[go: up one dir, main page]

JPH01212747A - Production of thin superconducting composite strip - Google Patents

Production of thin superconducting composite strip

Info

Publication number
JPH01212747A
JPH01212747A JP3407988A JP3407988A JPH01212747A JP H01212747 A JPH01212747 A JP H01212747A JP 3407988 A JP3407988 A JP 3407988A JP 3407988 A JP3407988 A JP 3407988A JP H01212747 A JPH01212747 A JP H01212747A
Authority
JP
Japan
Prior art keywords
thin
metal
thin film
alloy
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3407988A
Other languages
Japanese (ja)
Inventor
Jun Sasahara
潤 笹原
Naomasa Kimura
直正 木村
Minako Onodera
美奈子 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP3407988A priority Critical patent/JPH01212747A/en
Publication of JPH01212747A publication Critical patent/JPH01212747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To easily and inexpensively produce a thin superconducting composite strip by melting an alloy and supplying the metal thereof continuously in the form of a thin film on a substrate consisting of the other metal, then heating the entire part to form a diffused superconducting layer. CONSTITUTION:>=2 Kinds of alloy elements such as Nb-Zr-Ti system are housed in a high-frequency induction furnace 1 and are heated to melt. The molten metal 3 obtd. in such a manner is supplied continuously from a nozzle 2 onto the substrate consisting of a thin strip 4 which is formed of the other metal such as Cu, is un-coiled from a coil 5 and moves at a high speed. The molten metal 3 forms the thin film 3A on the surface of the thin Cu strip 4. The thin film 3A is rapidly solidified to obtain the thin composite strip 4A. The thin composite strip 4A is thereafter subjected to a heating treatment over the entire part to form the diffused superconducting layer between the above-mentioned thin-film like alloy layer and the substrate metal. The above-mentioned heating treatment is otherwise executed in an oxidative atmosphere by which the diffused oxide superconductor layer is obtd. The thin superconducting composite strip having the multielement alloy of a nonequil. phase is thereby obtd.

Description

【発明の詳細な説明】 Li=上五皿皿皇1 本発明は、多元合金超伝導体または多元合金酸化物超伝
導体の薄膜を得る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for obtaining a thin film of a multi-component alloy superconductor or a multi-component alloy oxide superconductor.

正IJL血 超伝導材料は、超伝導磁石、超伝導送電、m伝導電力貯
蔵用等の高性能のエネルギー関連材料として、あるいは
高速、高感度、高精度、低電力消費の特性をもつジョセ
フソン素子を中心としたエレクトロニクス関連材料とし
て実用化されつつある。超伝導材料とは、成る種の金属
を低温に冷却していくと直流に対して電気抵抗が突然ゼ
ロの状態になるとともに、内部から磁束を追い出し外部
磁界と反対方向に磁化する完全反磁性の状態になる物質
を指す。
Positive IJL superconducting materials can be used as high-performance energy-related materials such as superconducting magnets, superconducting power transmission, and m-conducting power storage, or as Josephson devices with the characteristics of high speed, high sensitivity, high precision, and low power consumption. It is being put into practical use as an electronics-related material, mainly in A superconducting material is a completely diamagnetic material that, when a metal is cooled to a low temperature, suddenly has zero electrical resistance to direct current, and that it expels magnetic flux from inside and magnetizes in the opposite direction to the external magnetic field. Refers to a substance that becomes a state.

電気抵抗がゼロになる温度を超伝導臨界温度(Tc )
と称しており、過去に発見された超伝導材料のTcは、
例えばpb・・・7.2K(Kは絶対温度)。
The temperature at which electrical resistance becomes zero is the superconducting critical temperature (Tc)
The Tc of superconducting materials discovered in the past is
For example, pb...7.2K (K is absolute temperature).

Nb・・・9.3K 、 Nb3 Ga・・・20.3
1(、Nb3 Ale、+tGe−,ai・・41K 
、 Ba −t、a−Cu−o ・・・35K 、 S
r −La−Cu−o −・・s4K 、 8a2 V
 C+1301・・・90に以上である。超伝導状態を
実現するために使用されるヘリウム、水素、ネオン、窒
素、酸素の沸点は、それぞれヘリウム・・・4.1に、
水素・・・20.28に、ネオン・・・27.102K
 、窒素・・・77.35 K、 M素・・・90.1
88にであり、超伝導材料の利用上、液化器、冷却シス
テム等の膨大な付帯設備を必要とするヘリウムを使用せ
ずともよいNb−Zr−Ti系等の高Tc三元合金超伝
導44Fl、 Ba−Ln−Cu−0系、 5r−Ln
−Cu−0系、 Ba−Y−Cu−0等の高Tc酸化物
超伝導材料(注、l−nはランタニド系元素を示す)の
利用は経済的に極めて有利である。
Nb...9.3K, Nb3Ga...20.3
1(, Nb3 Ale, +tGe-, ai...41K
, Ba-t, a-Cu-o...35K, S
r -La-Cu-o-...s4K, 8a2V
C+1301...90 or more. The boiling points of helium, hydrogen, neon, nitrogen, and oxygen used to achieve superconductivity are helium...4.1, respectively.
Hydrogen...20.28, Neon...27.102K
, Nitrogen...77.35 K, M element...90.1
High Tc ternary alloy superconductor 44Fl, such as the Nb-Zr-Ti system, does not require the use of helium, which requires a huge amount of incidental equipment such as a liquefier and cooling system when using superconducting materials. , Ba-Ln-Cu-0 system, 5r-Ln
The use of high Tc oxide superconducting materials such as -Cu-0 series and Ba-Y-Cu-0 (note: l-n indicates lanthanide-based elements) is economically extremely advantageous.

′しよ〜とする・ ところで、超伝導材料の高いTC値が確認されたとして
も、該超伝導材料が直ちに実用化される訳ではなく、線
材、a帯等の利用可能な形態に成形可能でなければなら
ない。現在利用されている超伝導材料は、その大半がバ
ルク線材であるが、薄帯としての需要が増しつつあり、
本発明では、汎用されるスパッタリング法、蒸着法、C
VO法によらず、非平衡相である多元合金超伝導材料あ
るいは多元合金酸化物超伝導材料の薄帯を溶解法によっ
て得ることにした。
By the way, even if a high TC value of a superconducting material is confirmed, it does not mean that the superconducting material will be put into practical use immediately, and it will be possible to form it into usable forms such as wire rods and A-band. Must. Most of the superconducting materials currently in use are bulk wire rods, but the demand for thin strips is increasing.
In the present invention, widely used sputtering method, vapor deposition method, C
Instead of using the VO method, we decided to obtain a ribbon of a non-equilibrium phase multi-component alloy superconducting material or multi-component alloy oxide superconducting material by a melting method.

本発明の目的は、溶解法では作製困難とされている11
平衡相である多元合金超伝導材料あるいは多元合金酸化
物超伝導材料の薄帯を簡易、かつ廉価な溶解法によって
得ることである。
The purpose of the present invention is to produce 11
The objective is to obtain a thin strip of a multi-component alloy superconducting material or a multi-component alloy oxide superconducting material, which is an equilibrium phase, by a simple and inexpensive melting method.

゛   ′1  だ の− よゝよ この目的は、二種以上の合金元素を溶融させてなる溶融
金属を、他の金属で形成された基板上に薄膜状に連続供
給して急冷凝固させ、仝休を加熱して前記薄膜状合金層
と基板金属との間に超伝導体拡散層を形成させることに
より達成される。
The purpose of this is to continuously supply molten metal made by melting two or more alloying elements in the form of a thin film onto a substrate made of other metals, rapidly solidify it, and then This is achieved by heating the material to form a superconductor diffusion layer between the thin film alloy layer and the substrate metal.

二種以上の合金元素を溶融状態から徐冷凝固させると偏
析が生じて均一組織の材料が得られない場合がある。そ
のため、本発明では二種以上の合 ゛全元素を溶融させ
た溶融金属を、金属基板上に薄膜状に供給して急冷凝固
させることとした。急冷凝固処理によって均一、かつ規
定組成の合金薄膜が得られ、他の金属である金属基板と
ともに合金薄膜を加熱処理すれば、金属基板と簿膜との
間に超伝導材料としての目標組成の拡散層が形成される
。その際、不活性ガス雰囲気中で加熱を行えば多元合金
の拡散層が得られ、酸化雰囲気中で加熱を行えば多元合
金酸化物の拡a層が得られる。また、拡散層の組成を目
標通りにするには、合金元素の組合せに応じて加熱温度
、加熱時間あるいは加熱雰囲気を選択すれば良い。なお
、多元合金超伝導材料の例としてはNb−Zr−Ti系
があり、多元合金酸化物超伝導材料の例としてはBa−
Ln−Cu−0系。
When two or more alloying elements are slowly cooled and solidified from a molten state, segregation may occur and a material with a uniform structure may not be obtained. Therefore, in the present invention, a molten metal obtained by melting two or more total elements is supplied in the form of a thin film onto a metal substrate and rapidly solidified. An alloy thin film with a uniform and defined composition can be obtained by rapid cooling and solidification treatment, and if the alloy thin film is heat-treated together with a metal substrate, which is another metal, the target composition as a superconducting material can be diffused between the metal substrate and the film. A layer is formed. At that time, if heating is performed in an inert gas atmosphere, a diffusion layer of a multi-component alloy can be obtained, and if heating is performed in an oxidizing atmosphere, an expanded a layer of a multi-component alloy oxide can be obtained. Further, in order to achieve the target composition of the diffusion layer, the heating temperature, heating time, or heating atmosphere may be selected depending on the combination of alloying elements. An example of a multi-component alloy superconducting material is Nb-Zr-Ti, and an example of a multi-component alloy oxide superconducting material is Ba-Zr-Ti.
Ln-Cu-0 series.

5r−Ln−Cu−0系、 5r−Ca−Ln−Cu−
0系がある。
5r-Ln-Cu-0 system, 5r-Ca-Ln-Cu-
There is a 0 series.

金属基板上に溶融金属の薄膜を形成するには、金属基板
として長尺の薄帯を用い、これを高速で移動させながら
その上面にノズルを通じて連続的に溶融金属を供給すれ
ば良く、溶融金属の供給速度と金属基板の移動速度との
兼ね合いで薄膜の厚さを制御することができる。また、
その際、金属基板を加熱しておけば金属基板に対する溶
融金属の濡れ性が良く、薄膜状に拡がるため、溶融金属
が高融点金属である場合には急冷効果が大きい。
To form a thin film of molten metal on a metal substrate, it is sufficient to use a long ribbon as the metal substrate, and continuously supply molten metal onto the top surface of the ribbon through a nozzle while moving it at high speed. The thickness of the thin film can be controlled by balancing the supply speed of the metal substrate with the moving speed of the metal substrate. Also,
At this time, if the metal substrate is heated, the molten metal has good wettability to the metal substrate and spreads into a thin film, so if the molten metal is a high melting point metal, the quenching effect is large.

そして、合金薄膜と金a基板から成る積層体を加熱して
金属基板と薄膜との間に拡rlImを形成させることに
より金属基板と一体化された三層構造の複合材として所
望の超伝導複合薄帯を得ることができる。
Then, by heating the laminate consisting of the alloy thin film and the gold a substrate to form an expanded rlIm between the metal substrate and the thin film, the desired superconducting composite is produced as a three-layer composite material integrated with the metal substrate. You can get thin strips.

丈−JLJ ■Ba−Ln−Cu−0系酸化物超伝導材料(例、Ba
x La2−x Cu04−y )を得るために、高周
波誘導炉1中に規定比率のBa、 Lnを装入して溶融
させる。
Length-JLJ ■Ba-Ln-Cu-0 based oxide superconducting material (e.g., Ba
In order to obtain (xLa2-xCu04-y), Ba and Ln at a specified ratio are charged into a high frequency induction furnace 1 and melted.

Ba−Lnは非平衡相であって、その融点は1000℃
〜1300℃である。高周波誘導炉1中では溶融金属3
(Ba−Ln)は磁力によって良く撹拌される(第1図
)。
Ba-Ln is a non-equilibrium phase, and its melting point is 1000℃
~1300°C. In the high frequency induction furnace 1, the molten metal 3
(Ba-Ln) is well stirred by magnetic force (Fig. 1).

■第三金属である銅薄帯4のコイル5を用意し、これを
高速で巻戻しつつ高周波誘導炉1の下部に設けたノズル
2を開成し、巻戻される銅薄帯4上に溶融金属3を噴出
させる(第1図)。溶融金属3は銅薄帯4上で719膜
状に広がって急冷凝固し、銅薄帯4上に積層されたBa
−Ln薄膜3Aとなる。
■ Prepare a coil 5 of copper ribbon 4, which is a third metal, and open the nozzle 2 installed at the bottom of the high-frequency induction furnace 1 while unwinding it at high speed. 3 is ejected (Figure 1). The molten metal 3 spreads into a 719 film shape on the copper ribbon 4 and rapidly solidifies, and the Ba layered on the copper ribbon 4
-Ln thin film 3A is obtained.

■Ba−Ln薄膜3Aと銅薄帯4から成る複合薄帯4A
を酸素雰囲気中で温度900℃〜970℃に加熱して8
〜24時間保持する。この加熱処理によってBa−1,
n薄膜品と銅薄帯4の界面に沿ってBa−1−n−Cu
−0の拡散層6が生じ、三層構造の複合薄帯4Bが得ら
れる。
■Composite ribbon 4A consisting of Ba-Ln thin film 3A and copper ribbon 4
8 by heating to a temperature of 900°C to 970°C in an oxygen atmosphere.
Hold for ~24 hours. Through this heat treatment, Ba-1,
Ba-1-n-Cu along the interface between the n-thin film product and the copper ribbon 4
-0 diffusion layer 6 is formed, and a composite ribbon 4B having a three-layer structure is obtained.

本実施例の特徴点は以下の通りである。The features of this embodiment are as follows.

■合金化し難いBa−1,nを溶1金属3として銅薄帯
4上に供給し急冷凝固させるため、均一組成のBa−L
n 薄膜3Aを得ることができる。
■Ba-1,n, which is difficult to alloy, is supplied as molten metal 3 onto the copper ribbon 4 and rapidly solidified, so Ba-L with a uniform composition
n thin film 3A can be obtained.

■Ba−Ln薄膜3^は、高速移動する銅薄帯4上にノ
ズル2を通じて溶融金R3を噴出させることにより容易
にこれを形成することができる。また、その膜厚はノズ
ル2の絞り量と銅薄帯4の移動速度との兼ね合いで容易
にこれを制御し得る。
(2) The Ba-Ln thin film 3^ can be easily formed by spouting the molten gold R3 through the nozzle 2 onto the copper ribbon 4 moving at high speed. Further, the film thickness can be easily controlled by taking into account the amount of narrowing of the nozzle 2 and the moving speed of the copper ribbon 4.

■Ba−Ln−Cu−0化合物中の規定の銅含有間およ
び酸素含有量は、複合薄帯4Aの加熱温度、加熱時間に
よってこれを制御することができ、目標組成の超伝導材
料薄帯を簡易に得ることが可能である。
■The specified copper content and oxygen content in the Ba-Ln-Cu-0 compound can be controlled by the heating temperature and heating time of the composite ribbon 4A, and the superconducting material ribbon with the target composition can be controlled. It is possible to obtain it easily.

■得られた三層構造の複合薄帯4Bはそのままの形態で
使用されるが、使用の間に超伝導材料である拡散層6が
磁束跳躍によって常伝導化したときにマトリックスであ
る銅薄帯4に電流がバイパスされ、その際に発生する熱
も銅薄帯4によって効果的に放散される。
■ The obtained composite ribbon 4B with a three-layer structure is used as it is, but during use, when the diffusion layer 6, which is a superconducting material, becomes normal conductive due to magnetic flux jump, the copper ribbon, which is a matrix, becomes a normal conductor. The current is bypassed through the copper ribbon 4, and the heat generated at this time is also effectively dissipated by the copper ribbon 4.

21日と迩里 以上の説明から明らかなように、本発明によれば下記の
効果を得ることができる。
As is clear from the above explanation, according to the present invention, the following effects can be obtained.

■たとえ相互に合金化し難い合金元素を含んでいても、
多元合金超伝導材料または多元合金酸化物超伝導材料の
薄帯を溶解法により簡易、かつ廉価に得ることができる
■Even if it contains alloying elements that are difficult to alloy with each other,
A thin strip of a multi-component alloy superconducting material or a multi-component alloy oxide superconducting material can be easily and inexpensively obtained by a melting method.

■金till板を長尺の薄帯とし、これを高速で移動さ
せながらその上面に溶融金属を供給するならば、該溶融
金属が凝固してなる合金薄帯を簡単に形成することがで
きる。
(2) If a gold till plate is made into a long ribbon and molten metal is supplied to the upper surface of the plate while moving it at high speed, it is possible to easily form an alloy ribbon by solidifying the molten metal.

■金属基板として銅薄帯を用いるならば、銅薄帯1合金
層および超伝導体拡散層からなる三層構造の製品複合薄
帯は、超伝導体として使用する問、超伝導材料拡散層が
磁束跳躍によって常伝導化しても、マトリックスである
銅薄帯に電流がバイパスされ、その際に発生する熱も銅
薄帯によって放散される。
■If a copper ribbon is used as a metal substrate, a composite ribbon with a three-layer structure consisting of an alloy layer of copper ribbon and a superconductor diffusion layer will be used as a superconductor. Even if it becomes normal conductivity due to magnetic flux jump, the current is bypassed to the matrix of the copper ribbon, and the heat generated at this time is also dissipated by the copper ribbon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施態様を示す概略図、第2図は
第1図に示す方法で得た二層構造の複合薄帯を加熱処理
して二層間に超伝導材料拡散層を形成して成る三層II
4造の複合薄帯の断面図である。 1・・・高周波誘導炉、2・・・ノズル、3・・・溶融
金属、4・・・銅薄帯、5・・・コイル、6・・・拡散
層。
Figure 1 is a schematic diagram showing an embodiment of the method of the present invention, and Figure 2 is a composite ribbon with a two-layer structure obtained by the method shown in Figure 1, which is heat-treated to form a superconducting material diffusion layer between the two layers. Three layers II
FIG. 4 is a cross-sectional view of a four-piece composite ribbon. DESCRIPTION OF SYMBOLS 1... High frequency induction furnace, 2... Nozzle, 3... Molten metal, 4... Copper ribbon, 5... Coil, 6... Diffusion layer.

Claims (3)

【特許請求の範囲】[Claims] (1)二種以上の合金元素を溶融させてなる溶融金属を
、他の金属で形成された基板上に薄膜状に連続供給して
急冷凝固させ、全体を加熱して前記薄膜状合金層と基板
金属との間に超伝導体拡散層を形成させることを特徴と
する超伝導複合薄帯の作製方法。
(1) Molten metal made by melting two or more alloying elements is continuously supplied in the form of a thin film onto a substrate made of another metal, rapidly solidified, and the whole is heated to form the thin film alloy layer. A method for producing a superconducting composite ribbon characterized by forming a superconductor diffusion layer between a substrate metal.
(2)前記基板が高速で移動する銅薄帯であることを特
徴とする特許請求の範囲第1項に記載された超伝導複合
薄帯の作製方法。
(2) The method for producing a superconducting composite ribbon according to claim 1, wherein the substrate is a copper ribbon that moves at high speed.
(3)前記加熱を酸化雰囲気中で行い、前記薄膜状合金
層と基板金属との間に酸化物超伝導体拡散層を得ること
を特徴とする特許請求の範囲第1項に記載された超伝導
複合薄帯の作製方法。
(3) The superconductor according to claim 1, wherein the heating is performed in an oxidizing atmosphere to obtain an oxide superconductor diffusion layer between the thin film alloy layer and the substrate metal. Method for producing conductive composite ribbon.
JP3407988A 1988-02-18 1988-02-18 Production of thin superconducting composite strip Pending JPH01212747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3407988A JPH01212747A (en) 1988-02-18 1988-02-18 Production of thin superconducting composite strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3407988A JPH01212747A (en) 1988-02-18 1988-02-18 Production of thin superconducting composite strip

Publications (1)

Publication Number Publication Date
JPH01212747A true JPH01212747A (en) 1989-08-25

Family

ID=12404256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3407988A Pending JPH01212747A (en) 1988-02-18 1988-02-18 Production of thin superconducting composite strip

Country Status (1)

Country Link
JP (1) JPH01212747A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0434246A2 (en) * 1989-12-18 1991-06-26 General Electric Company Method and apparatus for producing tape superconductors
US5127364A (en) * 1989-12-18 1992-07-07 General Electric Company Apparatus for making A-15 type tape superconductors which includes means to melt a wire at its tip so a beam is formed and means for wiping the bead onto a continuous tape substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0434246A2 (en) * 1989-12-18 1991-06-26 General Electric Company Method and apparatus for producing tape superconductors
US5127364A (en) * 1989-12-18 1992-07-07 General Electric Company Apparatus for making A-15 type tape superconductors which includes means to melt a wire at its tip so a beam is formed and means for wiping the bead onto a continuous tape substrate

Similar Documents

Publication Publication Date Title
US4861751A (en) Production of high temperature superconducting materials
US3352008A (en) Process of bonding copper foil to foil containing superconductive layer such as niobium stannide
Tuissi et al. Biaxially textured NiCrX (X= W and V) tapes as substrates for HTS coated conductor applications
US3309179A (en) Hard superconductor clad with metal coating
US3534459A (en) Composite superconducting elements
Kumakura et al. Performance tests of Bi-2212 pancake coils fabricated by a lamination method
US4323402A (en) Method for producing superconducting Nb3 Sn wires
US3506940A (en) High transition temperature superconductor and devices utilizing same
Nomura et al. Influence of Ag‐Au and Ag‐Cu alloys on Bi2Sr2CaCu2O x superconductor
JPH01212747A (en) Production of thin superconducting composite strip
Takeuchi et al. Nb 3 Al and its ternary A15 compound conductors prepared by a continuous liquid quenching technique
Togano et al. Fabrication of superconducting composite tapes by a newly developed liquid quenching technique
Sharma Review on the fabrication techniques of A-15 superconductors
Luo et al. Superconductivity in Noble-Metal-Rich Hexagonal Close-Packed Phases
Sharma et al. Superconducting properties of a copper-ternary alloy
Clapp et al. New processing technique for forming flexible A‐15 superconducting tapes with extremely high critical current densities and magnetic fields
US3761254A (en) Alloy for superconductive magnet
Togano et al. Preparation of high field Nb 3 Al and Nb 3 (Al, Ge) superconducting tapes by an electron beam annealing
JPH0316726B2 (en)
Kumakura et al. Development of Bi-2212 tapes and coils applying the dip-coating process
Clemente et al. Superconducting Properties and Flux Pinning in Liquid Quenched Nb-Ga Alloys
JPS63257125A (en) Manufacture of superconductive wire
Reddy et al. Studies on in situ Cu-Nb composites
Wesche Milestones in the History of Superconductivity
Tachikawa et al. Alloy for superconductive magnet