[go: up one dir, main page]

JPH01212487A - Wavelength tunable semiconductor laser - Google Patents

Wavelength tunable semiconductor laser

Info

Publication number
JPH01212487A
JPH01212487A JP3800888A JP3800888A JPH01212487A JP H01212487 A JPH01212487 A JP H01212487A JP 3800888 A JP3800888 A JP 3800888A JP 3800888 A JP3800888 A JP 3800888A JP H01212487 A JPH01212487 A JP H01212487A
Authority
JP
Japan
Prior art keywords
active layer
semiconductor laser
wavelength
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3800888A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishikawa
浩 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3800888A priority Critical patent/JPH01212487A/en
Publication of JPH01212487A publication Critical patent/JPH01212487A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1055Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length one of the reflectors being constituted by a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/0622Controlling the frequency of the radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0608Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は波長可変半導体レーザに関するものであり、特
にレーザ素子内の回折格子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wavelength tunable semiconductor laser, and particularly to a diffraction grating within a laser element.

光通信の大容量化を目的とするコヒーレント光通信には
、発光波長を変化させ得るレーザ光源、いわゆるチエ−
ナブルレーザが必要である。
Coherent optical communication, which aims to increase the capacity of optical communication, uses a laser light source that can change the emission wavelength, so-called a chain.
A laser is required.

阜二波長の半導体レーザとしては結晶に回折格子を組み
込んだいわゆるDFBレーザが開発されて既に実用化さ
れつつあり、また、DFBレーザとIIIの構造めDB
−Rレーザの構造に改良を加えて発光波長を可変ならし
める技術もい(つか提案されている。
As a dual-wavelength semiconductor laser, a so-called DFB laser in which a diffraction grating is incorporated into a crystal has been developed and is already being put into practical use.
- There is also a technology that has been proposed to make the emission wavelength variable by improving the structure of the R laser.

DFBレーザもDBRレーザも結晶内に設けた周期構造
によるブラッグ反射を利用するものであるが、周期構造
が幾何学的形状として設定される素子の発光波長を変化
させるには、なんらかの手段で、例えば制御電極を設け
て電流を流すことで、ガイド層などの屈折率を変化させ
るといった方法しか無く、波長可変範囲は限られたもの
となっている。
Both DFB lasers and DBR lasers utilize Bragg reflection due to a periodic structure provided in a crystal, but in order to change the emission wavelength of an element whose periodic structure is set as a geometric shape, it is necessary to use some means, e.g. The only method available is to change the refractive index of a guide layer or the like by providing a control electrode and flowing a current, and the wavelength tuning range is limited.

DFB型のレーザで、回折格子の周期そのものを外部か
らの制御によって、任意の値に変化させることが出来れ
ば、光通信などに使用する上での便益は極めて大である
In a DFB type laser, if the period itself of the diffraction grating could be changed to an arbitrary value by external control, it would be extremely beneficial for use in optical communications and the like.

〔従来の技術と発明が解決しようとする課題〕従来、共
振器の全長にわたって回折格子を設けたDFB型のレー
ザでは、回折格子によって発光波長が決定されるため、
波長可変とすることは出来なかった。DBR型のレーザ
では光増幅部と回折格子部の間に調整領域を設けた構造
が知られており、該領域に電流を流すことによってガイ
ド層の屈折率を変化させ、発光波長を変化させることが
出来る。
[Prior art and problems to be solved by the invention] Conventionally, in a DFB type laser in which a diffraction grating is provided over the entire length of the resonator, the emission wavelength is determined by the diffraction grating.
It was not possible to make the wavelength variable. DBR type lasers are known to have a structure in which an adjustment region is provided between the optical amplification section and the diffraction grating section, and by passing a current through this region, the refractive index of the guide layer is changed and the emission wavelength is changed. I can do it.

しかしながら、かかる手段によって変化させ得る波長範
囲はごく狭いものであり、より広範囲に波長を変化させ
得る半導体レーザの実現が望まれる。
However, the wavelength range that can be changed by such means is extremely narrow, and it is desired to realize a semiconductor laser that can change the wavelength over a wider range.

本発明の目的は回折格子そのものの周期を可変としたD
FB型レーザを提供することであり、外部から導入した
光の定在波が回折格子として機能するDFB型レーザを
提供することである。
The purpose of the present invention is to make the period of the diffraction grating itself variable.
It is an object of the present invention to provide an FB type laser, and to provide a DFB type laser in which a standing wave of light introduced from the outside functions as a diffraction grating.

【課題を解決するための手段〕〕 上記目的を達成するため、本発明の波長可変半導体レー
ザでは、光の誘導増幅のための活性層に、その両端から
コヒーレントな単色光を入射させて定在波を生ぜしめ、
それによって活性層を回折格子としても機能させること
が行われる。
[Means for Solving the Problems]] In order to achieve the above object, in the wavelength tunable semiconductor laser of the present invention, coherent monochromatic light is incident on the active layer for stimulated amplification of light from both ends of the active layer. cause waves,
This causes the active layer to also function as a diffraction grating.

〔作 用〕[For production]

外部から導入された単色光は活性層内に定在波を立たせ
、核層に印加される光エネルギの強度は軸方向の周期性
を持つものとなる。そのため活性層内のキャリヤ密度は
周期的に変化し、回折格子として機能することになる。
Monochromatic light introduced from the outside creates standing waves within the active layer, and the intensity of the light energy applied to the nuclear layer has periodicity in the axial direction. Therefore, the carrier density within the active layer changes periodically and functions as a diffraction grating.

この活性層に生ずるキャリヤ密度の周期的変化は、外部
光の波長に対応するので、外部光の波長を変化させるこ
とによって、半導体レーザの発光波長を制御することが
出来る。
This periodic change in carrier density that occurs in the active layer corresponds to the wavelength of external light, so by changing the wavelength of external light, the emission wavelength of the semiconductor laser can be controlled.

〔実施例〕〔Example〕

図面は本発明実施例の半導体レーザの構造を示す模式断
面図である。以下、図面を参照しながら該素子の構造と
動作を説明する。
The drawing is a schematic cross-sectional view showing the structure of a semiconductor laser according to an embodiment of the present invention. The structure and operation of the device will be described below with reference to the drawings.

本発明の素子は半導体レーザとして、p−1nPfI板
1上にクラッド層であるp−1nP層2、活性層である
InGaAsP層3、クラッド層であるn−1nP層4
から構成される。活性層の両端には無反射(A R)コ
ーテイング膜として厚さ約1900人のSiN膜5が被
着されており、AuGe/Auのn電極6、AuZnの
p電極7が設けられている。
The device of the present invention is used as a semiconductor laser, and has a p-1nP layer 2 as a cladding layer, an InGaAsP layer 3 as an active layer, and an n-1nP layer 4 as a cladding layer on a p-1nPfI plate 1.
It consists of On both ends of the active layer, an SiN film 5 having a thickness of approximately 1900 mm is deposited as an anti-reflection (AR) coating film, and an n-electrode 6 of AuGe/Au and a p-electrode 7 of AuZn are provided.

以上の構成は通常の半導体レーザにII(12するが、
本発明の素子には外部から入射する光の定在波を活性層
内に発生させる手段が設けられている。この点に付いて
以下に説明する。
The above configuration is applicable to a normal semiconductor laser (II (12),
The device of the present invention is provided with means for generating a standing wave of light incident from the outside within the active layer. This point will be explained below.

先ず、外部光はハーフミラ−1Oによって2分割され、
夫々はミラー9で方向を転じてプリズム11に入射する
。該プリズムは例えばGaP結晶で形成された高屈折率
のものであり、Si01層8は入射光と活性層の結合を
良くするための低屈折率層である。
First, external light is divided into two by half mirror 1O,
The respective directions are changed by the mirror 9 and the beams enter the prism 11. The prism is made of, for example, GaP crystal and has a high refractive index, and the Si01 layer 8 is a low refractive index layer for improving coupling between incident light and the active layer.

入射光が通過するn型クラッド層4の厚みは0.5μm
に設定されている。この値は小であるほど入射光の結合
強度が増すので、本実施例では基板側の導電型をp型と
し、薄く形成し得るn型のクラッド層を光入射側として
いる。
The thickness of the n-type cladding layer 4 through which the incident light passes is 0.5 μm.
is set to . As this value is smaller, the coupling strength of incident light increases, so in this embodiment, the conductivity type on the substrate side is p-type, and the n-type cladding layer, which can be formed thinly, is on the light incident side.

n型クラッド層を通過し、高屈折率の活性層に ・両端
から入射した外部光は、活性層を導波路として互いに反
対方向に進行することになり、定在波を生ずる。この定
在波の周期は、外部光の真空中の波長をλ、活性層の屈
折率をnとすると、λ/2nである。
Passes through the n-type cladding layer and enters the high refractive index active layer. - External light incident from both ends travels in opposite directions using the active layer as a waveguide, producing standing waves. The period of this standing wave is λ/2n, where λ is the wavelength of external light in vacuum and n is the refractive index of the active layer.

外部光が定在波となると、それによって活性層に印加さ
れるエネルギもl11w1的となり、活性層内のキャリ
ヤ密度が同じ周期で変化するので、半導体レーザの発振
光に対して回折格子として作用することになる。
When the external light becomes a standing wave, the energy applied to the active layer becomes l11w1, and the carrier density in the active layer changes with the same period, so it acts as a diffraction grating for the oscillation light of the semiconductor laser. It turns out.

このような利用目的に合致した外部光の光源の一つに、
チエーナブルFセンター レーザがある。
One of the external light sources that meet this purpose of use is
There is a chainable F center laser.

該レーザは、例えばλ= 1.55±0.2μmの範囲
で、波長を変化させ得るので、これを波長@御光源とし
て使用すれば、本発明の半導体レーザの発光波長を上記
波長範囲でチューニングすることが出来る。
The wavelength of this laser can be changed, for example, in the range of λ = 1.55 ± 0.2 μm, so if this is used as a wavelength @ control light source, the emission wavelength of the semiconductor laser of the present invention can be tuned within the above wavelength range. You can.

(発明の効果〕 以上説明したように、本発明の半導体レーザは外部光の
波長に従って発光波長が定まるので、発光波長のチュー
ニングが容昌且つ高速である。
(Effects of the Invention) As described above, in the semiconductor laser of the present invention, since the emission wavelength is determined according to the wavelength of external light, the emission wavelength can be easily and quickly tuned.

また、本発明の素子を光信号の中継に使用すれば、受信
信号の波長と同波長の送信信号を発光させることが出来
るので、コヒーレント光通信の長距離化が実現すること
になる。
Further, if the element of the present invention is used for relaying optical signals, it is possible to emit a transmitted signal having the same wavelength as that of a received signal, thereby realizing long-distance coherent optical communication.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の素子の構造を示す断面模式図であって・ 図に於いて lはP−1nP基板、 2はP  1 n P s 3は活性層、 4はn−1nP。 5はARコート、 6はn電極、 7はp電極、 8はSiO雪、 9はミラー、 10はハーフミラ−1 11はプリズム である。 The figure is a schematic cross-sectional view showing the structure of the element of the present invention. In the diagram l is a P-1nP substrate, 2 is P 1 n Ps 3 is the active layer, 4 is n-1nP. 5 is AR coat, 6 is an n-electrode, 7 is a p electrode, 8 is SiO snow, 9 is a mirror, 10 is half mirror 1 11 is a prism It is.

Claims (1)

【特許請求の範囲】 活性層を挟んで一方の導電型のクラッド層と他方の導電
型のクラッド層が設けられて成る半導体レーザに於いて
、 前記活性層の縦軸両端近傍部からコヒーレントな単色光
を前記活性層の軸に平行に且つ互いに反対方向に入射さ
せて前記活性層に前記単色光の定在波を生ぜしめる手段
を備えることを特徴とする波長可変半導体レーザ。
[Scope of Claims] In a semiconductor laser comprising a cladding layer of one conductivity type and a cladding layer of the other conductivity type with an active layer sandwiched therebetween, coherent monochromatic light is transmitted from near both ends of the vertical axis of the active layer. A wavelength tunable semiconductor laser, comprising means for causing light to enter the active layer parallel to the axis and in opposite directions to generate a standing wave of the monochromatic light in the active layer.
JP3800888A 1988-02-19 1988-02-19 Wavelength tunable semiconductor laser Pending JPH01212487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3800888A JPH01212487A (en) 1988-02-19 1988-02-19 Wavelength tunable semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3800888A JPH01212487A (en) 1988-02-19 1988-02-19 Wavelength tunable semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01212487A true JPH01212487A (en) 1989-08-25

Family

ID=12513547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3800888A Pending JPH01212487A (en) 1988-02-19 1988-02-19 Wavelength tunable semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01212487A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2784514A1 (en) * 1998-10-13 2000-04-14 Thomson Csf Long wavelength infrared semiconductor laser modulation control has injected photon wavelength energy above forbidden band control photonic emission energy state change
EP2048753A1 (en) * 2007-10-11 2009-04-15 Alcatel Lucent Laser module and method of providing a laser module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2784514A1 (en) * 1998-10-13 2000-04-14 Thomson Csf Long wavelength infrared semiconductor laser modulation control has injected photon wavelength energy above forbidden band control photonic emission energy state change
WO2000022704A1 (en) * 1998-10-13 2000-04-20 Thomson-Csf Method for controlling a unipolar semiconductor laser
EP2048753A1 (en) * 2007-10-11 2009-04-15 Alcatel Lucent Laser module and method of providing a laser module

Similar Documents

Publication Publication Date Title
US4852108A (en) Wavelength tunable semiconductor laser with narrow band-pass active filter region
EP0314490B1 (en) Semiconductor laser
US5463647A (en) Broadband multi-wavelength narrow linewidth laser source using an electro-optic modulator
JPS60501829A (en) Semiconductor laser with coupled modulator
JPH0964334A (en) Integrated element of light emitting element and external modulator
KR100519922B1 (en) self-mode locked multisection semiconductor laser diode
JPH0449793B2 (en)
CA2351381A1 (en) Compound cavity reflection modulation laser system
JPS63244783A (en) Wavelength conversion element
JP2708467B2 (en) Tunable semiconductor laser
JPH01212487A (en) Wavelength tunable semiconductor laser
JPS6362917B2 (en)
JPS63299291A (en) Semiconductor laser
JPH04343283A (en) Integrated semiconductor laser ray source
JPH03195076A (en) External resonator type variable wavelength semiconductor laser
JPS6032381A (en) Surface light emitting semiconductor laser device
JPH0373583A (en) Semiconductor laser light source device
JP3237727B2 (en) Communication pulse light source device
JPH084179B2 (en) Semiconductor laser
JPS6281086A (en) Optical transmitter
JPS6295886A (en) Distribution feedback construction semiconductor laser
WO2022137418A1 (en) Optical semiconductor device
JPS63274192A (en) semiconductor light emitting device
JPH07153933A (en) Wavelength converting element
JPS6178190A (en) Integrated type semiconductor laser device