペアンプ4の出力電圧V、は下式のように出
力電流−IIと、コンデンサ順の静電容量CI/こよっ
て決定される。
Therefore, the output voltage V of the operational amplifier 4 is determined by the output current -II and the capacitance CI/in the order of the capacitors, as shown in the equation below.

すなわち、オペアンプ色の出力電圧Vs tfi圧電形
筒内圧センサ11の出力電荷QK比例するものであり、
lX2図のlbHに示すようにその出力信号は筒内圧力
そのものに相当する。
That is, the output voltage Vs tfi of the operational amplifier color is proportional to the output charge QK of the piezoelectric cylinder pressure sensor 11,
As shown by lbH in the 1X2 diagram, the output signal corresponds to the cylinder pressure itself.

このように、圧電形筒内圧センサの出力信号r電流値と
して入力し、その入力1[Rlii K jI5じた信
号を積分することによって、筒内圧力信号を得ることが
できる。
In this way, the in-cylinder pressure signal can be obtained by inputting the output signal r of the piezoelectric in-cylinder pressure sensor as a current value and integrating the signal obtained by dividing the input 1[Rlii K jI5.

ところで、圧電形筒内圧センサIl+の出力ラインに定
常のリーク電流工りが発生した場合。
By the way, if a steady leakage current occurs in the output line of the piezoelectric cylinder pressure sensor Il+.

オペアンプ6Dの出力電圧v1は V−m−Cに十工L) となり、その出力信号波形は@6図の(&1に示す破線
のようになる。しかし、コンデンサ順の静奄容* Cs
が比較的大きく設定することができるため、オペアンプ
5′IJの人力リークXaによる断書は軽減される。さ
らVC次段のオペアンプ色による積分器の入力はコンデ
ンサ匈によって交流M4+されて込るため、上記’1/
j?Eリークによる変化分−R1工りはここで阻止され
、筒内圧力変化によるイg号成分−Rμ県のみが積分さ
れる。
The output voltage v1 of the operational amplifier 6D is V-m-C, and the output signal waveform is as shown in the dashed line (&1) in Figure @6. However, the static capacitance of the capacitor *Cs
can be set to a relatively large value, so that write breaks due to manual leakage Xa of the operational amplifier 5'IJ are reduced. Furthermore, since the input of the integrator due to the color of the operational amplifier in the next stage of VC is inputted to AC M4+ by the capacitor, the above '1/
j? The change due to the E leak - R1 is blocked here, and only the Ig component - Rμ due to the cylinder pressure change is integrated.

t 従って、積分・の出力、つまりオペアンプ6カの出力波
形に上記リーク電流の有無に拘らず第6図のlb+に示
すような安定した筒内圧力波形となる。
t Therefore, the output of the integral, that is, the output waveform of the six operational amplifiers, has a stable in-cylinder pressure waveform as shown at lb+ in FIG. 6, regardless of the presence or absence of the leakage current.

なお、上記実yM例においては、オペアンプ6瑞による
″ぼ流入力回路は電流−電圧変換回路としたが、ms人
カー電流出力の’# /jE IJ幅回路でもよい。こ
の場合、オペアンプ、iJによる積分器は抵抗6θが不
要になり、出力[流をそのまま積分する回路にすればよ
い。
In the above practical example, the current-to-voltage conversion circuit is used as the current-to-voltage input circuit by the operational amplifier 6, but it may be a current-to-voltage converter circuit with a current output of ms. In this case, the operational amplifier, iJ The integrator by the above eliminates the need for the resistor 6θ, and can be used as a circuit that directly integrates the output current.

また、交151!結合用コンデンサに電流入力回路と横
分器との関rCのみ挿入したが、直流入力回路と圧電形
筒内圧センサ間にも挿入すると七ができる。
Also, 151! Although the coupling capacitor is inserted only between the current input circuit and the horizontal divider, if it is also inserted between the DC input circuit and the piezoelectric cylinder pressure sensor, 7 will be created.

〔発明の効果〕〔Effect of the invention〕

以上説明した亡おり、本発明によれば圧ilC形尚内圧
センサの出力信号ライン等にリークt(flt。
As explained above, according to the present invention, there is a leakage t (flt) in the output signal line of the pressure ilC type internal pressure sensor.

が生じても変動のない安定な筒内圧力波形を得ることが
できるという効果がある。
This has the effect of being able to obtain a stable in-cylinder pressure waveform that does not fluctuate even if this occurs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1v;4は本発明による一実施例の回路図、撰2図は
第1図の実施例の動作説明図、第3図は圧電形筒内圧セ
ンサの断面構造図、第4図は圧電形筒内圧センサの取付
図、第5図は従来5tiIIfの回路図、第6図は従来
g置の出力波形図である。
1v; 4 is a circuit diagram of an embodiment according to the present invention, Fig. 2 is an explanatory diagram of the operation of the embodiment of Fig. 1, Fig. 3 is a cross-sectional structural diagram of a piezoelectric cylinder pressure sensor, and Fig. 4 is a piezoelectric type FIG. 5 is a circuit diagram of the conventional 5tiIIf, and FIG. 6 is an output waveform diagram of the conventional g position.

Claims (1)

【特許請求の範囲】[Claims] (1)内燃機関の燃焼気筒内の圧力を検出する圧電形圧
力検出器、この圧電形圧力検出器の出力電流信号を受信
する電流入力回路、この電流入力回路の出力信号を積分
する積分器とを備えた内燃機関の筒内圧力検出装置。
(1) A piezoelectric pressure detector that detects the pressure in the combustion cylinder of an internal combustion engine, a current input circuit that receives the output current signal of this piezoelectric pressure detector, and an integrator that integrates the output signal of this current input circuit. A cylinder pressure detection device for an internal combustion engine.
JP63039909A 1988-02-22 1988-02-22 Inside-cylinder pressure detector for internal combustion engine Pending JPH01213537A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63039909A JPH01213537A (en) 1988-02-22 1988-02-22 Inside-cylinder pressure detector for internal combustion engine
KR1019890001746A KR920006455B1 (en) 1988-02-22 1989-02-15 Cylinder pressure detecting apparatus
DE3905824A DE3905824A1 (en) 1988-02-22 1989-02-22 Device for detecting the pressure in a cylinder of an internal combustion engine
US07/503,072 US5062294A (en) 1988-02-22 1990-03-29 Apparatus for detecting pressure in cylinder of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039909A JPH01213537A (en) 1988-02-22 1988-02-22 Inside-cylinder pressure detector for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH01213537A true JPH01213537A (en) 1989-08-28

Family

ID=12566080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039909A Pending JPH01213537A (en) 1988-02-22 1988-02-22 Inside-cylinder pressure detector for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH01213537A (en)

Similar Documents

Publication Publication Date Title
US4149231A (en) Capacitance-to-voltage transformation circuit
EP0285070B1 (en) Capacitance measuring circuit
US10983187B2 (en) Measuring bridge arrangement with improved error detection
US5062294A (en) Apparatus for detecting pressure in cylinder of internal combustion engine
EP0156811A1 (en) Apparatus and method for determining the value of a capacitance.
US4797603A (en) Device for measuring the ratio of two low value capacities
US4459856A (en) CMOS Bridge for capacitive pressure transducers
CA1119253A (en) Capacitive pick-off circuit
JPH01213537A (en) Inside-cylinder pressure detector for internal combustion engine
US3984773A (en) Pulse counting-rate meter
US3519923A (en) Capacitive transducer system independent of stray capacitance
JP2002022785A (en) Impedance detection circuit and impedance detection method
JP3356029B2 (en) Electric quantity detection circuit
CN110749340A (en) A resistance-capacitance sensor signal measurement circuit
SU1267290A1 (en) Converter of parameters of conductivity transducer
JP2654808B2 (en) IC test equipment
JPS60203864A (en) Detector
JPH01213538A (en) Inside-cylinder pressure detector for internal combustion engine
JPH01213534A (en) Inside-cylinder pressure detector for internal combustion engine
SU1264104A1 (en) Resistance relative deviation from rating-to-voltage converter
JPH0611506Y2 (en) Electric line accident detection device
JPH01237426A (en) Fault detecting apparatus of inner pressure in tube
SU684733A1 (en) Converter of capacitor capacitance value into time-related voltage interval
SU1104440A1 (en) Method and device for measuring resistance
SU1366970A2 (en) Resistance-to-pulse frequency converter