JPH0121279Y2 - - Google Patents
Info
- Publication number
- JPH0121279Y2 JPH0121279Y2 JP7846483U JP7846483U JPH0121279Y2 JP H0121279 Y2 JPH0121279 Y2 JP H0121279Y2 JP 7846483 U JP7846483 U JP 7846483U JP 7846483 U JP7846483 U JP 7846483U JP H0121279 Y2 JPH0121279 Y2 JP H0121279Y2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- storage
- hydrogen gas
- metal
- cartridge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Hydrogen, Water And Hydrids (AREA)
Description
【考案の詳細な説明】
本考案は水素ガスの吸蔵・放出をできるだけ十
分にしかも迅速に行なわせることによつて、水素
吸蔵用金属の水素ガス吸蔵・放出能力を長期に亘
つて最大限に高め得る様な水素吸蔵用金属貯蔵容
器に関するものである。[Detailed explanation of the invention] This invention maximizes the hydrogen gas storage and release capacity of hydrogen storage metal over a long period of time by storing and releasing hydrogen gas as fully and quickly as possible. This invention relates to a metal storage container for storing hydrogen.
水素吸蔵用金属は水素を金属水素化物の形で貯
蔵する性質を有するもので、種々の用途(蓄熱
槽、ヒートポンプ、水素ガスの精製装置等)が提
案されているが、いずれにせよ水素を貯蔵し必要
に応じてこれを放出する貯蔵容器が必要である。 Hydrogen storage metals have the property of storing hydrogen in the form of metal hydrides, and various uses have been proposed (thermal storage tanks, heat pumps, hydrogen gas purification equipment, etc.), but in any case, hydrogen storage metals have the property of storing hydrogen in the form of metal hydrides. A storage container is required to release it as needed.
従来この種の貯蔵容器は、例えば第1図Aに示
す様ないわゆる外部熱媒体流路型のものに適用さ
れている。尚第1図Bは水素吸蔵用金属収納容器
部分2の要部断面図、同図Cは同図BのC−C線
断面図である。第1図Aに示す外部熱媒体流路型
では、外容器1中に水素吸蔵用金属収納容器(以
下収納カートリツジという)2を複数本平行に配
設すると共に各カートリツジ2の同一方向端を集
合ヘツダー3に接続し、更に集合ヘツダー3に水
素ガス流路4を連結して構成されている。又収納
カートリツジ2は第1図B,Cに示す様に密閉筒
5の軸方向一方側端部に水素ガス分配管6を接続
すると共に、接続側端面より若干奥まつた密閉筒
5内に焼結金網等からなる円板状のフイルター1
0を配置して挿入側端面とフイルター10の間に
水素ガス室7を形成し、且つフイルター10で仕
切られた密閉筒5内に水素吸蔵用金属8を充填し
てなるものである。 Conventionally, this type of storage container has been applied, for example, to a so-called external heat medium channel type as shown in FIG. 1A. 1B is a cross-sectional view of a main part of the hydrogen storage metal storage container portion 2, and FIG. 1C is a cross-sectional view taken along the line C--C in FIG. 1B. In the external heat transfer medium flow path type shown in FIG. It is connected to the header 3 and further connected to the collecting header 3 with a hydrogen gas flow path 4. As shown in FIGS. 1B and 1C, the storage cartridge 2 has a hydrogen gas distribution pipe 6 connected to one axial end of the sealed cylinder 5, and a hydrogen gas distribution pipe 6 installed in the sealed cylinder 5, which is slightly recessed from the end surface of the connection side. Disc-shaped filter 1 made of wire mesh, etc.
0 to form a hydrogen gas chamber 7 between the insertion side end face and the filter 10, and a hydrogen storage metal 8 is filled in a sealed cylinder 5 partitioned by the filter 10.
そして熱交換に際しては(即ち水素の出し入れ
に際しては)入口9aから熱媒を導入して出口9
bから導出する一方、収納カートリツジ2内では
金属+H2→金属水素化物
又は
金属水素化物→金属+H2
で示される水素吸蔵又は水素放出を行なわせ、そ
れに伴つて水素導入又は排出を行なつている。 When exchanging heat (that is, when taking hydrogen in and out), a heating medium is introduced from the inlet 9a and then transferred to the outlet 9a.
While deriving from b, in the storage cartridge 2, hydrogen storage or hydrogen absorption shown as metal + H 2 → metal hydride or metal hydride → metal + H 2 is performed, and hydrogen is introduced or discharged accordingly. .
ところで上記収納カートリツジ2においては、
水素ガス吸蔵・放出能力を大きくするために、密
閉筒5を可能な範囲で長尺に形成し、且つその中
に水素吸蔵用金属8を均等な密度となる様に充填
すると共に、水素ガスは常にフイルター10側か
ら出し入れしている。従つて水素ガスの吸蔵反応
はまず入口側(フイルター10近傍)で起こり、
未反応の水素が順次奥方向へ移動することによつ
て水素吸蔵反応自体も奥方向に向つて移動してい
く。しかるに水素吸蔵用金属は水素ガスを吸蔵す
ることによつて体積膨張を起こして空隙率が低下
するという性質を有しているので流路抵抗は入口
側から順に大きくなつていく。従つて水素ガスを
充填層全体に行き渡らせる為の水素ガス押込圧は
吸蔵反応の進行と共に大きくする必要があるが、
上記流路抵抗は吸蔵反応の進行につれて益々高ま
るので、水素を奥部まで十分に吸蔵させることは
できないとされている。 By the way, in the storage cartridge 2,
In order to increase the ability to absorb and release hydrogen gas, the sealed cylinder 5 is formed to be as long as possible, and hydrogen storage metal 8 is filled therein so as to have an even density. It is always taken in and out from the filter 10 side. Therefore, the hydrogen gas storage reaction first occurs on the inlet side (near the filter 10),
As unreacted hydrogen sequentially moves towards the back, the hydrogen storage reaction itself also moves towards the back. However, since the hydrogen storage metal has the property of causing volumetric expansion and decreasing the porosity by storing hydrogen gas, the flow path resistance gradually increases from the inlet side. Therefore, the hydrogen gas pushing pressure to spread hydrogen gas throughout the packed bed needs to increase as the storage reaction progresses.
Since the flow path resistance increases as the occlusion reaction progresses, it is said that hydrogen cannot be sufficiently occluded deep inside.
本考案はこうした事情に着目してなされたもの
であつて、水素吸蔵用金属への水素ガスの吸蔵・
放出を可及的十分に且つ迅速に行なわせることを
可能ならしめる様な水素吸蔵用金属貯蔵容器を提
供しようとするものである。 The present invention was developed with attention to these circumstances, and it is a method for storing and storing hydrogen gas in hydrogen storage metals.
The object of the present invention is to provide a metal storage container for storing hydrogen that allows release to occur as fully and quickly as possible.
しかして上記目的を達成した本考案の水素吸蔵
用金属貯蔵容器は、水素吸蔵用金属貯蔵容器内を
フイルターによつて分割することにより、水素吸
蔵用金属収納室と水素ガス分散室を夫々複数個相
互に隣接させる様に区画形成し、収納室には水素
ガス通過路を形成して前記水素ガス分散室を相互
に連通してなる点に要旨を有するものである。 The hydrogen storage metal storage container of the present invention, which has achieved the above object, has a plurality of hydrogen storage metal storage chambers and hydrogen gas dispersion chambers each by dividing the inside of the hydrogen storage metal storage container with a filter. The gist is that the hydrogen gas dispersion chambers are formed into sections so as to be adjacent to each other, and a hydrogen gas passage is formed in the storage chamber so that the hydrogen gas dispersion chambers are communicated with each other.
以下実施例図面を参照しながら本考案の構成並
びに作用効果を説明する。 The configuration and effects of the present invention will be explained below with reference to the drawings.
第2図は本考案の貯蔵容器を構成する収納カー
トリツジの断面図、第3図は第2図における−
線断面矢視図、第4図は第2図における−
線断面矢視図で、収納カートリツジ2を構成する
密閉筒5内には、両端面がフイルター10,10
aで囲まれると共に内部に水素吸蔵用金属8が充
填され且つ軸心部に水素ガス通過路13を設けて
なる小容積の円筒状単位収納室(以下単位カート
リツジという)2a,2b,2cを同軸方向に複
数個収納し、且つ隣設する単位カートリツジ2
a,2b,2c間には若干の間隙を残して夫々ス
ペーサ11を設け、水素ガス分散室7a,7b等
を形成している。そして上記構成の収納カートリ
ツジ2を第1図Aと同様に外容器1内に配設する
ことにより貯蔵容器とする。尚上記収納カートリ
ツジ2を製作するに当つては第5図に示す様に、
水素吸蔵用金属8を充填した単位カートリツジ2
a等を、スペーサ11を介して密閉筒5内へ挿入
した後、密閉筒5を絞り加工に付し単位カートリ
ツジ2aと密閉筒5の各壁面を密着させることに
よつて熱媒との伝熱性能を向上させることが推奨
される。又第6図に示す如く密閉筒5を縦向きに
置きスペーサ11を入れた円筒13aを1つ又は
2つ程度立てかけ、更に水素吸蔵用金属を装入し
た後、次のフイルター10を載せるという手順を
繰返して組立てるという方法を採用すれば熱媒と
の熱交換の一層高いものが製造されるという利点
がある。 Fig. 2 is a sectional view of a storage cartridge constituting the storage container of the present invention, and Fig. 3 is a -
Line cross-sectional view in the direction of arrows, Fig. 4 shows − in Fig. 2.
In the line cross-sectional view taken in the direction of arrows, inside the sealed cylinder 5 constituting the storage cartridge 2, filters 10, 10 are formed on both end surfaces.
A, a small-volume cylindrical unit storage chamber (hereinafter referred to as a unit cartridge) 2a, 2b, and 2c, which is surrounded by a hydrogen storage metal 8 and is filled with a hydrogen storage metal 8 and has a hydrogen gas passage 13 at its axial center, are coaxially connected to each other. Unit cartridges 2 that store multiple units in one direction and are located adjacent to each other.
A spacer 11 is provided between a, 2b, and 2c, leaving a slight gap, respectively, to form hydrogen gas dispersion chambers 7a, 7b, and the like. Then, the storage cartridge 2 having the above structure is placed inside the outer container 1 in the same manner as shown in FIG. 1A, thereby forming a storage container. In manufacturing the above-mentioned storage cartridge 2, as shown in Fig. 5,
Unit cartridge 2 filled with hydrogen storage metal 8
a etc. are inserted into the sealed cylinder 5 through the spacer 11, and then the sealed cylinder 5 is subjected to a drawing process to bring the unit cartridge 2a and each wall of the sealed cylinder 5 into close contact, thereby achieving heat transfer with the heat medium. Recommended to improve performance. Further, as shown in FIG. 6, the sealing cylinder 5 is placed vertically, one or two cylinders 13a containing spacers 11 are placed against it, and after the hydrogen storage metal is charged, the next filter 10 is placed. If a method of repeatedly assembling is adopted, there is an advantage that a product with even higher heat exchange with the heating medium can be manufactured.
水素吸蔵に際しては外容器1内に冷媒体を流し
ながら、集合ヘツダ3及び分配管6を経て水素ガ
スを導入し収納カートリツジ2内へ押込む。押込
された水素ガスは第2図中の矢印で示される様
に、入口部の水素ガス分散室7からフイルター1
0を通り抜けて第1番目の単位カートリツジ2a
内へ流入し水素吸蔵用金属8へ吸蔵される一方、
一部は水素ガス通過路13を通つて中間の水素ガ
ス分散室7aに至り、更にフイルター10を通り
抜けて第2番目の単位カートリツジ26内へ吸蔵
される。一部は第1番目の単位カートリツジ2a
の後部側を通つて第1番目の単位カートリツジに
導入されるので、同カートリツジ2aの後方から
も水素吸蔵が行なわれ、単位カートリツジ内にお
ける水素吸蔵を軸方向及び周方向に亘つて均一に
行なわせることができる。尚もしそこまで望まな
いのであれば後方側のフイルター10aを透過性
能のないものに置き換えても良い。そして以下同
様に第3番目以降の単位カートリツジ2cについ
ても水素の吸蔵が万偏なく行なわれる。 When storing hydrogen, while a refrigerant is flowing into the outer container 1, hydrogen gas is introduced through the collecting header 3 and the distribution pipe 6 and pushed into the storage cartridge 2. The forced hydrogen gas flows from the hydrogen gas dispersion chamber 7 at the inlet to the filter 1 as shown by the arrow in FIG.
Passing through 0, the first unit cartridge 2a
While flowing into the hydrogen storage metal 8 and being stored in the hydrogen storage metal 8,
A portion passes through the hydrogen gas passage 13 to the intermediate hydrogen gas dispersion chamber 7a, further passes through the filter 10, and is stored in the second unit cartridge 26. Part is the first unit cartridge 2a
Since hydrogen is introduced into the first unit cartridge through the rear side of the unit cartridge 2a, hydrogen storage is also performed from the rear of the cartridge 2a, and hydrogen storage in the unit cartridge is performed uniformly in the axial and circumferential directions. be able to. If this is not desired, the filter 10a on the rear side may be replaced with one that does not have transmission performance. Similarly, the third and subsequent unit cartridges 2c also absorb hydrogen evenly.
尚図では水素ガス分散室7a等を比較的大きく
描いたが、水素吸蔵用金属の充填量を極力増大さ
せるという観点からすれば水素ガスの拡散を阻害
しないという条件の下でできるだけ小さくする方
が望ましい。又水素ガス通過路13はフイルター
10,10aに比べ流路断面積がかなり小さい
が、ここでは抵抗が極めて小さいのでカートリツ
ジ奥部への水素ガスの流入は円滑に行なわれる。 Although the hydrogen gas dispersion chamber 7a etc. are drawn relatively large in the figure, from the viewpoint of increasing the filling amount of the hydrogen storage metal as much as possible, it is better to make them as small as possible under the condition that the diffusion of hydrogen gas is not inhibited. desirable. Although the hydrogen gas passage 13 has a considerably smaller cross-sectional area than the filters 10 and 10a, the resistance here is extremely small, so that the hydrogen gas can smoothly flow into the inner part of the cartridge.
本考案の基本構成は上記の通りであるが、その
他の実施態様として例えば第7,8図(収納カー
トリツジ2の第3図に相当する断面図)が示され
る。即ち第7図においては、単位カートリツジ2
cの水素吸蔵用金属収納室に複数の伝熱板14を
配設すると共にこれらを単位カートリツジ2cの
内周壁に接合し、伝熱板14の伝熱促進効果を利
用して水素吸蔵用金属の熱媒による加熱・冷却が
効率よく行なわれる様にしている。次に第8図に
おいては、第7図の伝熱板14に代えて湾曲伝熱
板14aを用いたもので、伝熱有効面積の拡大に
よつて第7図側より優れた熱伝達効果が得られる
様にしている。 The basic structure of the present invention is as described above, but other embodiments are shown, for example, in FIGS. 7 and 8 (a sectional view of the storage cartridge 2 corresponding to FIG. 3). That is, in FIG. 7, the unit cartridge 2
A plurality of heat transfer plates 14 are arranged in the hydrogen storage metal storage chamber c, and these are joined to the inner circumferential wall of the unit cartridge 2c, and the heat transfer promoting effect of the heat transfer plates 14 is used to transfer the hydrogen storage metal. This ensures efficient heating and cooling by the heat medium. Next, in FIG. 8, a curved heat transfer plate 14a is used in place of the heat transfer plate 14 in FIG. I'm trying to get it.
本考案は以上の様に構成されており、以下要約
する様な効果を得ることができる。 The present invention is configured as described above, and can obtain the effects as summarized below.
(1) 水素吸蔵用金属が分割充填されているので、
水素ガス流通方向に見た個々の充填厚さが従来
に比べて格段に小さく水素ガスの流通を容易且
つ十分に行なうことができる。従つて水素ガス
の上流側充填層において水素吸蔵による流路抵
抗の増大が生じてもなお十分な流通度が確保さ
れ、下流側への水素の供給に不都合は生じな
い。(1) Hydrogen storage metal is filled in parts, so
The individual filling thicknesses seen in the direction of hydrogen gas flow are much smaller than in the past, making it possible to easily and sufficiently flow hydrogen gas. Therefore, even if the flow path resistance increases due to hydrogen storage in the upstream filled hydrogen gas layer, a sufficient flow rate is still ensured, and no problem occurs in supplying hydrogen to the downstream side.
(2) 分割された水素吸蔵用金属充填層が、水素ガ
ス通過路及び水素ガス分散室によつて連通され
ているので、奥部を含む全ての水素吸蔵用金属
充填層に迅速且つ十分に水素ガスを導入するこ
とができる。従つて水素吸蔵は勿論のこと水素
放出操作も効率良く行なうことができる。(2) Since the divided hydrogen storage metal packed beds are communicated with each other by the hydrogen gas passageway and the hydrogen gas distribution chamber, hydrogen can be quickly and sufficiently supplied to all the hydrogen storage metal packed beds including the inner part. Gas can be introduced. Therefore, not only hydrogen storage but also hydrogen release operations can be performed efficiently.
第1図A〜Cは従来の外部熱媒流路貯蔵容器を
示す断面図で、Aは要部縦断面図、Bは貯蔵用カ
ートリツジの要部断面図、CはBにおけるC−C
線断面図、第2図は本考案に係る貯蔵カートリツ
ジの断面図、第3図は第2図における−線断
面矢視図、第4図は第2図における−線断面
矢視図、第5図は本考案に係る貯蔵カートリツジ
の絞り加工前状態図、第6〜8図は本考案に係る
貯蔵カートリツジの実施態様を示す断面図で、第
6図は第2図相当図、第7,8図は第3図相当図
である。
1……外容器、2……収納カートリツジ(収納
容器)、2a,2b,2c……単位カートリツジ
(収納室)、7,7a,7b……水素ガス分散室、
8……水素吸蔵用金属、10,10a……フイル
ター、13……水素ガス通過路。
1A to 1C are cross-sectional views showing a conventional external heat medium flow path storage container, where A is a vertical cross-sectional view of the main part, B is a cross-sectional view of the main part of a storage cartridge, and C is a cross-sectional view of the main part of the storage cartridge.
2 is a cross-sectional view of the storage cartridge according to the present invention; FIG. 3 is a cross-sectional view taken along the line - in FIG. 2; FIG. 4 is a cross-sectional view taken along the line - in FIG. 2; The figure is a state diagram of the storage cartridge according to the present invention before drawing processing, Figures 6 to 8 are sectional views showing embodiments of the storage cartridge according to the present invention, Figure 6 is a view corresponding to Figure 2, Figures 7 and 8 are The figure is a diagram equivalent to Figure 3. 1... Outer container, 2... Storage cartridge (storage container), 2a, 2b, 2c... Unit cartridge (storage chamber), 7, 7a, 7b... Hydrogen gas dispersion chamber,
8...Hydrogen storage metal, 10, 10a...Filter, 13...Hydrogen gas passage.
Claims (1)
て分割することにより、水素吸蔵用金属収納室と
水素ガス分散室を夫々複数個相互に隣接させる様
に区画形成し、前記収納室には水素ガス通過路を
形成して前記水素ガス分散室を相互に連通してな
ることを特徴とする水素吸蔵用金属貯蔵容器。 By dividing the inside of the hydrogen storage metal storage container with a filter, a plurality of hydrogen storage metal storage chambers and a plurality of hydrogen gas dispersion chambers are adjacent to each other, and the storage chamber has a hydrogen gas passage. A metal storage container for hydrogen storage, characterized in that the hydrogen gas dispersion chambers are interconnected by forming a channel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7846483U JPS59183600U (en) | 1983-05-25 | 1983-05-25 | Metal storage container for hydrogen storage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7846483U JPS59183600U (en) | 1983-05-25 | 1983-05-25 | Metal storage container for hydrogen storage |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59183600U JPS59183600U (en) | 1984-12-06 |
JPH0121279Y2 true JPH0121279Y2 (en) | 1989-06-26 |
Family
ID=30208466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7846483U Granted JPS59183600U (en) | 1983-05-25 | 1983-05-25 | Metal storage container for hydrogen storage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59183600U (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8100151B2 (en) * | 2007-05-21 | 2012-01-24 | Honda Motor Co. Ltd. | Shaped absorbent media installed in a high pressure tank |
FR3030680B1 (en) * | 2014-12-19 | 2017-01-27 | Commissariat Energie Atomique | HYDROGEN STORAGE TANK WITH METALLIC HYDRIDES WITH IMPROVED HYDROGEN LOADING |
-
1983
- 1983-05-25 JP JP7846483U patent/JPS59183600U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59183600U (en) | 1984-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4457136A (en) | Metal hydride reactor | |
US4609038A (en) | Heat exchanger using a hydrogen occlusion alloy | |
US4581049A (en) | Solid absorber apparatus for a cyclic absorption process | |
CN101680599A (en) | Hydrogen gas storing device | |
JPH0121279Y2 (en) | ||
JP2001248795A (en) | Hydrogen storage alloy tank | |
KR101839756B1 (en) | hydrogen storage alloy with heat conducting mesh unit and hydrogen storage system of using the hydrogen storage alloy | |
JPS62288495A (en) | Heat exchanger | |
EP0061191A1 (en) | Metal hydride reactor | |
JP2001050683A (en) | Indirect heat exchanger charged with solid-gas reactive granules | |
JPH09242995A (en) | Square heat transfer vessel filled with hydrogen storage alloy for storing hydrogen | |
JPS6334487A (en) | Hydrogenated metal heat exchanger | |
JPS63225799A (en) | Manufacture of reactor for hydrogen absorption alloy | |
JPH0253362B2 (en) | ||
JPS6126718Y2 (en) | ||
JP2561680Y2 (en) | Reformer | |
JP3032998B2 (en) | Hydrogen storage alloy holding container | |
JPS6158719B2 (en) | ||
JPH0412377Y2 (en) | ||
JPS60205191A (en) | Vessel for metallic hydrogenated substance | |
JPH087200Y2 (en) | Chemical reaction vessel | |
JP3640476B2 (en) | Reaction vessel for solid gas reaction powder | |
JPH0429198Y2 (en) | ||
JPH0143379Y2 (en) | ||
JP2008095730A (en) | Gas storage equipment |