[go: up one dir, main page]

JPH01211501A - Method and apparatus for preserving organ - Google Patents

Method and apparatus for preserving organ

Info

Publication number
JPH01211501A
JPH01211501A JP3655588A JP3655588A JPH01211501A JP H01211501 A JPH01211501 A JP H01211501A JP 3655588 A JP3655588 A JP 3655588A JP 3655588 A JP3655588 A JP 3655588A JP H01211501 A JPH01211501 A JP H01211501A
Authority
JP
Japan
Prior art keywords
pressure
organ
buffer solution
resistant container
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3655588A
Other languages
Japanese (ja)
Other versions
JP2632531B2 (en
Inventor
Nobuo Sakao
坂尾 伸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoxan Corp
Hoxan Co Ltd
Original Assignee
Hoxan Corp
Hoxan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoxan Corp, Hoxan Co Ltd filed Critical Hoxan Corp
Priority to JP63036555A priority Critical patent/JP2632531B2/en
Publication of JPH01211501A publication Critical patent/JPH01211501A/en
Application granted granted Critical
Publication of JP2632531B2 publication Critical patent/JP2632531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE:To preserve an organ in an active state, by using a preserving apparatus comprising a cooling device for a liquid cooling medium, a pressure- resistance container immersed in the liquid cooling medium, a solution-supplying device for injecting into the pressure-resistant container a buffer solution for immersing the organ and a device for compressing the buffer solution. CONSTITUTION:An organ is preserved in a good state keeping the activity thereof for a long period by (1) obtaining an organ-preserving apparatus comprising a cooling device 1, a pressure-resistant container 2 for receiving the cooling device 1 and compressing device 3 for raising the pressure of a buffer solution in the container 2, (2) placing an enucleated organ in the pressure-resistant container 2 together with the buffer solution such as Collins' solution or physiological salt solution, (3) providing the buffer solution with a moderate pressure higher than the atmosphere pressure but lower than the critical pressure thereof and subsequently (4) gradually cooling the buffer solution to a temperature near the freezing point thereof under the pressure in a non-frozen state. The above-mentioned method permits to cool the organ to a considerably low temperature without freezing the organ and is useful for the more systematic performance of organ transplantation than the conventional organ transplantation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は人体等から摘出した各種の臓器を活性を保った
良好な状態で長期間保存する方法およびその装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and an apparatus for preserving various organs extracted from the human body for a long period of time in a good condition while maintaining their activity.

(従来の技術) 従来より摘出臓器を移植時まで保存することが行なわれ
ているが、当該保存手段としては臓器の動脈または門脈
から、血液と近似した性質をもつ約4℃のコリンズ液を
注入して、これを静脈から排出させる所謂潅流法なるも
のが知られており、このような潅流処理後の臓器は上記
4℃程度の温度条件にて貯蔵され、移植に際して貯蔵臓
器に血流を付与してから用いるようにしている。
(Prior art) Extracted organs have traditionally been preserved until transplantation, but this preservation method involves collecting Collins fluid at approximately 4°C, which has properties similar to blood, from the organ's artery or portal vein. A so-called perfusion method is known in which the perfused organ is injected and drained through a vein, and the organ after such perfusion treatment is stored at the above-mentioned temperature condition of about 4°C, and blood flow is not allowed to flow into the stored organ at the time of transplantation. I am trying to use it after giving it.

しかじなが゛ら、このような従来保存方法によるときは
臓器の保存可能限度が肝臓で12時間、腎臓で96時間
程度であり、このため臓器の供与と需要との時間的調整
が難事となり、臓器移植の大きな障害となっている。
However, when such conventional preservation methods are used, organs can only be preserved for about 12 hours for livers and 96 hours for kidneys, which makes it difficult to coordinate the time between organ donation and demand. , is a major obstacle to organ transplantation.

ここで、出熱、上記の4℃を更に低温にすれば保存可能
時間を長くすることが考えられるが、上記従来法を施し
た臓器を更に冷却し、凍結すれば細胞破壊が起こり、臓
器自体を死滅させてしまうこととなる。
Here, it is possible to extend the shelf life by lowering the temperature even further than the above 4°C, but if the organ subjected to the above conventional method is further cooled and frozen, cell destruction will occur, and the organ itself This will result in the death of the .

そこで、この問題を解決すべく本願人は既に特公昭8l
−5E12021  (特許第13119857号)を
以て下記の方法を提案した。
Therefore, in order to solve this problem, the applicant has already
-5E12021 (Patent No. 13119857) proposed the following method.

この方法は、凝固温度が0℃であるコリンズ液、生理的
食塩水等の血液均等潅流液とヘパリンなどの血液凝固防
止剤との混合による緩衝液だけでなく、適時ジメチルス
ルオキシド(以下DMSOという)あるいはグリセリン
のような凍害防止剤を用いるようにするのであり、さら
に詳しくは、先ず上記緩衝液を環境液として、この中に
摘出した臓器を置き、当該環境液の温度を徐々に降下さ
せると共に;当該臓器の動脈あるいは門脈から同環境液
を注入して、これを潅流させることで臓器の内部と外部
とから同一温度で均一に冷却していき、この際当該環境
液の凝固温度(0°C)の近傍(1〜2℃)まで冷却し
た後、この臓器を上記の凍害防止剤による環境液内へ移
し、この環境液により、上記と同じく潅流を行って凝固
温度である一5℃近傍まで(−4℃)冷却するのであり
、この状態のものを当該−4℃程度にて保存しようとす
るものである。
This method uses not only a buffer solution made by mixing a blood perfusion solution such as Collins solution or physiological saline, which has a coagulation temperature of 0°C, with a blood coagulation inhibitor such as heparin, but also dimethyl sulfoxide (hereinafter referred to as DMSO) as appropriate. ) or use a cryoprotectant such as glycerin.More specifically, first, the above-mentioned buffer solution is used as an environmental solution, the excised organ is placed in it, and the temperature of the environmental solution is gradually lowered. ; By injecting the same environmental fluid from the artery or portal vein of the organ and perfusing it, the internal and external parts of the organ are uniformly cooled to the same temperature. At this time, the freezing temperature of the environmental fluid (0 After cooling the organ to a temperature close to 1 to 2 degrees Celsius (1-2 degrees Celsius), the organ was transferred to the environmental solution containing the above-mentioned cryoprotectant, and perfused with this environmental solution in the same manner as above to reach the freezing temperature of -5 degrees Celsius. The object is to be cooled to a temperature close to -4°C, and the object in this state is to be stored at about -4°C.

上記の方法によるときは、当該臓器は一4℃まで低温と
なり、しかも凍結してしまうことはないから、臓器の長
期にわたる良好な保存が可能となるのであるが、かかる
方法によっても現時点では凝固点が、さらに低い凍害防
止剤を得ることができないことから、結局−4℃程度が
低温下の限度となってしまうのであり、このため臓器の
処理温度が低いほど保存の長期化が実現し得るに拘らず
、これ以上の改善が不能とされている。
When using the above method, the organ in question is kept at a low temperature of -4°C and does not freeze, making it possible to preserve the organ well over a long period of time. Since it is not possible to obtain an even lower cryoprotective agent, the upper limit of the low temperature is around -4℃.For this reason, although organs can be preserved for a longer period of time by lowering the processing temperature, It is considered that no further improvement is possible.

(発明が解決しようとする課題) 本発明は凍害防止剤に依存することなく、コリンズ液等
の通常の緩衝液中に摘出臓器を入れ、当該緩衝液に対し
て圧力を付加し、この圧力上昇によって同法の凝固点を
降下させるように処11L、これにより上記従来法の一
4℃に比し、はるかに低い−19℃といった低い温度ま
で、非凍結状態にて冷却を可能とし、当該臓器の保存期
間を大幅に延長しようとするのが、その目的である。
(Problems to be Solved by the Invention) The present invention does not rely on antifreeze agents, but instead places the extracted organ in a normal buffer solution such as Collins' solution, applies pressure to the buffer solution, and increases the pressure. The freezing point of the organ is lowered by 11L, which enables cooling in a non-freezing state to a temperature as low as -19°C, which is much lower than the 14°C of the conventional method. The purpose is to significantly extend the storage period.

(課題を解決するための手段) 本願では、上記の目的を解決するため、摘出した臓器を
耐圧容器内にて、コリンズ液、生理的食塩水等の緩衝液
に浸漬した状態下にて、当該緩衝液に大気圧より高く、
臨界圧力以下の緩徐な加圧を付与すると共に、当該加圧
による凝固点近傍温度まで、上記緩衝液を非凍結状態を
保持して緩徐に冷却し、爾後当該臓器を実質的に同一の
環境条件下に保存するようにしたことを特徴とする臓器
の保存方法を提供しようとするのが第1の発明であり、
当該方法の実施に用い得る内槽に収容した液体冷媒を、
所望温度に調整自在とした冷却装置と、当該液体冷媒中
に浸漬され気密に形成された開閉自在な耐圧容器と、摘
出された臓器が収納された当該耐圧容器内に、コリンズ
液、生理的食塩水等の緩衝液を注入充填可能とした給液
装置と、前記液体冷媒により所望温度に冷却される耐圧
容器内の緩衝液に、調整自在な気体圧力を付与可能とし
た加圧装置とからなることを特徴とする臓器の保存装置
を第2の発明としている。
(Means for Solving the Problems) In order to solve the above-mentioned object, the present application provides a method for immersing extracted organs in a buffer solution such as Collins solution or physiological saline in a pressure-resistant container. The buffer solution has a pressure higher than atmospheric pressure,
Slow pressurization below the critical pressure is applied, and the buffer solution is kept in a non-frozen state and slowly cooled to a temperature near the freezing point due to the pressurization, and then the organ is kept under substantially the same environmental conditions. The first invention aims to provide a method for preserving organs, which is characterized in that organs are preserved at
A liquid refrigerant contained in an inner tank that can be used to carry out the method,
A cooling device that can freely adjust the temperature to a desired temperature, a pressure-resistant container that is immersed in the liquid refrigerant and formed airtight and can be opened and closed, and a pressure-resistant container that contains the extracted organ and contains Collins solution and physiological saline. It consists of a liquid supply device that can inject and fill a buffer solution such as water, and a pressurization device that can apply a freely adjustable gas pressure to the buffer solution in a pressure-resistant container that is cooled to a desired temperature by the liquid refrigerant. A second invention is an organ preservation device characterized by the following.

(実 施 例) 本願を説示するに際し、先ず第2発明に係る装置につき
第1図の実施例によって、これを詳記すれば冷却装N1
とこれに収納される耐圧容器2と、当該容器2内を昇圧
するための加圧装置3とを具備している。
(Example) In explaining the present application, firstly, the apparatus according to the second invention will be explained using the example shown in FIG.
It is equipped with a pressure-resistant container 2 housed therein, and a pressurizing device 3 for increasing the pressure inside the container 2.

ここで上記冷却装置1は、既知の如くその断熱容器1a
に、外側の真空断熱による外側層1b、液体窒素等の低
温液化ガスが寒冷源LMとして満たされた中間層1c、
そしてヘリウムガスHeが充填されている内側層1dと
が具備され、内側層1dの内側に開口された内槽1eに
はフレオン等の液体冷媒ifが収納され、かくして中間
層1cの寒冷源LMと上記液体冷媒Hとの熱交換媒体と
して上記のヘリウムガスHeが機能することとなるもの
である。
Here, the cooling device 1 has a heat insulating container 1a as is known.
, an outer layer 1b with vacuum insulation on the outside, an intermediate layer 1c filled with low-temperature liquefied gas such as liquid nitrogen as a cold source LM,
Further, an inner layer 1d filled with helium gas He is provided, and a liquid refrigerant if such as Freon is stored in an inner tank 1e opened inside the inner layer 1d, thus serving as a cold source LM of the intermediate layer 1c. The helium gas He functions as a heat exchange medium with the liquid refrigerant H.

すなわち、このため圧力調整器1gによって当該ヘリウ
ムガスHeの封入圧力を調整自在となし、当該圧力(密
度)の調整により寒冷源LNと液体冷媒Ifとの熱交換
速度が調節され、これによって液体冷媒1fの冷却速度
が制御され得るようになしである。
That is, for this reason, the sealed pressure of the helium gas He can be adjusted by the pressure regulator 1g, and by adjusting the pressure (density), the heat exchange rate between the cold source LN and the liquid refrigerant If is adjusted. None so that the cooling rate of 1f can be controlled.

さらに、当該冷却装置lは、上記内槽1eの液体冷媒t
r内に浸漬された温度センサlhとヒータliとが電気
的コントローラ1jに結線されていると共に、モータl
kにより稼動される撹拌機1Mも、液体冷媒lf内に設
けられている。
Furthermore, the cooling device 1 includes a liquid refrigerant t in the inner tank 1e.
A temperature sensor lh immersed in r and a heater li are connected to an electric controller 1j, and a motor l
A stirrer 1M operated by k is also provided within the liquid refrigerant lf.

次に前記耐圧容器2は上記内槽1eに内装載設される架
台4上に載置されて、液体冷媒Ifに浸漬されるが、器
体2aとこれに密閉状態にて着脱自在な閉蓋2bとから
なり、この閉成した耐圧容器2内には、前記のコリンズ
液、生理的食塩水等による緩衝液りを供給するための給
液装置2Cが付設されている。
Next, the pressure-resistant container 2 is placed on a pedestal 4 installed inside the inner tank 1e and immersed in the liquid refrigerant If. 2b, and inside this closed pressure-resistant container 2, a liquid supply device 2C is attached for supplying a buffer solution such as the aforementioned Collins solution or physiological saline.

ここで1図示例では緩衝液タンク2dの緩衝液りが、緩
衝液ポンプ2eにより給液パイプ2fを介し、緩衝液主
開閉弁2gの開成により供給されるようになっていると
共に、Il衝液副開閉弁2bの開成により、当該緩衝液
りが耐圧容器2内の熱交換部2iを介して、液体冷媒!
f内に浸漬された処理対象である臓器Vの動脈Vaまた
は門脈vbから緩衝液りに開口の静脈Weへも流入させ
得るようにしてあり、図中2jは緩衝液り内に浸漬され
る圧力センサを示し前記電気的コトローラ1jに接続さ
れている。
In the example shown in FIG. 1, the buffer solution in the buffer tank 2d is supplied by the buffer pump 2e through the supply pipe 2f by opening the buffer main on-off valve 2g. By opening the on-off valve 2b, the buffer liquid is transferred to the liquid refrigerant through the heat exchange section 2i in the pressure-resistant container 2.
It is arranged so that it can also flow from the artery Va or the portal vein Vb of the organ V to be processed immersed in the buffer tank to the vein We at the opening of the buffer tank, and 2j in the figure is immersed in the buffer tank. A pressure sensor is shown and is connected to the electrical controller 1j.

さらに、前記の加圧器!3につき図示の実施例によって
説示すれば、加圧器3aはダイヤフラム3bによって気
室3Cと液室3dとに区画されていると共に、気室3c
には気体ポンプ3eにより気体圧力を付与可能としてあ
り、しかも当該圧力の上昇が急速に行われ前記臓器Vが
損傷を受けることのなく徐々に加圧されることを保証す
るため、前記の電気的コントローラljにより制御され
る圧力調整器3tが連結されている。
Furthermore, the aforementioned pressurizer! 3, the pressurizer 3a is divided into an air chamber 3C and a liquid chamber 3d by a diaphragm 3b, and an air chamber 3c.
The gas pump 3e is capable of applying gas pressure to the organ V, and in order to ensure that the pressure is increased rapidly and the organ V is gradually pressurized without being damaged, the electrical A pressure regulator 3t controlled by a controller lj is connected.

一方前記液室3dは、ls衝液液流通開閉弁3g介して
流通パイプ3hにより耐圧容器2内と連通させてあり、
かつ前記のダイヤフラム3bにはエア抜き管31が貫着
されて液室3dに開口していると共に、間管31の気室
3Cから外部に引き出された管端側にはエア抜き弁3j
が介接されている・ そこで、上記装置を用いて本願第1発明に係る方法を実
施するには、肝臓、腎臓等の処理すべき摘出済の臓器V
を、前記緩衝液りに浸漬状態となるよう耐圧容器2に収
納密封し、この耐圧容器2は冷却装置lの内槽1eに収
容されている液体冷媒If内にて架台4上に納置する。
On the other hand, the liquid chamber 3d is communicated with the inside of the pressure-resistant container 2 through a distribution pipe 3h via an ls liquid distribution on-off valve 3g,
Further, an air bleed pipe 31 is inserted through the diaphragm 3b and opens into the liquid chamber 3d, and an air bleed valve 3j is provided at the end of the pipe drawn out from the air chamber 3C of the intermediate pipe 31.
Therefore, in order to carry out the method according to the first invention of the present application using the above-mentioned device, the removed organ V to be processed, such as the liver or kidney, must be
is housed and sealed in a pressure-resistant container 2 so as to be immersed in the buffer solution, and this pressure-resistant container 2 is placed on a pedestal 4 within a liquid refrigerant If contained in an inner tank 1e of a cooling device 1. .

次に給液装置2Cの緩衝液主開閉弁2gを開いて緩衝液
ポンプ2@を稼動させるが、この際加圧装置3における
エア抜き管31のエア抜き弁3jと流通パイプ3hの緩
衝液流通開閉弁3gを開成しておくのであり、これによ
り緩衝液タンク2d内の緩衝液りが給液パイプ2fを介
して緩衝液主開閉弁2gより耐圧容器2内に注入される
Next, the buffer main on-off valve 2g of the liquid supply device 2C is opened to operate the buffer pump 2@, but at this time, the buffer solution is distributed between the air bleed valve 3j of the air bleed pipe 31 in the pressurizing device 3 and the flow pipe 3h. The on-off valve 3g is opened, so that the buffer solution in the buffer tank 2d is injected into the pressure vessel 2 from the buffer main on-off valve 2g via the liquid supply pipe 2f.

上記注入に際し、流通パイプ3h−液室3d−ダイヤフ
ラム3bに貫着のエア抜き管31により空気抜きが行わ
れるため、注入された緩衝液りは、耐圧容器2に充満し
、さらに流通パイプ3hより液室3dに満杯状態となる
のであって、この状態となったならばエア抜き管31を
閉じる。
During the above-mentioned injection, air is vented through the air vent pipe 31 that is attached to the distribution pipe 3h, the liquid chamber 3d, and the diaphragm 3b. The chamber 3d becomes full, and when this state is reached, the air vent pipe 31 is closed.

次に加圧装置3の気体ポンプ3eを稼動させることで気
室3cに空気等を送り、これによりダイヤフラム3bを
介して気体圧力を緩衝液りに加えるが、この際急激な加
圧は耐圧容器2内の臓器Vに損傷を与える虞れがあるの
で、気室3cに連通させた前記の圧力調整器3fを電気
的コントローラljによって、プログラムコントロール
するのがよい。
Next, by operating the gas pump 3e of the pressurizing device 3, air or the like is sent to the air chamber 3c, thereby applying gas pressure to the buffer liquid via the diaphragm 3b. Since there is a risk of damaging the internal organs V within the air chamber 2, it is preferable that the pressure regulator 3f communicated with the air chamber 3c be program-controlled by an electric controller lj.

このようにして耐圧容器2内の圧力を、第2図に示す如
く緩衝液りが大気圧から臨界圧力(2200bar )
以下、例えば2θ0Obarとなるまで昇圧し、緩衝液
流通開閉弁3gを閉じて加圧を停止し、冷却装置1によ
る冷却を開始する。
In this way, the pressure inside the pressure vessel 2 is changed from atmospheric pressure to critical pressure (2200 bar) as shown in FIG.
Thereafter, the pressure is increased until it reaches, for example, 2θ0 Obar, the buffer solution flow on/off valve 3g is closed to stop pressurization, and cooling by the cooling device 1 is started.

すなわち上記冷却装置lの稼動により、圧力調整器tg
の調整による寒冷源LMと液体冷媒Ifとの熱交換速度
調節を行って、液体冷媒1fの冷却速度を制御し、かつ
温度センサihによる検知温度によって、前記中間MI
CのHe′M人圧力とヒータ1iの出力とを、電気的コ
ントローラljにより制御する。
That is, by operating the cooling device l, the pressure regulator tg
The cooling rate of the liquid refrigerant 1f is controlled by adjusting the heat exchange rate between the cold source LM and the liquid refrigerant If, and the temperature detected by the temperature sensor ih controls the cooling rate of the intermediate MI.
The He'M pressure of C and the output of the heater 1i are controlled by an electric controller lj.

このようにして液体冷媒Uを精密に温度制御し、これに
より耐圧容器2内の緩衝液りを所望の温度に調整するの
であり、この際の温度制御は、急激な温度変化が臓器V
に障害をもたらす虞れがあるところから、プログラムコ
ントローラによって厳密な制御下で徐々に行うのであっ
て、かつ第2図に示される如き緩衝液りの圧力とその凝
固点との関係に基づき、前記加圧による圧力値にあって
の凝固点近傍温度まで降温させるのである。
In this way, the temperature of the liquid refrigerant U is precisely controlled, and the buffer liquid in the pressure-resistant container 2 is thereby adjusted to the desired temperature.
Since there is a risk of causing damage to the buffer solution, the above-mentioned addition is carried out gradually under strict control by a program controller, and based on the relationship between the pressure of the buffer solution and its freezing point as shown in FIG. The temperature is lowered to a temperature near the freezing point based on the pressure value.

従って、前記の如< 2000barとしたときは、そ
の凝固点である−19.5℃の近傍温度である例えば−
19℃程度まで冷却することとなる。
Therefore, when < 2000 bar as mentioned above, the temperature is around -19.5°C, which is the freezing point, for example -
It will be cooled to about 19°C.

そして、上記のような方法の実施にあって臓器Vを単に
緩衝液りにより冷却するのでなく、給液装置2Cにおけ
る緩衝液間開閉弁2hを開いて緩衝液タンク2d内の緩
衝液りを、熱交換部2iを介して、臓器Vの動脈Vaか
門脈vbより静脈Veへ流過させるとか、耐圧容器2内
の緩衝液り自体を臓器V内に還流させるようにすれば、
当該臓器Vは内部からも同速度にて冷却され、より均一
な冷却が行われると共に冷却速度を上げることもできる
In carrying out the above method, the organ V is not simply cooled by the buffer solution, but the buffer solution opening/closing valve 2h in the fluid supply device 2C is opened to drain the buffer solution in the buffer solution tank 2d. If it is made to flow from the artery Va or portal vein Vb of the organ V to the vein Ve through the heat exchange part 2i, or if the buffer solution itself in the pressure-resistant container 2 is made to flow back into the organ V,
The organ V is cooled from the inside at the same rate, and cooling is performed more uniformly and the cooling rate can also be increased.

上記のようにして緩衝液りを凍結状態とすることなしに
、例えば−19℃といった低温にして当該臓器Vを冷却
することができることとなるが既述の実施例のように、
先に緩衝液を加圧して所定の圧力値としてしまい、その
後に冷却を行うようにしなくとも、当該昇圧を行いなが
ら冷却も併行して実施するようにしてもよく、このよう
にすることで処理時間の短縮化が可能となる。
As described above, the organ V can be cooled to a low temperature of, for example, -19°C without freezing the buffer solution.
Instead of first pressurizing the buffer solution to a predetermined pressure value and then cooling it, it is also possible to perform cooling while increasing the pressure. It becomes possible to shorten the time.

しかし、この際もちろん昇圧されて行く圧力値を継続的
に検知し、当該圧力値における凝固点を常に下まわるこ
とのないよう温度制御することが必要となるから、例え
ば耐圧容器2内に設置した圧力センサ2jにより、緩衝
液りの圧力を検知し、その検知信号を前記電気的コント
ローラ1jに入力し、これにより当該圧力に対する適正
温度を演算させるようにしたコンピュータ制御を行うに
し、こ、れによって第2図の破線で示す如き温度制御を
行うようにするのがよい。
However, at this time, of course, it is necessary to continuously detect the increasing pressure value and control the temperature so that it does not always fall below the freezing point at the pressure value. The sensor 2j detects the pressure of the buffer liquid, and the detection signal is input to the electrical controller 1j, thereby performing computer control to calculate the appropriate temperature for the pressure. It is preferable to perform temperature control as shown by the broken line in FIG.

また、上記緩衝液りに、別途DMSOやグリセリン等の
凍害防止剤を混入しておけば、前記温度制御にあって、
若干の適冷状態が発生したとしても凍結を免れることと
なるので、好都合である。
In addition, if a frost damage preventive agent such as DMSO or glycerin is separately mixed into the buffer solution, the above temperature control can be carried out.
This is advantageous because even if a slight cooling condition occurs, freezing will not occur.

以上の如くして冷却処理が終ったならば、上記の実施例
による装置をそのまま使用し、その冷却装置1を前記実
施例では一18℃の恒温運転に切り換えて、そのまま臓
器Vを保存しても、また耐圧容器2を内槽1eから引き
上げて、図示しない別の保存恒温装置に収納して、当該
臓器Vを実質的に前記逓降降下温度にて貯蔵するように
してもよい。
Once the cooling process is completed as described above, the apparatus according to the above embodiment is used as is, and the cooling apparatus 1 is switched to constant temperature operation at -18°C in the above embodiment, and the organ V is stored as it is. Alternatively, the pressure-resistant container 2 may be pulled up from the inner tank 1e and housed in another storage constant temperature device (not shown), so that the organ V may be stored substantially at the descending temperature.

(発明の効果) 本願にあって第1発明は以上のようにして実施される方
法の発明であるから、臓器を緩衝液の介在により加圧し
て冷却することにより、凍結を生じさせずに従来法に比
し可成り低温まで冷却することができ、これにより非凍
結状態での臓器保存期間を大幅に延長することが可能と
なり、臓器移植のより計画的な実施に資するところ大で
ある。
(Effect of the invention) The first invention of the present application is an invention of a method carried out as described above. It is possible to cool the organ to a considerably lower temperature than the conventional method, which makes it possible to significantly extend the period of organ preservation in a non-frozen state, which greatly contributes to more systematic implementation of organ transplants.

また、本願第2発明に係る第1発明の実施に供される保
存装置にあっては、これまた前記の如くして構成される
ものであるから、冷却装置、給液装置そして耐圧容器と
気体圧力による加圧装置との適切なる配設構成により、
上記方法を円滑にして、かつ能率よ〈実施することがで
きる。
Moreover, since the storage device used for carrying out the first invention according to the second invention of the present application is also configured as described above, it includes a cooling device, a liquid supply device, a pressure-resistant container, and a gas storage device. By appropriate configuration with pressure pressurization device,
The above method can be carried out smoothly and efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願第1発明に係る臓器の保存方法の実施に供
することのできる保存装置の縦断正面説明図、第2図は
同装置に用いられる緩衝液の圧力変化に対する凝固点の
変動を示す図表である。 1・・・・・・冷却装置 1e・・・・・・内槽 1f・・・・・・液体冷媒 2・・・・・・耐圧容器 2c・・・・・・給液装置 3・・・・・・加圧装置 L・・・・・・緩衝液 ■・・・・・・臓器 代理人 弁理士 斎 籐 義 雄
FIG. 1 is a vertical cross-sectional front explanatory view of a preservation device that can be used to carry out the organ preservation method according to the first invention of the present application, and FIG. 2 is a chart showing changes in the freezing point with respect to pressure changes of the buffer solution used in the device. It is. 1...Cooling device 1e...Inner tank 1f...Liquid refrigerant 2...Pressure container 2c...Liquid supply device 3...・・・Pressurization device L・・・Buffer solution ■・・・Organ representative Patent attorney Yoshio Saito

Claims (2)

【特許請求の範囲】[Claims] (1)摘出した臓器を耐圧容器内にて、コリンズ液、生
理的食塩水等の緩衝液に浸漬した状態下で、当該緩衝液
に大気圧より高く、臨界圧力以下の緩徐な加圧を付与す
ると共に、当該加圧による圧力値にあっての凝固点近傍
温度まで、上記緩衝液を非凍結状態を保持して緩徐に冷
却し、爾後当該臓器を実質的に同一の環境条件下に保存
するようにしたことを特徴とする臓器の保存方法。
(1) The extracted organ is immersed in a buffer solution such as Collins solution or physiological saline in a pressure-resistant container, and the buffer solution is slowly pressurized to a level higher than atmospheric pressure and below the critical pressure. At the same time, the buffer solution is kept in an unfrozen state and slowly cooled to a temperature near the freezing point at the pressure value caused by the pressurization, and the organ is then stored under substantially the same environmental conditions. A method for preserving organs characterized by:
(2)内槽に収容した液体冷媒を、所望温度に調整自在
とした冷却装置と、当該液体冷媒中に浸漬され気密に形
成された開閉自在な耐圧容器と、摘出された臓器が収納
される当該耐圧容器内に、コリンズ液、生理的食塩水等
の緩衝液を注入充填可能とした給液装置と、前記液体冷
媒により所望温度に冷却される耐圧容器内の緩衝液に、
調整自在な気体圧力を付与可能とした加圧装置とからな
ることを特徴とする臓器の保存装置。
(2) A cooling device that can freely adjust the temperature of the liquid refrigerant stored in the inner tank to a desired temperature, a pressure-resistant container that is immersed in the liquid refrigerant and formed airtight and can be opened and closed, and the extracted internal organs are stored therein. a liquid supply device capable of injecting and filling a buffer solution such as Collins solution or physiological saline into the pressure-resistant container; and a buffer solution in the pressure-resistant container that is cooled to a desired temperature by the liquid refrigerant;
An organ preservation device comprising a pressurizing device capable of applying a freely adjustable gas pressure.
JP63036555A 1988-02-19 1988-02-19 How to preserve organs Expired - Fee Related JP2632531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63036555A JP2632531B2 (en) 1988-02-19 1988-02-19 How to preserve organs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63036555A JP2632531B2 (en) 1988-02-19 1988-02-19 How to preserve organs

Publications (2)

Publication Number Publication Date
JPH01211501A true JPH01211501A (en) 1989-08-24
JP2632531B2 JP2632531B2 (en) 1997-07-23

Family

ID=12473004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63036555A Expired - Fee Related JP2632531B2 (en) 1988-02-19 1988-02-19 How to preserve organs

Country Status (1)

Country Link
JP (1) JP2632531B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075888A (en) * 2011-09-15 2013-04-25 Tokyo Metropolitan Univ Organ preservation device
CN110547289A (en) * 2019-07-29 2019-12-10 上海原能细胞生物低温设备有限公司 Biological sample multifunctional workstation
JP2022539801A (en) * 2019-07-05 2022-09-13 クリオスタシス・リミテッド Method and apparatus for storing biological material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4559298A (en) * 1982-11-23 1985-12-17 American National Red Cross Cryopreservation of biological materials in a non-frozen or vitreous state

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4559298A (en) * 1982-11-23 1985-12-17 American National Red Cross Cryopreservation of biological materials in a non-frozen or vitreous state

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075888A (en) * 2011-09-15 2013-04-25 Tokyo Metropolitan Univ Organ preservation device
JP2022539801A (en) * 2019-07-05 2022-09-13 クリオスタシス・リミテッド Method and apparatus for storing biological material
CN110547289A (en) * 2019-07-29 2019-12-10 上海原能细胞生物低温设备有限公司 Biological sample multifunctional workstation
CN110547289B (en) * 2019-07-29 2024-03-01 上海原能细胞生物低温设备有限公司 Multifunctional workstation for biological samples

Also Published As

Publication number Publication date
JP2632531B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
EP0096997B1 (en) Method of preserving organ and apparatus for preserving the same
US4462215A (en) Method of preserving organ and apparatus for preserving the same
US4688387A (en) Method for preservation and storage of viable biological materials at cryogenic temperatures
Dempsey et al. A copper block method for freezing non‐cryoprotected tissue to produce ice‐crystal‐free regions for electron microscopy: I. Evaluation using freeze‐substitution
US20100233670A1 (en) Frozen Viable Solid Organs and Method for Freezing Same
Gavish et al. Cryopreservation of whole murine and porcine livers
NO20025851D0 (en) Cryogenic preservation of biologically active material using high temperature freezing
JPH01211501A (en) Method and apparatus for preserving organ
JP2015224210A (en) Hon-freezing preservation transportation method of biocomponent
JPS6156201B2 (en)
JP2015224211A (en) Non-freezing preservation transportation apparatus for biocomponent
JPS6156202B2 (en)
RU2268590C1 (en) Method for organs and tissues cryoconservation in situ
JPS6155882B2 (en)
JPS6155881B2 (en)
Schimmel et al. Freezing of whole rat and dog kidney by perfusion of liquid nitrogen through the renal artery
JP2023084756A (en) Organ preservation device and organ preservation method
CN118020760A (en) Organ preservation system with high pressure and low Wen Mobing
JPS6061502A (en) Perfusion method and apparatus for preserving viscus
JPH0160441B2 (en)
JP3239418B2 (en) Method and apparatus for storing and regenerating living organs
JP3872863B2 (en) Mammal embryo storage straw
JP4278057B2 (en) Cell freezing apparatus and freezing method
JP2582327B2 (en) Simple removal of cryoprotectants from mammalian embryos
JPS5834136B2 (en) Freezing methods for fertilized eggs, sperm, etc.

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees