[go: up one dir, main page]

JPH01211966A - Solid-state sensing element and manufacture thereof - Google Patents

Solid-state sensing element and manufacture thereof

Info

Publication number
JPH01211966A
JPH01211966A JP63036659A JP3665988A JPH01211966A JP H01211966 A JPH01211966 A JP H01211966A JP 63036659 A JP63036659 A JP 63036659A JP 3665988 A JP3665988 A JP 3665988A JP H01211966 A JPH01211966 A JP H01211966A
Authority
JP
Japan
Prior art keywords
conductivity type
well region
solid
impurity concentration
opposite conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63036659A
Other languages
Japanese (ja)
Inventor
Seiichi Suzuki
清市 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63036659A priority Critical patent/JPH01211966A/en
Publication of JPH01211966A publication Critical patent/JPH01211966A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔概 要〕 固体撮像素子のうち、受光部におけるウェル領域の構成
に関し、 光電変換効率が大きく、且つ、プルーミングやスミアを
低減させることを目的とし、 受光部の一導電型半導体層を包囲する反対導電型ウェル
領域が、表面から底部に向かって不純物濃度が低下する
不純物濃度勾配を有することを特徴とし、且つ、その製
造方法は、一導電型半導体基板に対して、高エネルギー
、低ドーズ量で反対導電型不純物イオンを注入し、次い
で、低エネルギー、高ドーズ量で反対導電型不純物イオ
ンを注入して、一導電型受光層を包囲する反対導電型ウ
ェル領域を形成する工程が含まれることを特徴とする。
[Detailed Description of the Invention] [Summary] Regarding the structure of the well region in the light receiving part of a solid-state image sensor, the purpose is to increase the photoelectric conversion efficiency and reduce pluming and smear. The opposite conductivity type well region surrounding the one conductivity type semiconductor layer is characterized in that it has an impurity concentration gradient in which the impurity concentration decreases from the surface to the bottom, and the manufacturing method thereof includes the steps of: Opposite conductivity type impurity ions are implanted at high energy and low dose, and then opposite conductivity type impurity ions are implanted at low energy and high dose to form an opposite conductivity type well region surrounding one conductivity type light-receiving layer. It is characterized by including the step of

〔産業上の利用分野〕[Industrial application field]

本発明は、固体撮像素子とその製造方法に係り、特に、
受光部におけるウェル領域の構成に関する。
The present invention relates to a solid-state image sensor and a method for manufacturing the same, and in particular,
This invention relates to the configuration of a well region in a light receiving section.

最近、カメラ分野等に広い用途をもつ光センサとし°て
CCD 撮像素子(固体撮像素子)が開発されており、
その撮像素子の一層の性能向上が要望されている。
Recently, CCD image sensors (solid-state image sensors) have been developed as optical sensors that have a wide range of applications such as in the camera field.
There is a demand for further improvement in the performance of the image sensor.

〔従来の技術と発明が解決しようとする問題点〕エリヤ
センサとして、例えば、インクライン型のCCD (C
harge Coupled Devices)撮像素
子は通常、光電変換部と電荷転送部との2つの機能をも
っており、光電変換部は入射光をキャリア(電荷)に変
換する受光部と一定量のキャリアが溜まる蓄積部(フォ
トダイオード)からなり、また、電荷転送部は配列され
た電極の電位を順次に変えて転送するポテンシャル井戸
のシフトレジスタ部分である。第3図はインターライン
型CCD撮像素子からなるエリヤセンサの構成図を示し
ており、1は光電変換部+ 2aは垂直シフトレジスタ
、 2bは水平シフトレジスタで、このシフトレジスタ
が電荷転送部で、3は出力部である。
[Problems to be solved by the prior art and the invention] As an area sensor, for example, an incline type CCD (C
Image sensors (Harge Coupled Devices) usually have two functions: a photoelectric conversion section and a charge transfer section. The charge transfer section is a shift register section of a potential well that sequentially changes and transfers the potential of the arranged electrodes. FIG. 3 shows a configuration diagram of an area sensor consisting of an interline CCD image sensor, in which 1 is a photoelectric conversion section + 2a is a vertical shift register, 2b is a horizontal shift register, this shift register is a charge transfer section, 3 is the output part.

第4図はこのCCD撮像素子の断面図を示し、第4図は
光電変換部を主体に図示した断面で、10はn型シリコ
ン基板、11はp型ウェル領域、12は受光部、20は
電荷転送部で、電荷転送部20は紙面に垂直に配置され
ているために一部のみ示している。
FIG. 4 shows a cross-sectional view of this CCD image sensor, and FIG. 4 is a cross-section mainly showing the photoelectric conversion section, where 10 is an n-type silicon substrate, 11 is a p-type well region, 12 is a light receiving section, and 20 is a cross section mainly showing a photoelectric conversion section. In the charge transfer section, only a portion of the charge transfer section 20 is shown because it is arranged perpendicularly to the paper surface.

第5図はそのうちの従来の受光部(フォトダイオード)
の断面を示しており、第4図と同一部位に同一記号を付
けているが、その他の14はn+型シリコン層、15は
透光絶縁膜で、このn+型シリコン層14とp型ウェル
領域11からなるフォトダイオード部分が1画素に相当
する受光部である。
Figure 5 shows the conventional light receiving section (photodiode).
The same parts as in FIG. 4 are given the same symbols, except that 14 is an n+ type silicon layer, 15 is a transparent insulating film, and this n+ type silicon layer 14 and the p type well region The photodiode portion consisting of 11 is a light receiving portion corresponding to one pixel.

ところで、この受光部(フォトダイオード)に光が入射
されると、pn接合部分でキャリアが生成され、そのキ
ャリアは三値信号によって電荷転送部(シフトレジスタ
)に送られが、その際、強い入射光が入るとキャリアが
過度に生成されて、隣りの画素に漏れたり、レジスタ(
電荷転送部)に漏れたりして、CCDIIICCD撮像
素子化させる (感度を低下させる)問題が起こる。こ
の光の隣りの画素に漏れ込むことをブルーミングと云い
、レジスタに漏れ込むことをスミアと呼んでいるが、こ
れらの問題点をできるだけ減少させる必要がある。
By the way, when light is incident on this light receiving section (photodiode), carriers are generated at the pn junction, and the carriers are sent to the charge transfer section (shift register) by a ternary signal. When light enters, carriers are generated excessively, leaking to neighboring pixels, and registers (
This may cause problems such as leakage into the charge transfer section (charge transfer section), resulting in a CCD III CCD image sensor (reducing sensitivity). The leakage of this light into neighboring pixels is called blooming, and the leakage into the register is called smearing, and it is necessary to reduce these problems as much as possible.

そのため、例えば、動作中は基板にバイアスを印加して
、余分のキャリアが発生した場合、その余分のキャリア
を基板側より逸散させる方式(縦型オーバーフロードレ
イン方式)が採られている。
Therefore, for example, a method (vertical overflow drain method) is adopted in which a bias is applied to the substrate during operation, and when excess carriers are generated, the excess carriers are dissipated from the substrate side.

しかし、余分のキャリアが多すぎる場合には、完全に基
板側より逸散させることが難しい。第6図はそれを説明
するための図で、受光部における基板の深さとキャリア
のポテンシャルとの関係を示している。同図において、
pn接合部分の凹部(斜線で示す)が深いほどキャリア
の溜りが多くなり、従って、ブルーミングやスミアを起
こし易くなる。そのため、p型ウェル領域に生じるポテ
ンシャルの山を小さくすると余分のキャリアを基板側よ
り逃がし易くなることが、この図から判る。
However, if there are too many excess carriers, it is difficult to completely dissipate them from the substrate side. FIG. 6 is a diagram for explaining this, showing the relationship between the depth of the substrate and the carrier potential in the light receiving section. In the same figure,
The deeper the recess (indicated by diagonal lines) in the pn junction, the more carriers accumulate, and therefore blooming and smearing are more likely to occur. Therefore, it can be seen from this figure that if the peak of potential generated in the p-type well region is made smaller, it becomes easier for excess carriers to escape from the substrate side.

しかし、このポテンシャルの山を小さくすることはp型
ウェル領域の不純物濃度を低下させることで、そうする
とpn接合部分の空乏層が拡がって、キャリアが基板側
より逸散し易くなるが、一方で、p型ウェル領域の不純
物濃度を低下させると、フォトダイオードの光電変換効
率が下って出力が低くなり、SN比が落ちる欠点を生じ
る。
However, reducing this potential peak means lowering the impurity concentration in the p-type well region, which expands the depletion layer at the pn junction and makes it easier for carriers to dissipate from the substrate side. If the impurity concentration in the p-type well region is lowered, the photoelectric conversion efficiency of the photodiode will decrease, resulting in a lower output and a lower S/N ratio.

本発明はこの矛盾した問題を解消させて、光電変換効率
が大きく、且つ、ブルーミングやスミアを低減させるこ
とを目的とした固体撮像素子とその製造方法を提案する
ものである。
The present invention solves these contradictory problems and proposes a solid-state image sensor and a method for manufacturing the same, which aim to have high photoelectric conversion efficiency and reduce blooming and smear.

〔問題点を解決するための手段〕[Means for solving problems]

その目的は、一導電型半導体層を包囲する反対導電型ウ
ェル領域が、表面から底部に向かって不純物濃度が低下
する不純物濃度勾配を有する固体撮像素子によって達成
される。
This objective is achieved by a solid-state imaging device in which a well region of an opposite conductivity type surrounding a semiconductor layer of one conductivity type has an impurity concentration gradient in which the impurity concentration decreases from the surface to the bottom.

且つ、その製造方法として、一導電型半導体基板に対し
て、高エネルギー、低ドーズ量で反対導電型不純物イオ
ンを注入し、次いで、低エネルギー、高ドーズ量で反対
導電型不純物イオンを注入して、一導電型受光層を包囲
する反対導電型ウェル領域を形成する方法を用いる。
In addition, as a manufacturing method, impurity ions of the opposite conductivity type are implanted into a semiconductor substrate of one conductivity type at high energy and a low dose, and then impurity ions of the opposite conductivity type are implanted at low energy and a high dose. , a method of forming a well region of an opposite conductivity type surrounding a light-receiving layer of one conductivity type is used.

〔作 用〕 即ち、本発明はウェル領域に不純物濃度勾配をもたせて
、表面から内部に向かって濃度が低下する不純物濃度勾
配にする。そのような勾配をイオン注入条件を換えるこ
とによって与える。
[Function] That is, the present invention provides an impurity concentration gradient in the well region, so that the impurity concentration gradient decreases from the surface toward the inside. Such a gradient is provided by changing the ion implantation conditions.

そうすると、基板表面近傍を十分な出力特性が得られる
高不純物濃度にし、基板深部をキャリアが漏れ出る低不
純物濃度にして、光電変換効率を大きく、且つ、ブルー
ミングやスミアを減少させるものである。
In this case, the impurity concentration near the surface of the substrate is high enough to obtain sufficient output characteristics, and the deep part of the substrate is made low impurity concentration from which carriers leak, increasing photoelectric conversion efficiency and reducing blooming and smear.

〔実施例〕〔Example〕

以下、図面を参照して実施結果によって詳細に説明する
Hereinafter, a detailed explanation will be given based on implementation results with reference to the drawings.

第1図は本発明にかかる受光部の断面図を示しており、
10はn型シリコン基板、30はp型ウェル領域(膜厚
3〜5μm程度)、14はn“型シリコン層(膜厚10
00〜2000人)、15は透光絶縁膜で、p型ウェル
領域の不純物濃度は表面が10′ゝ〜10′7/ ca
l 、底部が10 ” 〜10 ”/ c%程変型なる
ような勾配を有している。
FIG. 1 shows a cross-sectional view of the light receiving section according to the present invention,
10 is an n-type silicon substrate, 30 is a p-type well region (film thickness of about 3 to 5 μm), and 14 is an n" type silicon layer (film thickness of about 10 μm).
00 to 2000 people), 15 is a transparent insulating film, and the impurity concentration of the p-type well region is 10' to 10'7/ca on the surface.
1, the bottom part has a slope such that the deformation is about 10'' to 10''/c%.

そうすると、高不純物濃度をもつ表面に設けられたフォ
トダイオード部分での光電変換効率は大きく、低不純物
濃度をもつ深部におけるp型ウェル領域のポテンシャル
の山が小さく (第6図に破線で示す)なって余分のキ
ャリアを基板側より逃がし易(なる。
In this case, the photoelectric conversion efficiency at the photodiode part provided on the surface with high impurity concentration will be high, and the peak of potential in the p-type well region in the deep part with low impurity concentration will become smaller (as shown by the broken line in Figure 6). This makes it easier to release excess carrier from the substrate side.

第2図(a)〜(b)は本発明にががる製造方法の工程
順断面図を示しており、同図(a)に示すように、n型
シリコン基板10表面に絶縁膜31を形成し、受光部以
外をレジスト膜マスク32で被覆した後、硼素(B)イ
オンをドーズ’M 10  / cal 、エネルギー
出力180KeV程度で注入する。そうすると、深部に
硼素イオンが注入される。
FIGS. 2(a) and 2(b) show step-by-step cross-sectional views of the manufacturing method according to the present invention, and as shown in FIG. 2(a), an insulating film 31 is formed on the surface of an n-type silicon substrate 10. After forming and covering the area other than the light receiving part with a resist film mask 32, boron (B) ions are implanted at a dose of M 10 /cal and an energy output of about 180 KeV. Then, boron ions are implanted deeply.

次いで、同図(a)に示すように、硼素イオンのドーズ
量、エネルギーを変えて、ドーズ量10’″″2ctA
Next, as shown in the same figure (a), the dose amount and energy of boron ions were changed, and the dose amount was 10'''''2ctA.
.

エネルギー出力100KeV程度で表面近傍に硼素イオ
ンを注入する。
Boron ions are implanted near the surface with an energy output of about 100 KeV.

しかる後、1000℃前後の高温度でアニールすると、
不純物が拡散して表面が濃くて底部が薄い濃度勾配をも
ったp型ウェル領域3oが形成される。
After that, annealing is performed at a high temperature of around 1000℃.
The impurities are diffused to form a p-type well region 3o having a concentration gradient that is concentrated at the surface and thin at the bottom.

その上にn“型シリコン層14を同様のイオン注入法で
形成して、第1図のように仕上げる。
An n" type silicon layer 14 is formed thereon by the same ion implantation method to complete the process as shown in FIG.

なお、この濃度勾配を与えるp型ウェル領域30は受光
部のみとして、他の部分(電荷蓄積部や電荷転送部)の
ウェル領域には適用しないことが望ましい。それは、他
の部分ではキャリアを逃がさない方が重要だからである
Note that it is desirable that the p-type well region 30 providing this concentration gradient be applied only to the light receiving portion and not to the well regions of other portions (charge storage portion and charge transfer portion). This is because it is more important not to let your career slip away in other areas.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明にかかる固体撮
像素子によれば光電変換効率が大きくなって、且つ、ブ
ルーミングやスミアが減少し、その性能向上に大きく役
立つものである。
As is clear from the above description, the solid-state imaging device according to the present invention has an increased photoelectric conversion efficiency, and also reduces blooming and smearing, greatly contributing to improving its performance.

なお、本発明は全画素のキャリアを一度に抜き易くなる
ため、高速の電子シャッターを付加価値として搭載でき
る利点も得られる。
In addition, since the present invention makes it easier to remove carriers from all pixels at once, there is also an advantage that a high-speed electronic shutter can be installed as an added value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる受光部の断面図、第2図は本発
明にかかる製造方法の工程順断面図、第3図はエリヤセ
ンサの構成図、 第4図はCCD撮像素子の断面図、 第5図は従来の受光部の断面図、 第6図は基板の深さとキャリアのポテンシャルとの関係
図である。 図において、 10はn型シリコン基板、 11、30はp型ウェル領域、 12は受光部、 14はn+型シリコン層(半導体層)、15は透光絶縁
膜、 20は電荷転送部、 31は絶縁膜、 32はレジスト膜マスク 不発12カ、D、tχ軒6所面m 第1図 Q+       − $ ?;)!(r3g 、+= v・ty ・J % 
!75”4 q L Px ’)e、lri。 第 2UXJ エソτtX−+j/l精へ゛蘭 第3図 CCD $f象tr jar * II r’;!J第
4図
FIG. 1 is a cross-sectional view of the light receiving section according to the present invention, FIG. 2 is a cross-sectional view of the manufacturing method according to the present invention in the order of steps, FIG. FIG. 5 is a cross-sectional view of a conventional light receiving section, and FIG. 6 is a diagram showing the relationship between substrate depth and carrier potential. In the figure, 10 is an n-type silicon substrate, 11 and 30 are p-type well regions, 12 is a light receiving section, 14 is an n+ type silicon layer (semiconductor layer), 15 is a transparent insulating film, 20 is a charge transfer section, and 31 is a charge transfer section. Insulating film, 32 is a resist film mask 12 failures, D, tχ 6 places m Fig. 1 Q+ - $ ? ;)! (r3g, += v・ty・J%
! 75”4 q L Px ') e, lri. 2nd UXJ Eso τt

Claims (2)

【特許請求の範囲】[Claims] (1)受光部の一導電型半導体層を包囲する反対導電型
ウェル領域が、表面から底部に向かって不純物濃度が低
下する不純物濃度勾配を有することを特徴とする固体撮
像素子。
(1) A solid-state imaging device characterized in that a well region of an opposite conductivity type surrounding a semiconductor layer of one conductivity type in a light receiving portion has an impurity concentration gradient in which the impurity concentration decreases from the surface toward the bottom.
(2)一導電型半導体基板に対して、高エネルギー、低
ドーズ量で反対導電型不純物イオンを注入し、次いで、
低エネルギー、高ドーズ量で反対導電型不純物イオンを
注入して、一導電型受光層を包囲する反対導電型ウェル
領域を形成する工程が含まれてなることを特徴とする固
体撮像素子の製造方法。
(2) Implanting impurity ions of the opposite conductivity type into a semiconductor substrate of one conductivity type at high energy and low dose, and then
A method for manufacturing a solid-state imaging device, comprising the step of implanting impurity ions of opposite conductivity type at low energy and high dose to form a well region of opposite conductivity type surrounding a light-receiving layer of one conductivity type. .
JP63036659A 1988-02-18 1988-02-18 Solid-state sensing element and manufacture thereof Pending JPH01211966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63036659A JPH01211966A (en) 1988-02-18 1988-02-18 Solid-state sensing element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63036659A JPH01211966A (en) 1988-02-18 1988-02-18 Solid-state sensing element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01211966A true JPH01211966A (en) 1989-08-25

Family

ID=12475986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63036659A Pending JPH01211966A (en) 1988-02-18 1988-02-18 Solid-state sensing element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01211966A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122733A (en) * 1993-10-21 1995-05-12 Nec Corp Charge transfer device and its manufacture
JPH0818093A (en) * 1994-06-30 1996-01-19 Sony Corp Semiconductor light-receiving element, semiconductor device, and methods for manufacturing the same
EP1102322A2 (en) * 1999-11-15 2001-05-23 Omnivision Technologies Inc. Floating region photodiode for a CMOS image sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122733A (en) * 1993-10-21 1995-05-12 Nec Corp Charge transfer device and its manufacture
JPH0818093A (en) * 1994-06-30 1996-01-19 Sony Corp Semiconductor light-receiving element, semiconductor device, and methods for manufacturing the same
EP1102322A2 (en) * 1999-11-15 2001-05-23 Omnivision Technologies Inc. Floating region photodiode for a CMOS image sensor
EP1102322B1 (en) * 1999-11-15 2006-10-11 OmniVision Technologies, Inc. Floating region photodiode for a CMOS image sensor

Similar Documents

Publication Publication Date Title
KR0168902B1 (en) Solid-state imaging device
JP2781425B2 (en) Method for manufacturing solid-state imaging device
JPS5819080A (en) solid-state image sensor
KR19980059901A (en) Manufacturing Method of Solid State Imaging Device
US5041392A (en) Method for making solid state image sensing device
US5614950A (en) CCD image sensor and method of preventing a smear phenomenon in the sensor
JPH06181302A (en) CCD image element
JPH01211966A (en) Solid-state sensing element and manufacture thereof
JP4612818B2 (en) Solid-state imaging device, solid-state imaging device, and imaging system
JPH0438872A (en) Solid camera device
JP3247163B2 (en) Solid-state imaging device and manufacturing method thereof
JPS5833373A (en) Semiconductor image pickup device
JP2713525B2 (en) Method for manufacturing solid-state imaging device
JPH0436582B2 (en)
JPS60214172A (en) Solid-state image pickup device
JPH06275809A (en) Solid-state image pickup device
JP2002124659A (en) Solid-state image pickup device
JPH0685233A (en) Manufacture of solid-state image sensing device
JPH04316367A (en) Solid-state image sensing device and manufacture thereof
JPH0424871B2 (en)
JPH0424872B2 (en)
JP2002368204A (en) Solid-state imaging element and manufacturing method therefor
JPS62190870A (en) Solid-state imaging device and its manufacturing method
JP2768452B2 (en) Method for manufacturing solid-state imaging device
JPH05315584A (en) Solid-state charge-transfer image sensor