JPH01212343A - Semiconductor exhaust gas sensor - Google Patents
Semiconductor exhaust gas sensorInfo
- Publication number
- JPH01212343A JPH01212343A JP3714188A JP3714188A JPH01212343A JP H01212343 A JPH01212343 A JP H01212343A JP 3714188 A JP3714188 A JP 3714188A JP 3714188 A JP3714188 A JP 3714188A JP H01212343 A JPH01212343 A JP H01212343A
- Authority
- JP
- Japan
- Prior art keywords
- type semiconductor
- type
- semiconductor
- semiconductors
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 204
- 239000000758 substrate Substances 0.000 claims description 83
- 239000007789 gas Substances 0.000 claims description 52
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 30
- 239000001301 oxygen Substances 0.000 claims description 30
- 229910052760 oxygen Inorganic materials 0.000 claims description 30
- 238000012546 transfer Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000001179 sorption measurement Methods 0.000 claims description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 22
- 239000000446 fuel Substances 0.000 description 9
- 239000004568 cement Substances 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 3
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 3
- 239000005388 borosilicate glass Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、n型半導体及びp型半導体を備え、該両半導
体の酸素吸着による抵抗値変化に基いて排気ガス中の酸
素濃度を検出するようにした半導体排気ガスセンサーの
改良に関する。Detailed Description of the Invention (Industrial Application Field) The present invention includes an n-type semiconductor and a p-type semiconductor, and detects the oxygen concentration in exhaust gas based on the change in resistance value due to oxygen adsorption of both semiconductors. This invention relates to improvements in semiconductor exhaust gas sensors.
(従来の技術)
従来より、この種の半導体排気ガスセンサーとして、例
えば特願昭60−198490号明細書及び図面に開示
されるものがある。このものは第12図に示す如く、表
面にn型半導体aが配置された基板すと、表面にp型半
導体Cが配置された基板dと、該両基板a、cの背面間
に配置され、上記n型半導体a及びp型半導体Cを設定
温度範囲内で使用すべく該両半導体a、 cを加熱す
るヒータ部材eとを備え、この両基板す、d及びヒータ
部材eの三者をセメントよりなる接合材f、 fで焼
結接合した三層構造よりなる。而して、この半導体排気
ガスセンサーをエンジンの排気通路中に配置すると共に
、上記両半導体a、 c及び2つの基準抵抗で電気的
にブリッジ回路を形成することにより、その両半導体a
、 Cが排気ガス中の酸素を吸着して抵抗値が変化す
ると、ブリッジ回路に生じる負平衡電圧(出力電圧)を
計測して、排気ガス中の酸素濃度(混合気の空燃比)を
、第11図に示す如く、混合気の空燃比のリーン側でリ
ニアに検出するようにしている。(Prior Art) Conventionally, this type of semiconductor exhaust gas sensor has been disclosed, for example, in the specification and drawings of Japanese Patent Application No. 1984-1981. As shown in FIG. 12, this includes a substrate with an n-type semiconductor a disposed on its surface, a substrate d with a p-type semiconductor C disposed on its surface, and a substrate placed between the back surfaces of both substrates a and c. , a heater member e for heating the n-type semiconductor a and the p-type semiconductor C in order to use the semiconductors a and c within a set temperature range; It consists of a three-layer structure sintered and bonded with bonding materials f and f made of cement. By disposing this semiconductor exhaust gas sensor in the exhaust passage of the engine, and forming an electrical bridge circuit with the semiconductors a and c and the two reference resistors,
, When C adsorbs oxygen in the exhaust gas and its resistance value changes, the negative equilibrium voltage (output voltage) generated in the bridge circuit is measured, and the oxygen concentration in the exhaust gas (air-fuel ratio of the mixture) is calculated as follows. As shown in FIG. 11, detection is performed linearly on the lean side of the air-fuel ratio of the air-fuel mixture.
(発明が解決しようとする課題)
ところで、上記基板す、d間に配置されるヒータ部材e
は、n型半導体a及びp型半導体Cの抵抗値変化がその
温度に依存する関係上から、設定温度範囲内に保持すべ
く各半導体a、 cを加熱するものである。(Problem to be Solved by the Invention) By the way, the heater member e disposed between the substrates d and
Since the change in resistance of the n-type semiconductor a and the p-type semiconductor C depends on their temperature, each of the semiconductors a and c is heated to maintain them within a set temperature range.
しかるに、上・記従来のものでは、同一の酸素濃度値の
状態でも、エンジンの回転数等の運転状態によってその
出力値が変化する欠点があった。However, the above-mentioned conventional devices have a drawback that the output value changes depending on the operating condition such as the engine rotation speed even when the oxygen concentration value is the same.
そこで、本出願人等はその原因を究明すべく、実験、研
究したところ、第13図に示す如く、ヒータ部材の温度
を所定温度に一定保持する状況では、エンジン回転数の
比較的高い2500r、p、m以上の領域では、排気ガ
ス温度も高くてn型半導体及びp型半導体間の温度差は
微小値であるにも拘らず、エンジン回転数の低下に伴い
排気ガス温度も低下すると、両半導体の温度差は顕著に
なる。つまり、排気ガス温度の低い状況では、ヒータ部
材の消費電力が多くて両半導体の加熱がほぼヒータ部材
のみで行われる状況であって、この状況下で両半導体間
に温度差が生じるのは、ヒータ部材による両半導体の加
熱が不均一であることに起因していることを知悉した。Therefore, the applicant conducted experiments and research to find out the cause of this problem, and found that, as shown in FIG. 13, when the temperature of the heater member is kept constant at a predetermined temperature, the In the region above p and m, the exhaust gas temperature is high and the temperature difference between the n-type semiconductor and the p-type semiconductor is a minute value. The temperature difference in semiconductors becomes significant. In other words, when the exhaust gas temperature is low, the power consumption of the heater member is large and heating of both semiconductors is performed almost exclusively by the heater member, and in this situation, the temperature difference between the two semiconductors is caused by the following: It was learned that this is due to non-uniform heating of both semiconductors by the heater member.
そこで、本発明では、斯かる点に鑑み、その解決手段と
して、両半導体の温度差による影響を相殺する構成とす
ること、及び温度差ないしその温度差の変化を解消する
構成として、エンジンの運転状態の変化に拘らず同一酸
素濃度の状況では、同一の出力値を得ることを目的とす
る。Therefore, in the present invention, in view of these points, as a means of solving the problem, a structure is adopted to cancel out the influence of the temperature difference between the two semiconductors, and a structure to cancel the temperature difference or the change in the temperature difference is implemented by adjusting the engine operation. The objective is to obtain the same output value under the same oxygen concentration regardless of changes in conditions.
(課題を解決するための手段)
上記の目的を達成するため、本出願に係る発明では、半
導体排気ガスセンサーとして、n型半導体及びp型半導
体を備え、該両半導体の酸素吸着による抵抗値変化に基
いて排気ガス中の酸素濃度を検出する構成のものを前提
とする。(Means for Solving the Problem) In order to achieve the above object, the invention according to the present application includes an n-type semiconductor and a p-type semiconductor as a semiconductor exhaust gas sensor, and changes in resistance value due to oxygen adsorption of both semiconductors. It is assumed that the configuration is such that the oxygen concentration in exhaust gas is detected based on the following.
そして、本出願に係る第1の発明では、両半導体の温度
差による影響を相殺する構成として、表面にn型半導体
及びp型半導体装配置した2個の基板を設けると共に、
該両基板の背面間に、該各基板を通じて各n型半導体及
びp型半導体を加熱するヒータ部材を配置し、さらに上
記2個の基板におけるn型半導体及びp型半導体装配置
位置を、該側基板間で互いに逆位置に設定する構成とし
たものである。In the first invention according to the present application, two substrates having an n-type semiconductor and a p-type semiconductor device arranged on their surfaces are provided as a configuration to offset the influence of the temperature difference between the two semiconductors, and
A heater member for heating each n-type semiconductor and p-type semiconductor through each substrate is arranged between the back surfaces of the two substrates, and further, the n-type semiconductor and p-type semiconductor device placement positions on the two substrates are set on the side. The configuration is such that the substrates are set at opposite positions to each other.
また、本出願1こ係る第2の発明では、両半導体の温度
差を解消する構成として、基板の表面にn型半導体及び
p型半導体を長手方向に配置すると共に、該基板の背面
にはヒータ部材を配置する。In addition, in the second invention of the present application 1, as a configuration for eliminating the temperature difference between both semiconductors, an n-type semiconductor and a p-type semiconductor are arranged in the longitudinal direction on the surface of the substrate, and a heater is installed on the back surface of the substrate. Place the parts.
そして、上記ヒータ部材によるn型半導体及びp型半導
体への熱伝達率を、基板の内方側に位置する半導体側ほ
ど低く設定する構成としたものである。The heat transfer coefficient to the n-type semiconductor and the p-type semiconductor by the heater member is set to be lower as the semiconductor side is located on the inner side of the substrate.
さらに、本出願に係る第3の発明では、両半導体の温度
差を解消する他の構成として、表面にn型半導体配置し
た基板と、表面にp型半導体装配置した基板とを設ける
と共に、該両基板の背面間にヒータ部材を配置する基本
構成に対し、上記ヒータ部材の構成を、上記両基板にヒ
ータ部材を接合する接合材と一体的に形成する構成とし
たものである。Furthermore, in the third invention according to the present application, as another structure for eliminating the temperature difference between both semiconductors, a substrate having an n-type semiconductor disposed on the surface and a substrate having a p-type semiconductor disposed on the surface are provided. In contrast to the basic configuration in which a heater member is disposed between the back surfaces of both substrates, the heater member is formed integrally with a bonding material for bonding the heater member to both substrates.
(作用)
以上の構成により、本出願に係る第1の発明では、一方
の基板のn型半導体と他方の基板のp型半導体とでは、
その両者間に従来と同様の温度差が生じるものの、この
側基板間におけるn型半導体及びp型半導体装配置位置
が側基板間で互いに逆位置であるので、上記一方の基板
のp型半導体と他方の基板のn型半導体との間の温度差
には、上記の温度差とは逆の温度差が生じるので、その
温度差による影響を相殺することができ、半導体全体か
らみると、その全てがほぼ同一温度に加熱されたと同様
の状況に等しくできる。(Function) With the above configuration, in the first invention according to the present application, the n-type semiconductor of one substrate and the p-type semiconductor of the other substrate are
Although the same temperature difference as before occurs between the two substrates, the n-type semiconductor and p-type semiconductor devices are arranged in opposite positions between the side substrates, so that the p-type semiconductor and the p-type semiconductor on the one substrate are opposite to each other. Since the temperature difference between the n-type semiconductor of the other substrate and the temperature difference opposite to the above temperature difference occurs, the influence of that temperature difference can be canceled out, and from the perspective of the semiconductor as a whole, all of the This can be equivalent to a situation similar to that of heating to approximately the same temperature.
また、本出願に係る第2の発明では、表面のn型半導体
及びp型半導体は、その配置された同一の基板を通じて
ヒータ部材で加熱される。この場合、基板の外方側に位
置する半導体では、その熱放散量が多く、内方に位置す
る半導体に比べてその温度は低くなる状況であるが、内
方側に位置する半導体側では、ヒータ部材からの熱伝達
率が外方側に比べて低いので、両半導体の温度差は小さ
く抑えられて、はぼ同一温度値に調整される。Moreover, in the second invention according to the present application, the n-type semiconductor and the p-type semiconductor on the front surface are heated by the heater member through the same substrate on which they are placed. In this case, the semiconductor located on the outer side of the substrate has a large amount of heat dissipation, and its temperature is lower than that of the semiconductor located on the inner side. Since the heat transfer coefficient from the heater member is lower than that from the outer side, the temperature difference between both semiconductors is suppressed to a small value, and the temperature is adjusted to almost the same value.
さらに、本出願に係る第3の発明では、中間のヒータ部
材により別々の基板を通じてn型半導体及びp型半導体
が加熱されるが、上記ヒータ部材は両基板の接合材と一
体的に形成されているので、ヒータ部材と各基板との間
の2つの接合層の厚さが均一化されて、ヒータ部材から
各半導体への熱伝達率相互が同程度になり、両半導体の
温度が同一値に確保される。Furthermore, in the third invention according to the present application, the n-type semiconductor and the p-type semiconductor are heated through separate substrates by the intermediate heater member, but the heater member is formed integrally with the bonding material of both the substrates. As a result, the thicknesses of the two bonding layers between the heater member and each substrate are made uniform, and the heat transfer coefficients from the heater member to each semiconductor are about the same, and the temperature of both semiconductors becomes the same value. Secured.
(実施例) 以下、本発明の実施例を図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
第1図ないし第5図は本出願の第1の発明の実施例を示
す。第1図は半導体排気ガスセンサーを用いたエンジン
の全体構成を示し、11はエンジン、12はエンジン1
1のシリンダ13に摺動自在に嵌挿したピストン14に
より容積可変に形成される燃焼室、15は一端が大気に
連通し、他端が上記燃焼室12に開口して吸気を供給す
るための吸気通路、16は一端が上記燃焼室2に連通し
他端が大気に開放されて排気を排出するための排気通路
である。上記吸気通路15には、吸入空気量を調整する
スロットル弁17と、該スロットル弁17下流側で燃料
を噴射供給する燃料噴射弁18とが配設されている。さ
らに、燃焼室12において、吸気通路15の開口部には
吸気弁20が、排気通路16の開口部には排気弁21が
各々配置されている。加えて、23は高電圧を発生する
点火コイル、24は該点火コイル23の一次電流を断続
するイグナイタであって、クランク角(エンジン回転数
)を検出するクランク角センサとしての機能を有する。1 to 5 show an embodiment of the first invention of the present application. Figure 1 shows the overall configuration of an engine using a semiconductor exhaust gas sensor, where 11 is an engine and 12 is an engine 1.
A combustion chamber 15 having a variable volume is formed by a piston 14 slidably inserted into the cylinder 13 of 1, and the combustion chamber 15 has one end communicating with the atmosphere and the other end opening into the combustion chamber 12 for supplying intake air. The intake passage 16 is an exhaust passage that communicates with the combustion chamber 2 at one end and opens to the atmosphere at the other end for discharging exhaust gas. The intake passage 15 is provided with a throttle valve 17 that adjusts the amount of intake air, and a fuel injection valve 18 that injects and supplies fuel downstream of the throttle valve 17. Further, in the combustion chamber 12, an intake valve 20 is arranged at the opening of the intake passage 15, and an exhaust valve 21 is arranged at the opening of the exhaust passage 16. In addition, 23 is an ignition coil that generates a high voltage, and 24 is an igniter that cuts off the primary current of the ignition coil 23, and has a function as a crank angle sensor that detects the crank angle (engine speed).
加えて、25はスロットル弁17上流側で吸気温度を検
出する吸気温度センサー、26は吸入空気量を検出する
エアフローセンサー、27はスロットル弁17の開度を
検出する開度センサー、2gはスロットル弁17下流側
の吸気負圧を検出する負圧センサー、29は車速を検出
する車速センサーである。また、Aは、排気通路16に
配置された本発明に係る半導体排気ガスセンサーである
。In addition, 25 is an intake air temperature sensor that detects the intake air temperature on the upstream side of the throttle valve 17, 26 is an air flow sensor that detects the amount of intake air, 27 is an opening sensor that detects the opening of the throttle valve 17, and 2g is a throttle valve. 17 is a negative pressure sensor for detecting intake negative pressure on the downstream side; 29 is a vehicle speed sensor for detecting vehicle speed. Further, A is a semiconductor exhaust gas sensor according to the present invention arranged in the exhaust passage 16.
而して、上記各センサー24〜29及び半導体排気ガス
センサーAは、各々、内部にCPU等を有するコントロ
ーラ32に信号の送受信可能に接続されていて、該コン
トローラ32により、上記燃焼噴射弁18からの燃焼噴
射量と、燃焼室12内の混合気の点火−期とを各々調整
制御するようにしている。Each of the sensors 24 to 29 and the semiconductor exhaust gas sensor A are each connected to a controller 32 having a CPU or the like therein so as to be able to send and receive signals. The combustion injection amount and the ignition timing of the air-fuel mixture in the combustion chamber 12 are adjusted and controlled.
上記半導体排気ガスセンサーAは、第2図ないし第4図
に示す如く、表面にn型半導体1a及び゛ p型半導体
2aが幅方向に配置されたアルミナ基板3と、同様に表
面の幅方向にn型半導体1b及びp型半導体2bが幅方
向に配置されたアルミナ基板4と、該両アルミナ基板3
.4の背面間に配置されたヒータ部材5とを備えている
。而して、上記n型半導体1a、lb及びp型半導体2
a。As shown in FIGS. 2 to 4, the semiconductor exhaust gas sensor A includes an alumina substrate 3 on which an n-type semiconductor 1a and a p-type semiconductor 2a are arranged in the width direction, and a An alumina substrate 4 on which an n-type semiconductor 1b and a p-type semiconductor 2b are arranged in the width direction, and both alumina substrates 3
.. 4 and a heater member 5 disposed between the rear surfaces of the heater member 4. Thus, the n-type semiconductors 1a, lb and the p-type semiconductor 2
a.
2bは、共に酸素を吸着すれば抵抗値が変化する抵抗特
性を有している。また、ヒータ部材5は、プリント印刷
により一方のアルミナ基板3に固着されていると共に、
他方のアルミナ基板4に対してはセメントよりなる接合
材6により接合されて、基板3.4間にヒータ部材5を
配置した三層構造になっている。2b both have resistance characteristics in which the resistance value changes when oxygen is adsorbed. Further, the heater member 5 is fixed to one alumina substrate 3 by printing, and
The other alumina substrate 4 is bonded with a bonding material 6 made of cement, forming a three-layer structure in which a heater member 5 is arranged between the substrates 3 and 4.
而して、上記半導体排気ガスセンサーAは、第5図に示
す如く、ヒータ部材5がヒータ電源40から通電されて
発熱して、上記各アルミナ基板3゜4を通じて上記各n
型半導体1a、lb及び各p型半導体2a、2bを加熱
するように構成されている。In the semiconductor exhaust gas sensor A, as shown in FIG.
It is configured to heat the type semiconductors 1a, lb and each p-type semiconductor 2a, 2b.
また、同図において、上記半導体排気ガスセンサーAの
2個のn型半導体1a、lb及び2個のp型半導体2a
、2bは、共に排気通路16内に臨ましめて、排気通路
16を流通する排気ガス中の酸素を吸着可能に配置され
ているとともに、n型同志、p型同志で電気的に直列に
接続され、これらが2つの負荷抵抗41.42とで電気
的にブリッジ回路43を構成していて、ブリッジ用電源
44の通電時に、2個のn型半導体1a、lb及びp型
半導体2a、2bが排気ガス中の酸素吸着によりその抵
抗値が変化すると、ブリッジ回路43に吸着酸素量に応
じた不平衡電圧が生じ、この不平衡電圧信号(出力電圧
)を上記コントローラ32に入力して、第11図に示す
如き出力電圧特性でもって排気ガス中の酸素濃度を把握
して、混合気の空燃比をリニアに検出するように構成さ
れている。尚、第2図及び第3図において、7はブリッ
ジ回路形成用の電極線である。In addition, in the same figure, two n-type semiconductors 1a and lb and two p-type semiconductors 2a of the semiconductor exhaust gas sensor A are shown.
, 2b are arranged so as to be able to adsorb oxygen in the exhaust gas flowing through the exhaust passage 16 so as to face the inside of the exhaust passage 16, and are electrically connected in series with each other as n-type and p-type. These electrically constitute a bridge circuit 43 with two load resistors 41 and 42, and when the bridge power supply 44 is energized, the two n-type semiconductors 1a, lb and the p-type semiconductors 2a, 2b are connected to the exhaust gas. When the resistance value changes due to oxygen adsorption in the bridge circuit 43, an unbalanced voltage corresponding to the amount of adsorbed oxygen is generated in the bridge circuit 43. This unbalanced voltage signal (output voltage) is input to the controller 32, and the voltage shown in FIG. It is configured to grasp the oxygen concentration in exhaust gas using the output voltage characteristics as shown, and linearly detect the air-fuel ratio of the air-fuel mixture. In addition, in FIGS. 2 and 3, 7 is an electrode wire for forming a bridge circuit.
而して、上記第4図において、半導体排気ガスセンサー
Aは、2個のアルミナ基板3.4が、互いにn型半導体
及びp型半導体装配置位置が逆位置に設定されていて、
一方のアルミナ基板3では、図中下側にn型半導体1a
が、図中上側にp型半導体2aが各々配置されている一
方、他方のアルミナ基板4では、図中上側にn型半導体
1bが、図中下側にはp型半導体2bが各々配置されて
いる。In FIG. 4, the semiconductor exhaust gas sensor A has two alumina substrates 3.4 in which the n-type semiconductor and p-type semiconductor devices are arranged in opposite positions.
In one alumina substrate 3, an n-type semiconductor 1a is shown at the bottom in the figure.
However, while the p-type semiconductors 2a are arranged on the upper side in the figure, on the other alumina substrate 4, the n-type semiconductor 1b is arranged on the upper side in the figure, and the p-type semiconductor 2b is arranged on the lower side in the figure. There is.
したがって、上記第1の発明に係る実施例においては、
ヒータ部材5の接合が、一方の基板3に対してはプリン
ト印刷で、他方の基板4に対しては接合材(セメント)
6で行われることに起因して、ヒータ部材5による加熱
の程度は両基板3゜4で互いに異なる。その結果、一方
の基板(例えば3)ではn型及びp型半導体1a、2a
の温度は互いに同一値で高く、他方の基板4のn型及び
p型半導体1a、2aの温度は同一値で低い。しかし、
第5図のブリッジ回路43では、両基板3゜4のn型半
導体1a、lb同志が直列に接続されてその一辺を構成
し、p型半導体2a、2bも同様にその一辺で直列に接
続されているので、直列接続されたn型半導体1a、l
bの全体と、同様のp型半導体2a、2bの全体から見
ると、各基板3.4の半導体間の温度差が相殺されて、
同一温度値になる。よらて、エンジン運転状態の変化(
排気ガスによる温度影響の変化)によっても、n型半導
体とp型半導体の温度差を解消ないし均一にできて、排
気ガス中の酸素濃度の検出精度の向上を図ることができ
る。Therefore, in the embodiment according to the first invention,
The heater member 5 is bonded to one substrate 3 by printing, and to the other substrate 4 by bonding material (cement).
6, the degree of heating by the heater member 5 differs between the two substrates 3 and 4. As a result, in one substrate (for example, 3), n-type and p-type semiconductors 1a, 2a
The temperatures of the n-type and p-type semiconductors 1a and 2a of the other substrate 4 are the same and low. but,
In the bridge circuit 43 shown in FIG. 5, the n-type semiconductors 1a and lb on both substrates 3°4 are connected in series to form one side, and the p-type semiconductors 2a and 2b are similarly connected in series on one side. Therefore, the n-type semiconductors 1a, l connected in series
When viewed from the whole of b and the whole of similar p-type semiconductors 2a and 2b, the temperature difference between the semiconductors of each substrate 3.4 is canceled out,
The temperature value becomes the same. Therefore, changes in engine operating conditions (
The temperature difference between the n-type semiconductor and the p-type semiconductor can also be eliminated or made uniform due to changes in the temperature effect due to exhaust gas, and the accuracy of detecting the oxygen concentration in the exhaust gas can be improved.
また、第6図は本出願の第2の発明に係る実施例を示し
、同図の半導体排気ガスセンサーA°では、アルミナ基
板3°の表面に上記と同様のn型半導体1及びp型半導
体2が長手方向に配置されていると共に、該アルミナ基
板3°の背面には、該基板3°を通じてn型半導体1及
びp型半導体2を加熱するヒータ部材5°がプリント印
刷されている。Further, FIG. 6 shows an embodiment according to the second invention of the present application, and in the semiconductor exhaust gas sensor A° shown in the same figure, an n-type semiconductor 1 and a p-type semiconductor similar to those described above are provided on the surface of an alumina substrate 3°. 2 are arranged in the longitudinal direction, and a heater member 5° for heating the n-type semiconductor 1 and the p-type semiconductor 2 through the substrate 3° is printed on the back surface of the alumina substrate 3°.
そして、上記半導体排気ガスセンサーA°は、その基板
3°の表面側を排気通路6の上流側に対向せしめて配置
されると共に、第7図に示す如く、内方側に位置する下
側のp型半導体2の基板3゜内への埋込み深さtpは浅
く、外方側に位置する上側のn型半導体1の埋込み深さ
tN未満に設定されている。すなわち、内方側のp型半
導体2は、外方側のn型半導体1に比べて、埋込み深さ
の浅い分だけヒータ部材5°に遠くてヒータ部材5゜か
ら加熱され難く、ヒータ部材5°から該p型半導体2へ
の熱伝達率は、外方側に位置するn型半導体1への熱伝
達率よりも低く設定されているのである。The semiconductor exhaust gas sensor A° is arranged with its substrate 3° surface side facing the upstream side of the exhaust passage 6, and as shown in FIG. The embedding depth tp of the p-type semiconductor 2 into the substrate 3° is set to be shallow, less than the embedding depth tN of the upper n-type semiconductor 1 located on the outer side. That is, compared to the n-type semiconductor 1 on the outer side, the inner p-type semiconductor 2 is farther from the heater member 5° due to the shallower embedding depth and is less likely to be heated from the heater member 5°. The coefficient of heat transfer from 0 to the p-type semiconductor 2 is set lower than the coefficient of heat transfer to the n-type semiconductor 1 located on the outer side.
したがって、本実施例では、n型半導体1及びp型半導
体2が共に同一の基板3°に配置されているので、従来
の如くプリント印刷と接合材(セメント)による接合層
の厚さとの相違に起因する加熱の程度の差は解消される
。しかも、n型及びp型半導体1,2共に排気通路16
の上流側に対向しているので、排気ガスによる温度影響
も同一である。さらに、n型半導体1とp型半導体2と
が長平方向に配置されているので、基板3′の幅は狭く
て排気通路16の上流側に対向配置しても、さほど抵抗
にはならない。Therefore, in this embodiment, since both the n-type semiconductor 1 and the p-type semiconductor 2 are arranged at 3° on the same substrate, there is no difference in the thickness of the bonding layer between printing and bonding material (cement) as in the conventional case. The resulting differences in the degree of heating are eliminated. Moreover, the exhaust passage 16 for both the n-type and p-type semiconductors 1 and 2
Since they are located on the upstream side of each other, the temperature influence due to exhaust gas is also the same. Furthermore, since the n-type semiconductor 1 and the p-type semiconductor 2 are arranged in the longitudinal direction, the width of the substrate 3' is narrow, and even if they are arranged facing each other on the upstream side of the exhaust passage 16, there will not be much resistance.
その場合、外方側に位置するn型半導体1では、その外
方側位置に伴い熱放散性が良く、温度低下の幅は内方側
のp型半導体2に比べて大きい。しかし、上記内方側の
p型半導体2では、ヒータ部材5°に遠くて、ヒータ部
材5°からの熱伝達率が外方側のn型半導体1に比べて
低く設定されているので、その温度上昇が抑えられて、
熱放散性の良い外方側のn型半導体1とほぼ同一温度に
なる。よって、n型半導体1及びp型半導体2を等温度
にして、エンジン運転状態の変化に拘らず、同一の酸素
濃度時には同一の出力値を得て、排気ガス中の酸素濃度
の検出精度を高めることができる。In this case, the n-type semiconductor 1 located on the outer side has a better heat dissipation property due to its outer position, and the width of the temperature decrease is larger than that of the p-type semiconductor 2 on the inner side. However, the p-type semiconductor 2 on the inner side is far from the heater member 5°, and the heat transfer coefficient from the heater member 5° is set lower than that of the n-type semiconductor 1 on the outer side. Temperature rise is suppressed,
The temperature is almost the same as that of the outer n-type semiconductor 1 which has good heat dissipation properties. Therefore, by keeping the n-type semiconductor 1 and the p-type semiconductor 2 at the same temperature, the same output value can be obtained at the same oxygen concentration regardless of changes in engine operating conditions, and the detection accuracy of the oxygen concentration in exhaust gas can be improved. be able to.
また、第8図は、外方側のn型半導体1と内方側のp型
半導体2との間の熱伝達率を相違させる構成の第1変形
例を示し、第7図では半導体の埋込み深さを変えたのに
変え、アルミナ基板3゛°の形状を変更したものである
。Further, FIG. 8 shows a first modification example of the configuration in which the heat transfer coefficients between the outer n-type semiconductor 1 and the inner p-type semiconductor 2 are different, and in FIG. Although the depth was changed, the shape of the alumina substrate 3° was changed.
つまり、第8図において、n型半導体1とp型半導体2
の埋込み深さは同一値であるが、アルミナ基板3°°の
背面形状が図中上方に向って表面側に傾斜する形状に構
成されていて、その基板3°。That is, in FIG. 8, n-type semiconductor 1 and p-type semiconductor 2
The embedding depths of the 3° alumina substrate are the same, but the back shape of the alumina substrate 3° is inclined upward in the figure toward the surface side.
の厚さが、内方側で厚く、外方側で薄く設定されている
。このことにより、ヒータ部材5°に遠い分だけ内方側
のp型半導体2を加熱し難くして、ヒータ部材5°から
p型半導体2への熱伝達率を外方側のn型半導体1への
熱伝達率よりも低く設定している。The thickness is set to be thicker on the inner side and thinner on the outer side. This makes it more difficult to heat the p-type semiconductor 2 on the inner side by the distance from the heater member 5°, and reduces the heat transfer coefficient from the heater member 5° to the n-type semiconductor 1 on the outer side. The heat transfer coefficient is set lower than the heat transfer coefficient.
さらに、第9図は熱伝達率を相違させる構成の第2変形
例を示す。本変形例では、ヒータ部材5°を2つに分割
し、外方側のn型半導体1に対応する部分にはヒータパ
ターンの密なヒータ部5a’を配置すると共に、内方側
のp型半導体2に対応する部分にはヒータパターンの粗
いヒータ部5b’を配置して、ヒータ部材5°から内方
側のp型半導体2への熱伝達率を外方側のn型半導体1
への熱伝達率よりも低く設定したものである。Furthermore, FIG. 9 shows a second modification of the configuration in which the heat transfer coefficients are different. In this modification, the heater member 5° is divided into two parts, and a heater portion 5a' with a dense heater pattern is arranged in the outer part corresponding to the n-type semiconductor 1, and the inner part corresponds to the p-type semiconductor 1. A heater portion 5b' with a rough heater pattern is arranged in a portion corresponding to the semiconductor 2, and the heat transfer coefficient from the heater member 5° to the p-type semiconductor 2 on the inner side is adjusted to the n-type semiconductor 1 on the outer side.
The heat transfer coefficient is set lower than the heat transfer coefficient.
したがって、上記両変形例においても、同様にn型半導
体1及びp型半導体2をエンジン運転状態の変化に拘ら
ずほぼ等温度に加熱できて、排気ガス中の酸素濃度の検
出精度の向上を図ることができる。Therefore, in both of the above-described modifications, the n-type semiconductor 1 and the p-type semiconductor 2 can be similarly heated to approximately the same temperature regardless of changes in engine operating conditions, and the accuracy of detecting the oxygen concentration in exhaust gas is improved. be able to.
また、第10図は本出願の第3の発明に係る実施例を示
す。同図の半導体排気ガスセンサーA”では、表面にn
型半導体1°が配置されたアルミナ基板3°°°°と、
表面にp型半導体2°が配置されたアルミナ基板4°゛
°゛と、該両アルミナ基板3””、4°゛°°の背面間
に配置されたヒータ部材5°°とを備える。該ヒータ部
材5°°の構成は、酸化ルテニュム等の発熱用の抵抗体
と、上記両アルミナ基板3°”’、4°°°°及びヒー
タ部材5°°の接合材としてのホウケイ酸ガラス等の低
融点ガラスとを有機レジンでペースト化した抵抗ペース
トよりなり、上記接合材(低融点ガラス)と一体的に形
成されてなる。Further, FIG. 10 shows an embodiment according to the third invention of the present application. In the semiconductor exhaust gas sensor A'' shown in the same figure, n
an alumina substrate 3°°°° on which a type semiconductor 1° is arranged;
It includes an alumina substrate 4°゛°゛ with a p-type semiconductor 2° arranged on its surface, and a heater member 5°゛ arranged between the back surfaces of both the alumina substrates 3'' and 4°゛°°. The configuration of the heater member 5° is a heat generating resistor such as ruthenium oxide, and borosilicate glass or the like as a bonding material between the alumina substrates 3°'', 4°°° and the heater member 5°. The resistance paste is made by pasting a low melting point glass with an organic resin, and is formed integrally with the bonding material (low melting point glass).
而して、上記両アルミナ基板3°”’、4°°°°とヒ
ータ部材5°°との接合は、先ず、ペースト状のヒータ
部材5°゛番両基板3°”’、4°°°°の背面に塗布
し、接合した後、この王者を例えば55℃/winで8
50℃まで加熱してガラス層を溶融させ、両アルミナ基
板3°”’、4°°°°のポーラス部への含浸及びアル
ミナとガラスとの間で拡散反応層を形成して密着させる
。ここに、ヒータ部材5°°の抵抗値は、抵抗ペースト
中の酸化ルテニュムの含有量の比率により設定する。Therefore, to join the alumina substrates 3°'', 4°°°° and the heater member 5°°, first, paste the heater member 5° and both substrates 3°'', 4°°. After applying to the back side of °° and bonding, this champion is heated to 8
Heat to 50°C to melt the glass layer, impregnate the porous parts of both alumina substrates at 3°'' and 4°°°, and form a diffusion reaction layer between the alumina and glass to bring them into close contact. The resistance value of the heater member 5° is set according to the content ratio of ruthenium oxide in the resistance paste.
したがって、本実施例においては、ヒータ部材5°°が
抵抗体(酸化ルテニュム)と接合材(ホウケイ酸ガラス
)とで一体形成されているので、2個の基板3°”’、
4””間にヒータ部材5゛°を挟んで接合した3層構造
では、その各々の接合層の厚さが互いに均一になると共
に、従来の如く基板とヒータ部材間にセメント層が介在
しない。その結果、ヒータ部材5°°から別々の基板3
””、 4°°“°を通してn型半導体1°及びp型
半導体2゛が加熱されるものの、セメント層が介在せず
且つ接合層の厚さが均一な分、ヒータ部材5°°からn
型半導体1゛及びp型半導体2°への熱伝達率が同様に
なって、両半導体1°、2を共にほぼ同一温度に加熱す
ることができる。また、従来の如く別体の接合材(セメ
ント)による接合工程をなくすことができ、半導体排気
ガスセンサーA”の形成の作業工程を簡略化できる。Therefore, in this embodiment, since the heater member 5° is integrally formed with the resistor (ruthenium oxide) and the bonding material (borosilicate glass), the two substrates 3°'',
In the three-layer structure in which the heater member is joined with 5° between them, the thickness of each joining layer is uniform and there is no cement layer interposed between the substrate and the heater member as in the conventional case. As a result, separate substrates 3 from the heater member 5°
Although the n-type semiconductor 1 and the p-type semiconductor 2 are heated through the heater member 5 and 4 degrees, since there is no cement layer and the bonding layer has a uniform thickness,
The heat transfer coefficients to the type semiconductor 1' and the p-type semiconductor 2' become similar, and both semiconductors 1' and 2 can be heated to approximately the same temperature. Further, the conventional bonding process using a separate bonding material (cement) can be eliminated, and the work process for forming the semiconductor exhaust gas sensor A'' can be simplified.
よって、第1及び第2の発明と同様に、エンジン運転状
態の変化によっても半導体排気ガスセンサーA”の出力
値を同−酸素濃度時では同一値に確保して、排気ガス中
の酸素濃度の検出精度の向上を図ることができる。Therefore, similarly to the first and second inventions, even if the engine operating condition changes, the output value of the semiconductor exhaust gas sensor A'' can be maintained at the same value at the same oxygen concentration, and the oxygen concentration in the exhaust gas can be changed. Detection accuracy can be improved.
(発明の効果)
以上説明したように、本出願に係る第1の発明の半導体
排気ガスセンサーによれば、ヒータ部材を挟む2個の基
板に各々n型半導体とp型半導体との双方を配置すると
共に、そのn型半導体とp型半導体との配置位置を側基
板間で逆位置に設定したので、ヒータ部材からの熱伝達
率の相違に伴い側基板間で半導体に温度差が生じる場合
にも、この半導体間の温度差を相殺でき、同−酸素濃度
時にはエンジン運転状態の変化に拘らず同一の出力値を
得ることゐ(できて、排気ガス中の酸素濃度の検出精度
の向上を図ることができる。(Effects of the Invention) As explained above, according to the semiconductor exhaust gas sensor of the first invention according to the present application, both the n-type semiconductor and the p-type semiconductor are arranged on each of the two substrates sandwiching the heater member. At the same time, the n-type semiconductor and p-type semiconductor are arranged in opposite positions between the side substrates, so that if a temperature difference occurs in the semiconductor between the side substrates due to a difference in the heat transfer coefficient from the heater member, However, this temperature difference between the semiconductors can be canceled out, and when the oxygen concentration is the same, the same output value can be obtained regardless of changes in engine operating conditions. be able to.
また、本出願に係る第2の発明によれば、1つの基板の
長平方向にn型半導体及びp型半導体装配置し、且つヒ
ータ部材からの熱伝達率を、内方側に位置する半導体側
では、外方側に位置する熱放散性の良い半導体側よりも
低く設定したので、両半導体の温度をエンジン運転状態
に拘らず等温度に、ないし温度差の変化を解消でき、上
記第1の発明と同様に、エンジン運転状態の変化に拘ら
ず同一の出力値を得て、酸素濃度の検出精度の向上を図
ることができる。Further, according to the second invention of the present application, an n-type semiconductor and a p-type semiconductor device are arranged in the longitudinal direction of one substrate, and the heat transfer coefficient from the heater member is adjusted to the side of the semiconductor located inwardly. In this case, since the temperature of both semiconductors is set lower than that of the semiconductor side which is located on the outer side and has good heat dissipation property, the temperature of both semiconductors can be maintained at the same temperature regardless of the engine operating state, or the change in temperature difference can be eliminated. Similar to the invention, the same output value can be obtained regardless of changes in engine operating conditions, and the accuracy of oxygen concentration detection can be improved.
さらに、本出願に係る第3の発明によれば、n型半導体
及びp型半導体の双方を有する2個の基板間に位置させ
るヒータ部材を、接合材と一体形成する構成としたので
、2つの接合層の厚さをほぼ均一にできてヒータ部材に
よる各半導体の加熱の程度を均一化でき、両手導体間の
温度差を上記第1及び第2の発明と同様に同−酸素濃度
時には同一の出力値を得て、酸素濃度の検出精度の向上
を図ることができる。Furthermore, according to the third invention of the present application, the heater member located between the two substrates having both an n-type semiconductor and a p-type semiconductor is formed integrally with the bonding material, so that the two Since the thickness of the bonding layer can be made almost uniform, the degree of heating of each semiconductor by the heater member can be made uniform, and the temperature difference between the two-handed conductors can be reduced to the same level at the same oxygen concentration as in the first and second inventions. By obtaining an output value, it is possible to improve the detection accuracy of oxygen concentration.
第1図ないし第5図は本出願に係る第1の発明の実施例
を示し、第1図はエンジンの空燃比制御の全体概略構成
図、第2図は半導体排気ガスセンサーの正面図、第3図
は同側面図、第4図は同平面図、第5図は半導体排気ガ
スセンサーの電気回路図である。第6図ないし第9図は
本出願の第2の発明に係る実施例を示し、第6図は半導
体排気ガスセンサーの斜視図、第7図は半導体排気ガス
センサーの要部断面図、第8図は外方側の半導体と内方
側の半導体との間で熱伝達率を相違させる構成の第1変
形例を示す半導体排気ガスセンサーの要部断面図、第9
図は同第2変形例を示す半導体排気ガスセンサーの要部
背面図である。第10図は本出願の第3の発明を示す半
導体排気ガスセンサーの斜視図、第11図は半導体排気
ガスセンサーの酸素濃度の検出特性を示す図である。第
12図及び第13図は従来例を示し、第12図は半導体
排気ガスセンサーの斜視図、第13図はエンジン回転数
に封子る半導体間の温度差の変化特性を示す図である。
A%A’ 、A”・・・半導体排気ガスセンサー、1.
1°、1a、1b・・・n型半導体、2,2°2a。
2b・・・p型半導体、3.3°、3°°、3”°、3
°°°°・・・アルミナ基板、4.4°、4°°°′・
・・アルミナ基板、5.5’、5°°・・・ヒータ部材
、6・・・接合材。
特許出願人 マ ツ ダ 株式会社第9図
第6図
第8図 第7図
第11図
左 大祭: rし
第10 vl
ぺ<7:’*:x□2す
第13図
エンジン回転数:(r、p、m)
第12図1 to 5 show an embodiment of the first invention according to the present application, in which FIG. 1 is a general schematic diagram of the air-fuel ratio control of an engine, FIG. 2 is a front view of a semiconductor exhaust gas sensor, and FIG. 3 is a side view of the same, FIG. 4 is a plan view of the same, and FIG. 5 is an electric circuit diagram of the semiconductor exhaust gas sensor. 6 to 9 show an embodiment according to the second invention of the present application, in which FIG. 6 is a perspective view of a semiconductor exhaust gas sensor, FIG. 7 is a sectional view of essential parts of the semiconductor exhaust gas sensor, and FIG. The figure is a cross-sectional view of a main part of a semiconductor exhaust gas sensor showing a first modification of a configuration in which the heat transfer coefficient is different between an outer semiconductor and an inner semiconductor.
The figure is a rear view of the main parts of the semiconductor exhaust gas sensor showing the second modification. FIG. 10 is a perspective view of a semiconductor exhaust gas sensor showing the third invention of the present application, and FIG. 11 is a diagram showing the oxygen concentration detection characteristics of the semiconductor exhaust gas sensor. 12 and 13 show a conventional example, FIG. 12 is a perspective view of a semiconductor exhaust gas sensor, and FIG. 13 is a diagram showing the change characteristics of the temperature difference between the semiconductors enclosed in the engine speed. A%A', A''...Semiconductor exhaust gas sensor, 1.
1°, 1a, 1b...n-type semiconductor, 2, 2° 2a. 2b...p-type semiconductor, 3.3°, 3°°, 3”°, 3
°°°°・・・Alumina substrate, 4.4°, 4°°°'・
... Alumina substrate, 5.5', 5°°... Heater member, 6... Bonding material. Patent applicant Mazda Corporation Figure 9 Figure 6 Figure 8 Figure 7 Figure 11 Left Daisai: rshi 10 vl pe<7:'*:x□2 Figure 13 Engine speed: ( r, p, m) Figure 12
Claims (3)
酸素吸着による抵抗値変化に基いて排気ガス中の酸素濃
度を検出する半導体排気ガスセンサーであって、表面に
n型半導体及びp型半導体が配置された2個の基板と、
該両基板の背面間に配置され、各基板を通じて各n型半
導体及びp型半導体を加熱するヒータ部材とを備えると
ともに、上記2個の基板は、互いにn型半導体及びp型
半導体の配置位置が逆位置に設定されていることを特徴
とする半導体排気ガスセンサー。(1) A semiconductor exhaust gas sensor that includes an n-type semiconductor and a p-type semiconductor and detects the oxygen concentration in exhaust gas based on the change in resistance value due to oxygen adsorption of both semiconductors, the sensor having an n-type semiconductor and a p-type semiconductor on the surface. two substrates on which type semiconductors are arranged,
A heater member is disposed between the back surfaces of the two substrates and heats each n-type semiconductor and p-type semiconductor through each substrate, and the two substrates are arranged such that the n-type semiconductor and the p-type semiconductor are arranged in the same position as each other. A semiconductor exhaust gas sensor characterized by being set in a reverse position.
酸素吸着による抵抗値変化に基いて排気ガス中の酸素濃
度を検出する半導体排気ガスセンサーであって、表面に
n型半導体及びp型半導体が長手方向に配置された基板
と、該基板の背面に配置され、該基板を通じて各n型半
導体及びp型半導体を加熱するヒータ部材とを備えると
ともに、該ヒータ部材による各n型半導体及びp型半導
体への熱伝達率は基板の内方側に位置する半導体側ほど
低く設定されていることを特徴とする半導体排気ガスセ
ンサー。(2) A semiconductor exhaust gas sensor that includes an n-type semiconductor and a p-type semiconductor and detects the oxygen concentration in exhaust gas based on a change in resistance value due to oxygen adsorption of both semiconductors, the sensor having an n-type semiconductor and a p-type semiconductor on the surface. It includes a substrate on which semiconductors are arranged in the longitudinal direction, and a heater member that is arranged on the back side of the substrate and heats each of the n-type and p-type semiconductors through the substrate. A semiconductor exhaust gas sensor characterized in that the heat transfer coefficient to the p-type semiconductor is set to be lower as the semiconductor side is located on the inner side of the substrate.
酸素吸着による抵抗値変化に基いて排気ガス中の酸素濃
度を検出する半導体排気ガスセンサーであって、表面に
n型半導体が配置された基板と、表面にp型半導体が配
置された基板と、該両基板の背面間に配置され、各基板
を通じてn型半導体及びp型半導体を加熱するヒータ部
材とを備え、該ヒータ部材は、ヒータ部材を上記両基板
に接合する接合材と一体的に形成されていることを特徴
とする半導体排気ガスセンサー。(3) A semiconductor exhaust gas sensor that includes an n-type semiconductor and a p-type semiconductor and detects the oxygen concentration in exhaust gas based on the change in resistance due to oxygen adsorption of both semiconductors, with the n-type semiconductor disposed on the surface. a substrate on which a p-type semiconductor is disposed, a heater member disposed between the back surfaces of both substrates and heating the n-type semiconductor and the p-type semiconductor through each substrate, the heater member . A semiconductor exhaust gas sensor, characterized in that the heater member is integrally formed with a bonding material that bonds the heater member to both of the substrates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3714188A JPH01212343A (en) | 1988-02-19 | 1988-02-19 | Semiconductor exhaust gas sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3714188A JPH01212343A (en) | 1988-02-19 | 1988-02-19 | Semiconductor exhaust gas sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01212343A true JPH01212343A (en) | 1989-08-25 |
Family
ID=12489339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3714188A Pending JPH01212343A (en) | 1988-02-19 | 1988-02-19 | Semiconductor exhaust gas sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01212343A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021529944A (en) * | 2018-06-28 | 2021-11-04 | シーピーケイ オートモーティヴ ゲーエムベーハー ウント コンパニー カーゲー | A method for measuring nitrogen oxides and a device for carrying out the method. |
-
1988
- 1988-02-19 JP JP3714188A patent/JPH01212343A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021529944A (en) * | 2018-06-28 | 2021-11-04 | シーピーケイ オートモーティヴ ゲーエムベーハー ウント コンパニー カーゲー | A method for measuring nitrogen oxides and a device for carrying out the method. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3694377B2 (en) | Oxygen sensor and air-fuel ratio detection method | |
US6554984B2 (en) | Method of manufacturing a gas sensor | |
KR20100035682A (en) | Particulate matter sensor | |
JPS6228422B2 (en) | ||
JPS62228155A (en) | Gas sensor element | |
JPS6147553A (en) | Air/fuel ratio sensor for automobile | |
US6451187B1 (en) | Air/fuel ratio sensor | |
JP2002181764A (en) | Laminate type gas sensor and gas concentration detector using the same | |
US4450428A (en) | Gas detecting sensor | |
US20070012565A1 (en) | Gas detection device, and air-fuel ratio control device and internal combustion engine incorporating the same | |
US4505802A (en) | Oxygen concentration detector | |
JP3800068B2 (en) | Gas concentration sensor heater control device | |
US6068747A (en) | Solid electrolyte gas sensor | |
JP2505459B2 (en) | Adjustment method of oxygen concentration measuring device | |
CN1312390C (en) | Air/fuel ratio tester | |
JPH01212343A (en) | Semiconductor exhaust gas sensor | |
JPH11344466A (en) | Heater control device of gas concentration sensor | |
CN111307910A (en) | Switch type zirconium-based oxygen core | |
JPH10267895A (en) | Exhaust gas sensor, and exhaust gas sensor system using it | |
JP2006194793A (en) | Gas sensor, drive device including the same, and motor vehicle | |
JPS60129655A (en) | Oxygen sensor | |
JP2607909B2 (en) | Oxygen sensor | |
JP4051742B2 (en) | Gas component concentration measuring device | |
JP2022153758A (en) | Sensor element and gas sensor | |
JP2569733B2 (en) | Thermal air flow detector |