JPH0121173B2 - - Google Patents
Info
- Publication number
- JPH0121173B2 JPH0121173B2 JP56125971A JP12597181A JPH0121173B2 JP H0121173 B2 JPH0121173 B2 JP H0121173B2 JP 56125971 A JP56125971 A JP 56125971A JP 12597181 A JP12597181 A JP 12597181A JP H0121173 B2 JPH0121173 B2 JP H0121173B2
- Authority
- JP
- Japan
- Prior art keywords
- surfactant
- synthetic resin
- film
- water
- examples
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000151 deposition Methods 0.000 claims description 40
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 36
- 229920003002 synthetic resin Polymers 0.000 claims description 36
- 239000000057 synthetic resin Substances 0.000 claims description 36
- 239000007788 liquid Substances 0.000 claims description 27
- 239000003093 cationic surfactant Substances 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 16
- 239000008119 colloidal silica Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 239000002280 amphoteric surfactant Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 48
- 239000004094 surface-active agent Substances 0.000 description 40
- 230000000052 comparative effect Effects 0.000 description 33
- 230000008021 deposition Effects 0.000 description 33
- 239000000243 solution Substances 0.000 description 23
- 238000007654 immersion Methods 0.000 description 18
- -1 polyethylene Polymers 0.000 description 17
- 239000004698 Polyethylene Substances 0.000 description 13
- 229920000573 polyethylene Polymers 0.000 description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 12
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 12
- 238000000576 coating method Methods 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 10
- 239000003595 mist Substances 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 7
- 239000003349 gelling agent Substances 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 5
- 235000014413 iron hydroxide Nutrition 0.000 description 5
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- CVNKFOIOZXAFBO-UHFFFAOYSA-J tin(4+);tetrahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[Sn+4] CVNKFOIOZXAFBO-UHFFFAOYSA-J 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229920001684 low density polyethylene Polymers 0.000 description 4
- 239000004702 low-density polyethylene Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920001477 hydrophilic polymer Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000001941 electron spectroscopy Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 230000005068 transpiration Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/25—Greenhouse technology, e.g. cooling systems therefor
Landscapes
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
- Greenhouses (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Description
本発明は無滴性の優れた合成樹脂成形物、たと
えば合成樹脂フイルム、シート及び板等の製造方
法に関するものである。なお、本明細書において
「無滴性」とは、合成樹脂成形物の表面に水滴が
附着しない性質をいい、「無滴剤」とは合成樹脂
成形物に無滴性を付与せしめる薬剤をいう。
ポリエチレン、ポリプロピレン、ポリ塩化ビニ
ル、ポリエステル、ポリメチルメタクリレート等
の合成樹脂成形物の表面は疎水性であり、水に対
する親和性が少ないので、水滴が附着しやすい。
たとえば、合成樹脂フイルムやシート等を農業用
用ハウス等に用いた場合には、土壌や作物から蒸
散する水蒸気がフイルムやシート等の表面に凝縮
して水滴が形成される。そのため、フイルムやシ
ート状が不透明となり、日光の透過率が低下し、
作物の成育がさまたげられ、或いは水滴の落下に
より葉腐れ等を起す。
従来、かかる合成樹脂成形物の水滴の付着を防
止するには、各種の界面活性剤や親水性高分子化
合物を、成形前の合成樹脂に練込んでおくとか、
或いは合成樹脂成形物の表面に塗布する方法がと
られている。しかし、これらの方法で得られた合
成樹脂成形物は、無滴性の持続性が短かく、数か
月しかもたない欠点があり、かつ無滴性の良好な
ものは夕方から夜にかけてハウス内にもやが発生
し、病害発生の原因となる等の欠点があつた。そ
して、一般に無滴性の良好なものほど、もやの発
生が著しいことからして、もやの発生原因は次の
ようなものと推定される。すなわち、夜間には地
面の温度が周囲の空気よりも高く、地面より蒸発
する水蒸気が空気に冷やされて霧滴となる。他
方、ハウスに使用しているフイルムやシートの内
側表面には無滴効果により水膜が形成されている
が、その水膜の表面には溶け込んだ界面活性剤が
含まれていて、霧滴の水膜への凝縮を妨げるの
で、霧滴がハウス内に立ちこめて、もやとなる。
塗布型無滴剤の一種として、無機質水性ゾルと
界面活性剤の混合物を用いることも既に提案され
ている。たとえば、界面活性剤を主体とし、これ
に少量のシリカゾルを加えたもの(特公昭50−
11348号公報)、アルミナゾルに界面活性剤を加え
たもの(特公昭49−32668号公報)、アルミナゾル
に界面活性剤と親水性ポリマーを加えたもの(特
開昭51−81877号公報)、コロイド状シリカに親水
性ポリマーと界面活性剤を加えたもの(特開昭50
−3832号公報)、シルカゾルに界面活性剤を加え
たもの(特開昭55−56177号公報、特開昭54−
20979号公報)等が提案された。
これら公報に記載のものは、界面活性剤濃度が
かなり減少しているが、多くの場合に塗布型無滴
剤中になお0.1%以上、通常はこれよりもはるか
に多量の界面活性剤を含んでいて、それ等を塗布
乾燥するときは、含まれる界面活性剤が残存する
こととなるためもやを発生する。これは、ポリエ
チレンフイルム等の低エネルギー表面を濡らすに
は、塗布液の表面張力を31ダイン/cm程度以下に
まで下げることが必要であり、上記の各公報にお
いても全て無滴剤の表面張力を下げることにより
プラスチツク表面を濡らすようにし、それにより
無滴剤のプラスチツク表面への塗布を可能にして
いるのである。このように、この種の塗布型無滴
剤は一般に0.1重量%以上の、通常はそれよりも
はるかに多量の界面活性剤の存在が不可欠であ
り、特にロールコーテイング法のような工業的に
有利な方法で、プラスチツクフイルムやシートに
連続高速に、かつ均一に塗布するには著しく高濃
度の界面活性剤の添加が望ましいとされていた。
上記公報の実施例中には、界面活性剤の濃度が
0.1重量%以下のものもあるが、その場合の塗布
方法はすべて工業的に不利なスプレー塗布に限ら
れている。
また、水酸化鉄や水酸化スズの水性ゾル中にポ
リエチレンやテフロンのフイルムを浸しておく
と、フイルム表面にコロイド粒子が沈着して水に
濡れるようになることも既に報告されている〔ジ
ヤーナル・オブ・コロイド・アンド・インターフ
エース・サイエンスVol42、No.3 589〜596
(1973年)参照〕。しかし、同報文によれば、ポリ
エチレンフイルムを水酸化鉄ゾル又は水酸化スズ
ゾル中浸漬してフイルム表面にコロイド粒子を沈
着させて水に濡れるようにするには、2.0分間又
は0.25分間浸漬しておく必要があるとされてい
る。また、本発明者等はかかる方法で実際にこれ
らのコロイド粒子の沈着したポリエチレンフイル
ムを製造し、農業用ハウスに用いて性能評価をし
たところ、下記の点において全く実用性のないこ
とが判明した。すなわち、そのフイルムは液体の
水に濡れるが、農業用ハウスに用いて水蒸気と接
触した場合に曇りを生じた。特に、冬期の水蒸気
の蒸散量の少ない場合には著しい曇りが長期間持
続した。
これは、フイルム表面のコロイド粒子の密度が
小さくて、コロイド粒子間にポリエチレンの表面
が露出していることに原因することがわかつた。
すなわち液体の水と接触した場合には、ポリエチ
レン表面の露出部がかなりあつても、水は液膜状
に拡がつてフイルムを濡らすが、水蒸気は小さい
液滴となつてフイルム表面に凝縮し、ポリエチレ
ン表面の露出部ではじかれて、液滴のままで存在
し、曇つてみえるのである。そして、これを改良
するには、ポリエチレンフイルム表面に沈着した
コロイド粒子の密度を高める必要があり、水蒸気
で曇らない無滴性を付与するには、ポリエチレン
フイルムを水酸化鉄や水酸化スズの水性ゾル中に
15分間、望ましくは30分間程度浸漬しておく必要
があり、到底工業的に実施できる方法でないこと
がわかつた。
本発明者等は、もやの発生を抑えるためになる
べく低濃度の界面活性剤を用い、かつ工業的に有
利なコーテイングを可能とし、しかも長期間無滴
性を持続できる合成樹脂成形物を製造するために
種々研究を重ねた結果、本発明に到達したもので
ある。
すなわち、本発明の無滴性に優れた合成樹脂成
形物の製造方法は、コロイド状シリカを0.05〜20
重量%、カチオン性界面活性剤及び/又は両性界
面活性剤を1×10-4〜0.1重量%含む表面張力35
〜70ダイン/cmの水性液に合成樹脂成形物を浸漬
するか、又は該水性液を合成樹脂成形物にスプレ
ーして、該合成樹脂成形物の表面にコロイド状シ
リカ粒子を沈着せしめることを特徴とする方法で
ある。
本発明におけるコロイド状シリカを0.05〜20重
量%、カチオン性界面活性剤及び/又は両性界面
活性剤を1×10-4〜0.1重量%含む表面張力35〜
70ダイン/cmの水性液を、以下において、単に
「沈着液」ということがある。かかる沈着液にお
けるシリカ濃度が0.05重量%より小さくなると沈
着が起りにくくなるし、20重量%より大きいと液
の安定性が悪くなり沈着処理が困難になる。
界面活性剤濃度が1×10-4重量%より小さいと
シリカの沈着が起りにくくなり、0.1重量%より
大きいと沈着液の凝集が大きくて保存性が悪くな
り、かつ沈着処理も困難になる。
また、表面張力が70ダイン/cmより大きいと合
成樹脂とのなじみが悪くて沈着が起りにくくな
る。合成樹脂成形物の処理の点では表面張力は小
さい程好ましいが、沈着を生じる状態にするため
には35ダイン/cm以上とする必要がある。
かかる本発明の沈着液中に合成樹脂成形物を浸
漬すると、通常は殆んど瞬間的に、おそくとも20
秒程度の時間内にシリカ粒子が合成樹脂成形物表
面に高密度に(緻密に)沈着する。そして、その
沈着表面を乾燥して水蒸気に接触させても曇りの
発生が認められず、優れた無滴性を示す。従来、
ガラスのような親水性で負電荷を帯びた表面に、
陽電気を帯びたアルミナゾルが短時間に沈着する
ことの報告があるが、ポリエチレンのような疎水
性で、電気的に中性ないしは中性に近いものの表
面にシリカゾルが殆んど瞬間的に沈着するのは、
全く予想外のことであり、驚くべきことである。
本発明における沈着液は、従来のシリカゾルや
アルミナゾルに界面活性剤を添加した塗布型無滴
剤と一見似ているようであるが、実際にはこの両
者は次の点において明確に区別できるものであ
る。
(i) 従来の塗布型無滴剤は、比較的多量の界面活
性剤を加えて表面張力を31ダイン/cm程度以下
まで下げて、合成樹脂表面を漏らすようにして
塗布するものである。
これに対し、本発明の沈着液は界面活性剤濃
度が比較的に低く、その表面張力を35〜70ダイ
ン/cm、好ましくは35〜70ダイン/cmとしたも
のであり、ポリエチレンフイルム等の表面にロ
ールコーター法や、刷毛塗り法等の方法で塗布
しようとしても、はじかれてしまつて塗布でき
ず、スプレー法及び浸漬法によつてのみ、沈着
せしめて塗布できるのである。
(ii) 従来の塗布型無滴剤を合成樹脂成形物の表面
に塗布し、直ちに水でリンスすると、コンイド
粒子が洗い落されてしまつて水をはじく状態に
もどる。
これに対し、本発明における沈着液に合成樹
脂成形物を数秒間浸漬し、次いで引き上げて直
ちに水でリンスしても、合成樹脂成形物の表面
は依然として水で濡れており、沈着したコロイ
ド状シリカが水によつて洗い落されることがな
いのである。
このように、本発明における沈着液は、コロイ
ド状シリカを0.05〜20重量%、好ましくは0.5〜
5重量%、カチオン性界面活性剤及び/又は両性
界面活性剤を1×10-4〜0.1重量%、好ましくは
0.05〜0.1重量%含むものであり、通常、水で稀
釈したシリカゾルに上記の界面活性剤の稀薄水溶
液を混合することにより容易に調製される。
一般に、シリカゾルにカチオン性界面活性剤や
両性界面活性剤を加えると、シリカの電荷が中和
されて沈でんを生じたり、ゲル化するが、界面活
性剤濃度を比較的低濃度で添加してなる本発明の
沈着液は、沈でんを殆んど生じないか、わずかに
濁る程度の状態のものである。また、多少の沈で
んを生じたものであつても、沈着性や無滴性に余
り悪影響を及ぼすこともない。ただその場合に
は、処理後のフイルム等の透明性が多少低下する
が、それも浸漬処理後のフイルム等を引続いて水
でリンスすることにより容易に解決される。
本発明の沈着液における界面活性剤としては、
カチオン性界面活性剤、両性界面活性剤、及びそ
の両者の混合物が用いられる。その界面活性剤
は、カチオン性界面活性剤及び/又は両性界面活
性剤であれば、その種類を問わない。カチオン性
界面活性剤としては、たとえばアルキルアミン
塩、アルキルアンモニウム塩、アルキルピリジニ
ウム塩等があげられる。また両性界面活性剤とし
ては、たとえばベタイン型のもの、グリシン型の
もの、硫酸エステル塩型のもの、スルホン酸型の
もの、リン酸エステル型のもの等があげられる。
これらの界面活性剤は2種以上の併用をさまたげ
ない。界面活性剤の親油性部分を構成するアルキ
ル基としては、界面活性作用の観点から炭素数8
〜18個のものが一般的であるが、本発明では、界
面活性剤により表面張力を下げる必要がないの
で、炭素数が8〜18個の範囲をはずれていて、従
つて界面活性作用が乏しい化合物でも用いること
ができる。即ち、本発明でいう界面活性剤には、
界面活性作用の乏しいカチオン界面活性剤の同族
体をも含むものとする。
本発明の沈着液における特に好ましい界面活性
剤は、カチオン性界面活性剤に属する、一般式
RN+(CH3)3・X-(式中、Rは炭素数8〜18個の
アルキル基、XはCl又はBrを示す。)で表わされ
るアルキルトリメチルアンモニウム塩である。こ
のアルキルトリメチルアンモニウム塩は、シリカ
ゾルに濁りを生ぜしめない濃度範囲が広く、沈着
速度も極めて大きくて瞬間的にシリカを沈着さ
せ、かつ極めて優れた無滴性を付与できる。
本発明を工業的に高能率に実施する方法として
は、その沈着液を入れた液槽内の沈着液中に合成
樹脂成形物(たとえばフイルムやシート)を連続
的に通して浸漬処理する方法があげられる。その
際の合成樹脂成形物の沈着液中の滞留時間(浸漬
時間)は、沈着液の組成や樹脂の種類等によつて
多少異なるが、通常、数秒〜10秒程度で十分に均
一な沈着をさせることができる。本発明の沈着液
は界面活性濃度が低く、表面張力が大であるか
ら、ロールコーター法や刷毛塗り法等で塗布しよ
うとしても液がはじかれてしまつて塗布できない
ので、本発明ではスプレー法又は浸漬法を用いる
のである。
浸漬法によるときは、合成樹脂成形物が水性液
中に浸漬されてその表面に無滴成分が沈着した後
に引き上げられるから、無滴剤の液成分の残留が
少なく、したがつて界面活性剤の残留量が少なく
なる。
スプレー法によるときは、スクイーズロールを
用いて残留する液成分を取除くか、処理フイルム
を垂直にして残留する液成分をきるようにする。
本発明にしたがつてその沈着液中で浸漬処理さ
れた合成樹脂成形物は、次いで通常は、熱風等を
用いて乾燥させて製品とするのが製品取扱い上及
び性能面で望ましいが、場合によつては未乾燥の
ままでも十分に実用に耐える。
また、本発明における沈着液浸漬処理後の合成
樹脂成形物には、沈着液濃度等によつては過剰の
沈着液が付着していて、乾燥後の成形物表面がざ
らつくことがある。これを防ぐには、浸漬処理後
の合成樹脂成形物を引続いて水槽中に通して、水
によつてリンスして余分の沈着液を洗い落してか
ら乾燥すればよい。水によるリンス処理をしても
無滴性になんら変りがないし、むしろ過剰の界面
活性剤が洗い落される結果、農業用ハウス等に使
用した場合にハウス内のもやの発生を減少させる
ことができ、好ましい。
かかるゲル化剤処理において用いるゲル化剤と
しては、シリカゾルのコロイド粒子を凝集させる
作用をする物質であれば何でも使用できる。一般
に、シリカゾル中のコロイド状シリカ粒子は、表
面にマイナスの電荷を有し、その電荷相互の電気
的反ぱつ力によつて粒子の凝集が妨げられ、安定
なゾル状態が保たれているのであるが、これにそ
の電荷を中和する物質を添加すると、粒子の凝集
が起り、ゲル化する。そして、かかるゲル化剤と
しては酸類、アルカリ類、塩類、カチオン性界面
活性剤、両性界面活性剤、アルミナゾル、さらに
メタノールやアセトン等の有機物質類があげられ
る。かかる目的において使用するゲル化剤水性液
中のゲル化剤濃度は、ゲル化剤の種類等によつて
も異なるが、通常0.1〜10重量%、好ましくは1
〜5重量%である。
本発明の製法によつて得られる合成樹脂成形
物、たとえば合成樹脂フイルムやシート等は、農
業用ハウス等に使用した場合に、冬期でも曇りが
発生せず、極めて優れた無滴性を示し、かつその
無滴性が6か月以上の長期間持続する。また、無
滴性に優れているにかかわらず、夜間にハウス内
にもやを発生することも殆んど認められない。さ
らに、そのフイルム等は透明性が良好で、表面が
べとつくこともなく、シリカ塗膜の強度も乾燥時
及び湿潤時とも大で、たとえば指や他物によつて
その塗膜を摩擦してもシリカ粒子が容易に脱落し
ない。
以下に、実施例及び比較例をあげて本発明をさ
らに詳述するが、本発明はこれらの例によつてな
んら制限されるものでない。これらの例における
%は特に付記しない限り重量基準による。
実施例 1〜7
市販の各種のシリカゾルの稀釈水溶液と、市販
の各種のカチオン性又は両性界面活性剤水溶液と
を混合することにより、表1に示す各種の処理液
(沈着液)を調製した。
用いたシリカゾルは、実施例1〜2では日産化
学社商品名スノーテツクス40、実施例3〜4では
同スノーテツクスO、実施例5では同スノーテツ
クスC、実施例6〜7ではデユポン社商品名ルド
ツクスHS−40であつた。
得られた各沈着液中に農業用低密度ポリエチレ
ンフイルムを、表1に示す種々の時間浸漬し、引
き上げてから水中で5秒間リンスし、次いで風乾
した。リンス後の水から引き上げた時のフイルム
表面の水による濡れ状態、及び風乾したフイルム
を50℃の水を満した水槽上でその湯気に5秒間か
ざしたときのフイルム表面の状態を調べて、それ
ぞれ評価した結果は表1に示すとおりであつた。
比較例 1〜9
コロイド状水酸化鉄(比較例1)、コロイド状
水酸化スズ(比較例2)、コロイド状シリカ(比
較例3)、コロイド状アルミナ(比較例4)、カチ
オン性界面活性剤(比較例5)、コロイド状シリ
カやコロイド状アルミナにノニオン性又はアニオ
ン性界面活性剤を比較的に多量に添加した水性液
(比較例6〜8)、シリカゾルにカチオン性界面活
性剤を比較的に多量加えた水性液(比較例9)を
それぞれ用い、実施例1〜7におけると同様にし
て同様のポリエチレンフイルムを浸漬処理し、同
様に水でリンスしてから同様にして風乾した。
なお、比較例1のコロイド状水酸化鉄及び比較
例2のコロイド状水酸化スズの調製は、上記文献
の報文にしたがつて、FeCl3・6H2O、及び
SnCl4・5H2OとSnCl2・2H2Oとの混合物をそれ
ぞれ水に溶かし、PH調節及びエージングすること
により行つた。また、比較例におけるコロイド状
シリカはすべて日産化学社商品名スノーテツクス
40を用い、コロイド状アルミナは日産化学社商品
名アルミナゾル200を用いた。
The present invention relates to a method for producing synthetic resin molded articles having excellent drop-free properties, such as synthetic resin films, sheets, and plates. In this specification, "dropless property" refers to the property that water droplets do not adhere to the surface of a synthetic resin molded product, and "dropless agent" refers to an agent that imparts dropless properties to a synthetic resin molded product. . The surface of molded synthetic resins such as polyethylene, polypropylene, polyvinyl chloride, polyester, and polymethyl methacrylate is hydrophobic and has little affinity for water, so water droplets tend to adhere to it.
For example, when a synthetic resin film or sheet is used for an agricultural greenhouse, water vapor evaporating from soil or crops condenses on the surface of the film or sheet, forming water droplets. As a result, the film or sheet becomes opaque and the transmittance of sunlight decreases.
Crop growth is hindered or leaf rot occurs due to falling water droplets. Conventionally, in order to prevent water droplets from adhering to such synthetic resin moldings, various surfactants and hydrophilic polymer compounds have been kneaded into the synthetic resin before molding.
Alternatively, a method has been adopted in which it is applied to the surface of a synthetic resin molded article. However, the synthetic resin molded products obtained by these methods have the disadvantage that their drip-free properties are short-lived, lasting only a few months, and those with good drip-free properties can be used in greenhouses from evening to night. There were drawbacks such as the generation of haze, which could cause disease outbreaks. In general, the better the drip-free property, the more significant the mist generation, and it is presumed that the cause of the mist generation is as follows. That is, at night, the temperature of the ground is higher than the surrounding air, and water vapor that evaporates from the ground is cooled by the air and turns into mist droplets. On the other hand, a water film is formed on the inner surface of the film or sheet used in greenhouses due to the non-droplet effect, but the surface of this water film contains dissolved surfactant, which prevents mist droplets from forming. This prevents water from condensing into a film, causing mist droplets to accumulate inside the greenhouse and form a mist. It has also been proposed to use a mixture of an inorganic aqueous sol and a surfactant as a type of non-droplet coating agent. For example, a product containing a surfactant as its main ingredient and a small amount of silica sol added to it (Tokuko Kokko 1973-
11348), alumina sol with a surfactant added (Japanese Patent Publication No. 49-32668), alumina sol with a surfactant and a hydrophilic polymer added (Japanese Patent Laid-open No. 51-81877), colloidal A product made by adding a hydrophilic polymer and a surfactant to silica (Japanese Patent Application Laid-Open No.
-3832), silkasol with a surfactant added (JP-A-55-56177, JP-A-54-
20979) etc. were proposed. Although the surfactant concentration of the products described in these publications is considerably reduced, in many cases the spray-on type non-drop formulation still contains surfactant in an amount of 0.1% or more, usually much larger than this. Then, when they are applied and dried, the surfactant contained therein remains, creating a mist. This means that in order to wet low-energy surfaces such as polyethylene film, it is necessary to lower the surface tension of the coating liquid to about 31 dynes/cm or less, and all of the above publications also discuss the surface tension of the non-droplet agent. The lowering wets the plastic surface, thereby allowing the dropless agent to be applied to the plastic surface. Thus, this type of spray-on type non-droplet agent generally requires the presence of a surfactant in an amount of 0.1% by weight or more, but usually in a much larger amount, especially for industrially advantageous applications such as roll coating methods. It has been considered desirable to add a surfactant at a significantly high concentration in order to coat plastic films or sheets uniformly and continuously at high speed.
In the examples of the above publication, the concentration of surfactant is
Although some contain less than 0.1% by weight, the coating method in such cases is limited to spray coating, which is industrially disadvantageous. It has also been reported that when a polyethylene or Teflon film is immersed in an aqueous sol of iron hydroxide or tin hydroxide, colloidal particles are deposited on the film surface, making it wet. Of Colloid and Interface Science Vol42, No.3 589-596
(1973)]. However, according to the same report, in order to make a polyethylene film wet by water by depositing colloid particles on the surface of the film by immersing it in iron hydroxide sol or tin hydroxide sol, it should be immersed for 2.0 minutes or 0.25 minutes. It is said that it is necessary to keep In addition, the present inventors actually produced a polyethylene film on which these colloidal particles were deposited using this method and evaluated its performance by using it in an agricultural greenhouse, and found that it was completely impractical in the following respects. . That is, the film was wetted by liquid water, but became cloudy when used in agricultural greenhouses and came into contact with water vapor. Particularly in winter, when the amount of water vapor transpiration was low, significant cloudiness persisted for a long period of time. It was found that this was caused by the fact that the density of the colloidal particles on the film surface was low, and the polyethylene surface was exposed between the colloidal particles.
In other words, when it comes into contact with liquid water, even if there is a large exposed area of the polyethylene surface, the water spreads out as a liquid film and wets the film, but water vapor condenses on the film surface in the form of small droplets. It is repelled by the exposed areas of the polyethylene surface and remains as droplets, giving it a cloudy appearance. To improve this, it is necessary to increase the density of the colloidal particles deposited on the surface of the polyethylene film, and in order to give the polyethylene film a droplet-free property that does not cloud with water vapor, the polyethylene film can be coated with iron hydroxide or tin hydroxide. in sol
It was found that this method cannot be implemented industrially, as it requires immersion for 15 minutes, preferably about 30 minutes. The present inventors have produced synthetic resin molded products that use as low a concentration of surfactants as possible to suppress the generation of haze, enable industrially advantageous coatings, and maintain drip-free properties for a long period of time. As a result of various researches aimed at achieving this goal, the present invention has been arrived at. That is, in the method for producing a synthetic resin molded product with excellent drop-free properties according to the present invention, colloidal silica is mixed in an amount of 0.05 to 20
Surface tension 35% by weight, containing 1×10 -4 to 0.1% by weight of cationic surfactant and/or amphoteric surfactant
A synthetic resin molded product is immersed in an aqueous solution of ~70 dynes/cm, or the aqueous liquid is sprayed onto the synthetic resin molded product to deposit colloidal silica particles on the surface of the synthetic resin molded product. This is a method to do so. The surface tension of the present invention, which contains 0.05 to 20% by weight of colloidal silica and 1 x 10 -4 to 0.1% by weight of cationic surfactant and/or amphoteric surfactant, is 35 to 35% by weight.
The 70 dynes/cm aqueous liquid is sometimes simply referred to as "deposition liquid" below. If the silica concentration in such a deposition solution is less than 0.05% by weight, deposition will be difficult to occur, and if it is greater than 20% by weight, the stability of the solution will deteriorate and the deposition treatment will become difficult. If the surfactant concentration is less than 1 x 10 -4 % by weight, silica deposition will be difficult to occur, and if it is more than 0.1% by weight, the deposited solution will aggregate to a large extent, resulting in poor storage stability and making deposition treatment difficult. In addition, if the surface tension is greater than 70 dynes/cm, the compatibility with the synthetic resin will be poor and deposition will be difficult to occur. From the viewpoint of processing synthetic resin moldings, it is preferable that the surface tension be as low as possible, but in order to create a state in which deposition occurs, it is necessary to set the surface tension to 35 dynes/cm or more. When a synthetic resin molded article is immersed in such a deposition solution of the present invention, it is usually almost instantaneous, at least 20 minutes after being immersed.
Silica particles are deposited in a high density (finely) on the surface of the synthetic resin molded article within a period of about seconds. Even when the deposited surface is dried and brought into contact with water vapor, no clouding is observed, showing excellent drip-free properties. Conventionally,
On a hydrophilic and negatively charged surface like glass,
There are reports that positively charged alumina sol is deposited in a short period of time, but silica sol is deposited almost instantaneously on the surface of hydrophobic, electrically neutral or nearly neutral materials such as polyethylene. The thing is,
This is completely unexpected and surprising. At first glance, the deposition liquid used in the present invention appears to be similar to a conventional coating-type non-drop agent made by adding a surfactant to silica sol or alumina sol, but in reality, the two can be clearly distinguished in the following points. be. (i) Conventional spray-on type non-drop agents are applied by adding a relatively large amount of surfactant to lower the surface tension to about 31 dynes/cm or less so that it leaks onto the surface of the synthetic resin. In contrast, the deposition solution of the present invention has a relatively low surfactant concentration and a surface tension of 35 to 70 dynes/cm, preferably 35 to 70 dynes/cm, and has a surface tension of 35 to 70 dynes/cm, preferably 35 to 70 dynes/cm. Even if you try to apply it using a roll coater method or a brush coating method, it will be repelled and cannot be applied, so it can only be deposited and applied by spraying or dipping methods. (ii) When a conventional spray-on type non-drop agent is applied to the surface of a synthetic resin molded product and immediately rinsed with water, the conid particles are washed away and the product returns to its water-repellent state. In contrast, even if a synthetic resin molded article is immersed in the deposition solution of the present invention for a few seconds, then taken out and immediately rinsed with water, the surface of the synthetic resin molded article is still wet with water, and the deposited colloidal silica remains. is not washed away by water. Thus, the deposition solution in the present invention contains 0.05 to 20% by weight of colloidal silica, preferably 0.5 to 20% by weight.
5% by weight, cationic surfactant and/or amphoteric surfactant from 1×10 −4 to 0.1% by weight, preferably
It contains 0.05 to 0.1% by weight, and is usually easily prepared by mixing a dilute aqueous solution of the above surfactant with silica sol diluted with water. Generally, when a cationic surfactant or an amphoteric surfactant is added to silica sol, the charge on the silica is neutralized, causing precipitation or gelation, but when the surfactant is added at a relatively low concentration, The deposition solution of the present invention is in a state where almost no sedimentation occurs or it is only slightly cloudy. In addition, even if some precipitation occurs, it does not have much of an adverse effect on the deposition properties or drip-free properties. However, in that case, the transparency of the film etc. after the treatment is somewhat reduced, but this can be easily solved by rinsing the film etc. with water after the immersion treatment. As the surfactant in the deposition solution of the present invention,
Cationic surfactants, amphoteric surfactants, and mixtures of both are used. The surfactant may be of any type as long as it is a cationic surfactant and/or an amphoteric surfactant. Examples of the cationic surfactant include alkylamine salts, alkylammonium salts, alkylpyridinium salts, and the like. Examples of amphoteric surfactants include betaine type surfactants, glycine type surfactants, sulfuric acid ester salt types, sulfonic acid type surfactants, and phosphoric acid ester type surfactants.
Two or more of these surfactants may be used in combination. The alkyl group constituting the lipophilic part of the surfactant should have 8 carbon atoms from the viewpoint of surfactant action.
Generally, the number of carbon atoms is 18 to 18, but in the present invention, there is no need to lower the surface tension with a surfactant, so the number of carbon atoms is outside the range of 8 to 18, and therefore the surface active effect is poor. It can also be used as a compound. That is, the surfactant in the present invention includes:
It is also intended to include homologs of cationic surfactants that have poor surfactant action. A particularly preferred surfactant in the deposition solution of the present invention belongs to the cationic surfactants, and has the general formula
It is an alkyltrimethylammonium salt represented by RN + (CH 3 ) 3 ·X − (wherein R is an alkyl group having 8 to 18 carbon atoms, and X is Cl or Br). This alkyltrimethylammonium salt has a wide concentration range in which it does not cause turbidity in the silica sol, has an extremely high deposition rate, and can instantaneously deposit silica and provide extremely excellent dropless properties. As a method for implementing the present invention industrially and with high efficiency, there is a method in which a synthetic resin molded article (for example, a film or sheet) is continuously immersed in the deposition solution in a liquid tank containing the deposition solution. can give. The residence time (immersion time) of the synthetic resin molding in the depositing solution differs depending on the composition of the depositing solution and the type of resin, but it usually takes a few seconds to 10 seconds to achieve sufficiently uniform deposition. can be done. The deposition liquid of the present invention has a low surfactant concentration and a high surface tension, so even if an attempt is made to apply it by a roll coater method or a brush coating method, the liquid will be repelled and cannot be applied. The immersion method is used. When using the immersion method, the synthetic resin molded product is immersed in an aqueous liquid and the non-droplet component is deposited on its surface before it is pulled up, so there is little residual liquid component of the non-droplet agent and, therefore, the amount of surfactant is reduced. The amount remaining will be reduced. When using the spray method, use a squeeze roll to remove residual liquid components, or hold the treated film vertically to remove residual liquid components. The synthetic resin molded article that has been immersed in the deposition solution according to the present invention is then normally dried using hot air or the like to form a product, which is desirable in terms of product handling and performance. In fact, it can be put to practical use even if it is left undried. Further, depending on the concentration of the depositing liquid, excessive depositing liquid may adhere to the synthetic resin molded article after being immersed in the depositing liquid in the present invention, and the surface of the molded article after drying may become rough. To prevent this, the synthetic resin molded article after the immersion treatment may be subsequently passed through a water tank, rinsed with water to wash off excess deposited liquid, and then dried. Rinsing with water does not change the drip-free property; in fact, excess surfactant is washed away, which reduces the occurrence of mist inside the greenhouse when used in agricultural greenhouses, etc. is possible and preferable. As the gelling agent used in such gelling agent treatment, any substance can be used as long as it has the effect of coagulating colloidal particles of silica sol. In general, colloidal silica particles in silica sol have a negative charge on their surface, and the electrical repulsion between the charges prevents the particles from agglomerating, maintaining a stable sol state. However, when a substance that neutralizes the charge is added to this, the particles coagulate and gel. Such gelling agents include acids, alkalis, salts, cationic surfactants, amphoteric surfactants, alumina sol, and organic substances such as methanol and acetone. The concentration of the gelling agent in the gelling agent aqueous solution used for this purpose varies depending on the type of gelling agent, but is usually 0.1 to 10% by weight, preferably 1% by weight.
~5% by weight. When the synthetic resin molded products obtained by the production method of the present invention, such as synthetic resin films and sheets, are used in agricultural greenhouses, etc., they do not fog up even in winter and exhibit extremely excellent drip-free properties. And the drip-free property lasts for a long period of 6 months or more. In addition, despite the excellent drip-free properties, there is hardly any mist generated inside the greenhouse at night. Furthermore, the film has good transparency, does not have a sticky surface, and the strength of the silica coating is high both when dry and wet, and the coating film cannot be rubbed by fingers or other objects. Silica particles do not fall off easily. The present invention will be explained in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples in any way. The percentages in these examples are by weight unless otherwise noted. Examples 1 to 7 Various treatment solutions (deposition solutions) shown in Table 1 were prepared by mixing various commercially available diluted aqueous solutions of silica sol and various commercially available aqueous cationic or amphoteric surfactant solutions. The silica sol used was Snowtex 40 (trade name, manufactured by Nissan Chemical Co., Ltd.) in Examples 1 and 2, Snowtex O (trade name) from Nissan Chemical Co., Ltd. in Examples 3 and 4, Snowtex C (trade name) (trade name) from DuPont Co., Ltd. in Examples 6 and 7, and Ludotux HS- (trade name) from Dupont Co., Ltd. in Examples 6 and 7. It was 40. Agricultural low-density polyethylene films were immersed in each of the resulting deposition solutions for various times shown in Table 1, taken out, rinsed in water for 5 seconds, and then air-dried. We examined the wet state of the film surface when it was removed from the water after rinsing, and the state of the film surface when the air-dried film was held over the steam for 5 seconds over a water tank filled with 50℃ water. The evaluation results were as shown in Table 1. Comparative Examples 1 to 9 Colloidal iron hydroxide (Comparative example 1), colloidal tin hydroxide (Comparative example 2), colloidal silica (Comparative example 3), colloidal alumina (Comparative example 4), cationic surfactant (Comparative Example 5), an aqueous liquid in which a relatively large amount of nonionic or anionic surfactant was added to colloidal silica or colloidal alumina (Comparative Examples 6 to 8), a relatively large amount of cationic surfactant in silica sol, The same polyethylene film was immersed in the same manner as in Examples 1 to 7 using each of the aqueous liquids (Comparative Example 9) added in large amounts to the above, rinsed with water in the same manner, and then air-dried in the same manner. The preparation of colloidal iron hydroxide in Comparative Example 1 and colloidal tin hydroxide in Comparative Example 2 was carried out using FeCl 3 6H 2 O and
This was carried out by dissolving mixtures of SnCl 4 .5H 2 O and SnCl 2 .2H 2 O in water, adjusting the pH and aging. In addition, all colloidal silica in the comparative examples was manufactured by Nissan Chemical Co., Ltd. under the trade name Snotex.
40 was used, and the colloidal alumina was Alumina Sol 200 (trade name, manufactured by Nissan Chemical Co., Ltd.).
【表】【table】
【表】【table】
【表】
表1に示されたように、実施例1〜7のフイル
ムは、水でリンスして引き上げた状態で水に均一
に濡れており、コロイド状シリカが沈着している
ことを示した。また、そのフイルムは風乾後に湯
気にかざしても曇ることがなく、透明であつた。
そして、このような沈着フイルムを得るに要する
沈着液中への浸漬時間はわずか20秒で足り、なか
には数秒でも足りるものもあつた。なお、実施例
1〜7のフイルムが、リンス後においてもシリカ
が沈着しており、かつかかるリンス後の沈着層の
界面活性剤含有量が極めて少ないことは、X線光
電子分光(ESCA)及び電子顕微鏡による解析に
よつて確認された。
これに対し、比較例1及び2で得られたフイル
ムは、水でリンスした後も水で濡れているので、
コロイド状粒子の沈着が認められるものの、風乾
後のフイルムを湯気にかざしても曇らないものと
するに要する浸漬時間は、比較例1では少なくと
も15分、比較例2では少なくとも5分であつた。
また比較例3のようにコロイド状シリカのみでは
実際上シリカの沈着が起らないし、比較例4のよ
うにコロイド状アルミナのみでは沈着が起るもの
の、その沈着速度が極めておそい。比較例5〜8
のように各種の界面活性剤を比較的多量に用いて
表面張力を19〜30ダイン/cm以下まで低下させた
ものは、コロイド状粒子を併用しても併用しなく
ても、浸漬後において水で濡れているが、水でリ
ンスすると界面活性剤もコロイド状粒子も完全に
洗い落されてしまい、水をはじくようになり、実
質上無滴性を示さなかつた。さらに、比較例9の
ようにコロイド状シリカとともに比較的に多量の
カチオン性界面活性剤を添加した処理液は、凝集
が激しくて安定な被覆処理を行なうことができな
かつた。
実施例 8〜13
比較例 10〜15
表2に示すように、上記の実施例及び比較例に
おいて用いたと同一の処理液(沈着液等)を用
い、各種の合成樹脂フイルム又はシートを同様に
して浸漬処理し、同様にしてリンスし、同様にし
て風乾して得たフイルム又はシートについて同様
の評価をした。
その結果は表2に示すとおりであつた。すなわ
ち、実施例8〜13で得られたフイルム又はシート
は、20秒以内の浸漬でも湯気により曇らない優れ
た無滴性を示した。これに対し、比較例10〜15で
得られたフイルムは、湯気で曇らないものとする
のに5分以上の浸漬を必要とし、実用性がなかつ
た。[Table] As shown in Table 1, the films of Examples 1 to 7 were uniformly wet with water when they were rinsed with water and pulled up, indicating that colloidal silica was deposited. . Furthermore, the film did not become cloudy and remained transparent even when it was held up to steam after being air-dried.
In order to obtain such a deposited film, only 20 seconds of immersion in the deposition solution was required, and in some cases even several seconds were sufficient. It should be noted that in the films of Examples 1 to 7, silica was deposited even after rinsing, and the surfactant content of the deposited layer after rinsing was extremely low, as determined by X-ray photoelectron spectroscopy (ESCA) and electron spectroscopy. Confirmed by microscopic analysis. On the other hand, the films obtained in Comparative Examples 1 and 2 remained wet even after rinsing with water, so
Although deposition of colloidal particles was observed, the immersion time required for the air-dried film to remain cloudy even when exposed to steam was at least 15 minutes in Comparative Example 1, and at least 5 minutes in Comparative Example 2.
Furthermore, as in Comparative Example 3, colloidal silica alone does not actually cause silica deposition, and as in Comparative Example 4, although colloidal alumina alone causes deposition, the deposition rate is extremely slow. Comparative examples 5 to 8
Products that use relatively large amounts of various surfactants to lower the surface tension to below 19 to 30 dynes/cm, such as those used in this article, have a high resistance to water after immersion, regardless of whether colloidal particles are used in combination or not. However, when rinsed with water, both the surfactant and the colloidal particles were completely washed away, and the product began to repel water, showing virtually no dripping properties. Further, in the treatment liquid in which a relatively large amount of cationic surfactant was added together with colloidal silica as in Comparative Example 9, agglomeration was severe and stable coating treatment could not be performed. Examples 8 to 13 Comparative Examples 10 to 15 As shown in Table 2, various synthetic resin films or sheets were treated in the same manner using the same treatment liquid (deposition liquid, etc.) used in the above Examples and Comparative Examples. A film or sheet obtained by immersion treatment, rinsing in the same manner, and air drying in the same manner was evaluated in the same manner. The results were as shown in Table 2. That is, the films or sheets obtained in Examples 8 to 13 exhibited excellent drip-free properties that did not cloud due to steam even when immersed for 20 seconds or less. On the other hand, the films obtained in Comparative Examples 10 to 15 required immersion for 5 minutes or more to become unclouded by steam, and were not practical.
【表】
実施例 14〜17
比較例 16〜18
表3に示すように、実施例14〜17では実施例2
におけると同一の沈着液を入れた第1槽の液中
に、農業用低密度ポリエチレンフイルムを連続的
に通して浸漬処理をした。その浸漬時間はいずれ
も約20秒であつた。浸漬後のフイルムは、実施例
14ではそのまま80℃の温風で連続的に乾燥した。
また実施例15では水を入れた第2槽中を連続的に
通過させてリンス処理をしてから、80℃の温風で
連続的に乾燥した。また実施例16ではアルミナゾ
ルの稀釈水溶液を入れた第2槽中を、実施例17で
はカチオン性界面活性剤を含む水を入れた第2槽
中をそれぞれ連続的に通過させてから、80℃の温
風で連続的に乾燥した。
また、比較例16又は17では、比較例6又は比較
例8で用いたと同一の処理液を入れた第1槽中に
農業用低密度ポリエチレンフイルムを連続的に通
過させて浸漬処理をしたのち、80℃の温風で連続
的に乾燥した。その浸漬時間はいずれも約20秒で
あつた。そして、これら比較例16及び17の場合に
は、1回の浸漬及び乾燥を行なつただけでは塗膜
に塗りムラがあつたので、浸漬及び乾燥を2回繰
返した。また、比較例18では、低密度ポリエチレ
ンペレツトに無滴剤としてソルビタンモノオレエ
ートを0.3%練り込んだものをインフレーシヨン
法によりフイルムに成形した。
上記の実施例14〜17及び比較例16〜18で得られ
た各フイルムをそれぞれ用い、冬期(2月)に農
業用ハウスを組立て、その無滴性、無滴性の持続
性、ハウス組立時の傷の発生、及び夜間における
ハウス内でのもやの発生を調べて評価した。その
結果は表3に示すとおりであつた。[Table] Examples 14 to 17 Comparative Examples 16 to 18 As shown in Table 3, Examples 14 to 17
An agricultural low-density polyethylene film was continuously passed through a first tank containing the same deposition solution as in , and subjected to immersion treatment. The immersion time was about 20 seconds in each case. The film after immersion is as shown in Example
14, it was dried continuously with warm air at 80°C.
In Example 15, the material was rinsed by continuously passing through a second tank containing water, and then continuously dried with warm air at 80°C. Furthermore, in Example 16, the water was continuously passed through a second tank containing a diluted aqueous solution of alumina sol, and in Example 17, it was passed continuously through a second tank containing water containing a cationic surfactant. Continuously dried with hot air. In Comparative Examples 16 or 17, the agricultural low-density polyethylene film was continuously passed through a first tank containing the same treatment solution as used in Comparative Examples 6 or 8, and then subjected to immersion treatment. Continuously dried with warm air at 80℃. The immersion time was about 20 seconds in each case. In the case of Comparative Examples 16 and 17, the coating film was uneven when immersed and dried only once, so the immersion and drying were repeated twice. In Comparative Example 18, low-density polyethylene pellets mixed with 0.3% sorbitan monooleate as a dropless agent were formed into a film by an inflation method. Using each of the films obtained in Examples 14 to 17 and Comparative Examples 16 to 18 above, agricultural greenhouses were assembled in the winter (February), and the drip-free properties, the sustainability of the drip-free properties, and the time of house assembly were evaluated. The evaluation was conducted by examining the occurrence of scratches and the occurrence of haze inside the greenhouse at night. The results were as shown in Table 3.
【表】
実施例14〜17で得られた各フイルムは、沈着液
への浸漬時間が著しく短かいにかかわらずフイル
ム表面にシリカが均一に沈着していて、優れた無
滴性を示した。これに対し、比較例16及び17で得
られた各フイルムは、浸漬・乾燥を2回繰返した
が、無滴性その他の性能が実施例14〜17のものよ
りも著しく劣つた。
すなわち、実施例14〜17で得られたフイルム
は、ハウスに組立てられた直後から曇りを発生せ
ず透明であつた。また、もやの発生も少なかつ
た。これに対し、比較例16〜18で得られた各フイ
ルムは、最初の1週間ほどの間は水滴の付着によ
る曇りが発生し、使用中に水滴が次第に大きくな
つて、水滴どうしが連絡して連続した水膜が形成
されてはじめて透明になつた。もやの発生も実施
例14〜17のものと較べて顕著であつた。そして、
無滴性の持続性は、実施例14〜17のものが最も良
好で、次いで比較例17及び16の順であり、比較例
18が最も不十分であつた。また、ハウスの組立時
には、フイルム等がこすられたり、曲げられたり
するので塗膜の一部が剥離して傷となり、部分的
に曇るようになるが、かかる組立時の傷の発生
は、実施例14〜15、及び比較例16及び17において
多少認められたが、ハウスの使用中に殆んど目立
たなくなつた。これに対し、実施例16及び18のも
のは、かかる傷の発生が実質上認められなかつ
た。このことよりして、アルミナゾルやカチオン
性界面活性剤含有液のようなシリカゾルのゲル化
剤で後処理することにより、コロイド状シリカ沈
着膜がその強度が著しく向上されることがわかつ
た。[Table] In each of the films obtained in Examples 14 to 17, silica was uniformly deposited on the film surface and exhibited excellent drop-free properties, even though the immersion time in the deposition solution was extremely short. On the other hand, the films obtained in Comparative Examples 16 and 17 were repeatedly immersed and dried twice, but their drop-free properties and other properties were significantly inferior to those of Examples 14 to 17. That is, the films obtained in Examples 14 to 17 did not develop fog and were transparent immediately after being assembled in the house. Also, there was less haze. On the other hand, the films obtained in Comparative Examples 16 to 18 developed cloudiness due to adhesion of water droplets for the first week or so, and the water droplets gradually became larger during use, causing the water droplets to contact each other. It became transparent only after a continuous water film was formed. The occurrence of haze was also more significant than in Examples 14-17. and,
The persistence of drip-free property was the best in Examples 14 to 17, followed by Comparative Examples 17 and 16, and Comparative Example
18 was the most inadequate. Also, when assembling the house, the film etc. is rubbed or bent, so part of the coating peels off and becomes scratched, resulting in partial cloudiness. Although it was observed to some extent in Examples 14 to 15 and Comparative Examples 16 and 17, it became almost unnoticeable during use of the greenhouse. In contrast, in Examples 16 and 18, virtually no such scratches were observed. From this, it has been found that the strength of the colloidal silica deposited film can be significantly improved by post-treating the silica sol with a gelling agent such as an alumina sol or a cationic surfactant-containing liquid.
Claims (1)
ン性界面活性剤及び/又は両性界面活性剤を1×
10-4〜0.1重量%含む表面張力35〜70ダイン/cm
の水性液に合成樹脂成形物を浸漬するか又は合成
樹脂成形物に該水性液をスプレーして、該合成樹
脂成形物の表面にコロイド状シリカ粒子を沈着せ
しめることを特徴とする無滴性に優れた合成樹脂
成形物の製造方法。1 0.05-20% by weight of colloidal silica, 1× cationic surfactant and/or amphoteric surfactant
Surface tension including 10 -4 ~0.1% by weight 35~70 dynes/cm
A dropless method characterized by depositing colloidal silica particles on the surface of the synthetic resin molded article by immersing the synthetic resin molded article in an aqueous liquid or spraying the aqueous liquid onto the synthetic resin molded article. A method for producing excellent synthetic resin molded products.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56125971A JPS5829832A (en) | 1981-08-13 | 1981-08-13 | Production of synthetic resin molding having excellent non-drippedness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56125971A JPS5829832A (en) | 1981-08-13 | 1981-08-13 | Production of synthetic resin molding having excellent non-drippedness |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5829832A JPS5829832A (en) | 1983-02-22 |
JPH0121173B2 true JPH0121173B2 (en) | 1989-04-20 |
Family
ID=14923514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56125971A Granted JPS5829832A (en) | 1981-08-13 | 1981-08-13 | Production of synthetic resin molding having excellent non-drippedness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5829832A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2550055Y2 (en) * | 1989-04-20 | 1997-10-08 | みかど化工株式会社 | Agricultural film for tunnel cultivation |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5556177A (en) * | 1978-10-23 | 1980-04-24 | Mitsubishi Petrochem Co Ltd | Surface-coating anti-fogging agent |
-
1981
- 1981-08-13 JP JP56125971A patent/JPS5829832A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5556177A (en) * | 1978-10-23 | 1980-04-24 | Mitsubishi Petrochem Co Ltd | Surface-coating anti-fogging agent |
Also Published As
Publication number | Publication date |
---|---|
JPS5829832A (en) | 1983-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4906237A (en) | Method of forming an improved hydrophilic coating on a polymer surface | |
JPH07508059A (en) | Hydrophilic composition with antifogging properties | |
CN1318514C (en) | Superabsorbent water-resistant coatings | |
CN104210162B (en) | The preparation method of the hydrophobic edible film of a kind of height | |
JP2002530459A (en) | Super absorbent water resistant coatings for fiber reinforced products | |
JPS6345432B2 (en) | ||
JPS6345717B2 (en) | ||
DE1103192B (en) | Process for coating polyethylene objects with a copolymer of vinylidene chloride | |
JPH0121173B2 (en) | ||
CN107141399A (en) | Super absorbent resin preparation method, super absorbent resin and its application | |
JPS62246984A (en) | Anti-fogging agent composition | |
JP5102281B2 (en) | Method for treating hydrophobic surfaces with aqueous phase | |
US2639241A (en) | Nonfoggy moistureproof sheet | |
JPS6069181A (en) | Demisting agent composition | |
JPH0121172B2 (en) | ||
JPS62283135A (en) | Vinyl chloride resin film for agriculture | |
US3252826A (en) | Coated thermoplastic transparent article | |
JPS6364459B2 (en) | ||
US5723181A (en) | Colloidal silica/zirconyl salt compositions as hydrophilizing coatings | |
JPS62283136A (en) | Polyethylene terephthalate film for agriculture | |
JPS645078B2 (en) | ||
JP3094296B2 (en) | Agricultural film | |
JPS5863729A (en) | Manufacture of surface-modified molded resin article | |
JPS5861125A (en) | Preparation of molded thermoplastic resin article having modified surface | |
JPS6264882A (en) | Coating composition for surface modification |