[go: up one dir, main page]

JPH01209351A - Base sequence determining apparatus - Google Patents

Base sequence determining apparatus

Info

Publication number
JPH01209351A
JPH01209351A JP63034805A JP3480588A JPH01209351A JP H01209351 A JPH01209351 A JP H01209351A JP 63034805 A JP63034805 A JP 63034805A JP 3480588 A JP3480588 A JP 3480588A JP H01209351 A JPH01209351 A JP H01209351A
Authority
JP
Japan
Prior art keywords
gel
fluorescence
different
migration
migration gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63034805A
Other languages
Japanese (ja)
Inventor
Kunihiko Okubo
邦彦 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63034805A priority Critical patent/JPH01209351A/en
Publication of JPH01209351A publication Critical patent/JPH01209351A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To save labor for measurement, by arranging a labelling agent with a different fluorescence wavelength and a spectroscopic means with a different spectroscopic wavelength to reduce lanes of migration gel. CONSTITUTION:When a terminal base is A or G, a DNA fragment of the A is labelled by SF-526 (methyl derivative at 4,5-position of SF 505) or the like and a DNA fragment of the G by SF 505 or the like respectively different in the peak value of an excitation spectrum and a fluorescence spectrum. The DNA fragments thus labelled are mixed to be injected into a sample injection slot 1 to perform an electrophoresis and separation thereof in a polyacrylic amide migration gel 5. The migration gel is irradiated with an argon laser 11 to measure fluorescence with light receivers 13 and 14 which comprise optical fiber bundles 15 and 16, fluorescence selecting filters 17 and 18 with different max. wavelength of transmission light and photomultipliers 19 and 20. This enables measurement of DNA fragments with one lane of migration gel thereby saving labor for measurement.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、サンガーの方法によって核酸の塩基配列を決
定する過程で、特に予めプライマーを螢光物質や燐光物
質などの標識色素でラベルしておき、最終段階のゲル電
気泳動からの配列の読取りをそのS識色素からの発光を
利用して分光学的方法により行なう装量に関するもので
ある。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to the process of determining the base sequence of a nucleic acid by Sanger's method, in which a primer is labeled in advance with a labeling dye such as a fluorescent substance or a phosphorescent substance. This relates to loading, in which the final stage of sequence reading from gel electrophoresis is carried out by a spectroscopic method using light emitted from the S dye.

(従来の技術) このような泳動パターンの測定装置として9例えば特願
昭62−80390号がある。このような装置ではI)
 N A断片を末端塩基A(アデニンノ、G(グアニン
フ、T(チミン)、C(シトシンフ別に分画し、電気泳
動ゲル上の4本のレーンを用いて、X気泳動した後それ
ぞれのレーンを走査し分光学的測定を行う必要があった
(Prior Art) As an apparatus for measuring such a migration pattern, for example, Japanese Patent Application No. 62-80390 is known. In such a device I)
The NA fragment was fractionated according to the terminal bases A (adenine, G (guanine), T (thymine), and C (cytosynph), and after performing X gas phoresis using four lanes on an electrophoresis gel, each lane was scanned. Therefore, it was necessary to perform spectroscopic measurements.

(解決しようとする課題〕 核酸の塩基配列を決定する過程で、末端塩基によr)4
aVtC分画したDNA断片を4本のレーンを使用して
電気泳動を行うことは煩雑であるし、また検体処理件数
も制限される。このため本願は末端塩基線にかかわりな
(DNA断片を1本あるいは2本のレーンを使用して電
気泳動し、このよつなスラブ状泳動ゲルを読みとること
のできる塩基配列決定装置を提供するO (課題を解決するための手段) 本発明にかかる塩基配列決定装置は標識色素として螢光
波長の異なる複数のラベル化剤を用いると共に受光装置
をそれぞれ分光波長の異なる分光手段と複数の光検出器
とで構成したO (作 用) 本発明にかかる装置を使用する塩基配列決定法には核酸
断片の標識色素として螢光波長が異なる複数のラベル化
剤が使用される。I) N A断片は末端塩基毎に異な
るラベル化剤にてラベルされ同一の電気泳動ゲル上のレ
ーンを使用して泳動憾れる。
(Problem to be solved) In the process of determining the base sequence of a nucleic acid, the terminal base (r)4
Performing electrophoresis of aVtC-fractionated DNA fragments using four lanes is complicated and also limits the number of specimens that can be processed. For this reason, the present application provides a base sequencing device that is capable of electrophoresing DNA fragments using one or two lanes and reading such slab-like electrophoresis gels, regardless of the terminal base line. (Means for Solving the Problems) The base sequencing device according to the present invention uses a plurality of labeling agents with different fluorescence wavelengths as labeling dyes, and a light receiving device is equipped with a spectroscopic means and a plurality of photodetectors each having a different spectral wavelength. (Function) In the base sequencing method using the device according to the present invention, a plurality of labeling agents with different fluorescence wavelengths are used as labeling dyes for nucleic acid fragments.I) The NA fragment is Each terminal base is labeled with a different labeling agent and run using the same lane on the electrophoresis gel.

スラブゲル上で分離されたI) N A断片はゲル面の
法線方向より入射する元にエリ励起され、末端の塩基に
対応した個有のラベル化剤に由来する螢光を発する。
The I)NA fragment separated on the slab gel is excited by a source incident from the normal direction of the gel surface, and emits fluorescence derived from a unique labeling agent corresponding to the terminal base.

この螢−ytは複数のヲペル化剤に対応した光を透過す
るように予めセットされた複数の受光装置により検知さ
れ、末端塩基種の判別とその螢光量が読みとられる。こ
れによpDNAのシーケンス決定が行われる〇 (実施例う 第1図は不発明をオンワイン方式の塩基配列決定装置に
適用した実施例を示し、第2図は第1図装置のデーダ処
理回路を示している。
This firefly-yt is detected by a plurality of light receiving devices set in advance to transmit light corresponding to a plurality of phosphorizing agents, and the type of terminal base is determined and the amount of fluorescence thereof is read. As a result, the pDNA sequence is determined. It shows.

本発明は説明を簡略化するためにDNA断片の末端塩基
が2種類(AとGとする〕の場合の実施例装置を示して
いる。
In order to simplify the explanation, the present invention shows an example apparatus in which the terminal bases of the DNA fragment are two types (A and G).

mで螢光スペクトルのビークVi520r1m″t’s
る。フでラペμされており、末端塩基がG (lJ D
 N A断片は9  (carboxyethyl)−
3−bydroxy−6−oxo−68−xanthe
ne(SF  5o5)でラベルてれている。SF’−
505の励起スペクトルビークは4860mで、螢光ス
ペクトルビークは505nmである。このようにラベル
されたDNA断片は混合されて第1図中の試料注入用ス
ロット1に注入される。2.3は電極槽であり泳動用電
源4から泳動電圧が印加されている。
The peak of the fluorescence spectrum at m is Vi520r1m''t's
Ru. The terminal base is G (lJ D
The NA fragment is 9 (carboxyethyl)-
3-byroxy-6-oxo-68-xanthe
It is labeled with ne (SF 5o5). SF'-
The excitation spectral peak of 505 is 4860 m, and the fluorescence spectral peak is 505 nm. The thus labeled DNA fragments are mixed and injected into sample injection slot 1 in FIG. 2.3 is an electrode tank to which a migration voltage is applied from a power source 4 for migration.

試料はポリアクリルアミド泳動ゲ/L15の中を矢印6
の方向に泳動し個々のDNA断片に分離される。
The sample is placed in the polyacrylamide gel/L15 at arrow 6.
The DNA fragments are separated into individual DNA fragments.

7.8.9.10はこのように展開されたDNA断片で
ある〇 励起光を発生する励起光源としてのアルゴンレーザ11
からレーザ光である励起光12が泳動ゲルに照射される
。アルゴンレーザ11は488r1mの光を発振する。
7.8.9.10 is the DNA fragment expanded in this way Argon laser 11 as an excitation light source that generates excitation light
Excitation light 12, which is a laser beam, is irradiated onto the migration gel. The argon laser 11 emits light of 488r1m.

13 、14は受光装置であり、それぞれ光ファイバー
東15.16と螢光選択用フイ/L’ター17゜18と
光電子増倍管19(@出器D1)、20(tgt出器D
2)工9構成されている0光7アイパ一束15 、16
の一端面は泳動ゲ/I15の一端面に対応した形状で薄
い長方形の面を形成するように配列されており、この端
面は泳動ゲル5の一端面と対向して配置されている。
Reference numerals 13 and 14 are light receiving devices, which include an optical fiber east 15, 16, a fluorescence selection filter/L' filter 17, 18, and a photomultiplier tube 19 (@output D1) and 20 (tgt output D1), respectively.
2) A bundle of 0 light 7 eyelids 15 and 16 made up of 9
One end surface is arranged to form a thin rectangular surface with a shape corresponding to one end surface of the electrophoretic gel/I 15, and this end surface is disposed opposite to one end surface of the electrophoretic gel 5.

元ファイバー束15 、16の他端は小さい束に束ねら
れている。螢光選択用フィルター17Vi526nmに
透過光の最大波長を有するものであり、m吊器D1は末
端塩基A?)DNA断片検出用に割りあてられている。
The other ends of the original fiber bundles 15 and 16 are bundled into a small bundle. The fluorescence selection filter 17Vi has a maximum wavelength of transmitted light at 526 nm, and the m hanger D1 has a terminal base A? ) Allotted for detecting DNA fragments.

同様に螢光選択用フィルター18は505nmに透過光
の最大波長を有するものであり、検出器D2は末端塩基
GのDNA断片検出用に割りあてられている。DNA断
片10に付された螢光誘導体は励起光12により励起さ
れ個有の波長の螢光を発し、その光は泳動ゲ)′v5の
表面で全反射をくりかえし端面に配置された光フアイバ
ー束15.16から螢光選択用フィルター17.18を
通V@出器Dt。
Similarly, the fluorescence selection filter 18 has a maximum wavelength of transmitted light at 505 nm, and the detector D2 is assigned to detect the DNA fragment of the terminal base G. The fluorescent derivative attached to the DNA fragment 10 is excited by the excitation light 12 and emits fluorescent light with a unique wavelength, and the light is repeatedly totally reflected on the surface of the electrophoretic gel 5, and the optical fiber bundle disposed on the end face. From 15.16 to fluorescence selection filter 17.18, V@output Dt.

D2に至る。It reaches D2.

検出器で電気信号に変換された信号はアンプ21.22
ta9マルチプレクサ23により時分割されてCPUに
サンプリングされる。CPUではどちらの検出器からの
信号が大きいかが判別され、最大の信号を与える検出器
に対応する成分が測定しているDNA断片の末端塩基で
あると識別される。
The signal converted into an electrical signal by the detector is sent to the amplifier 21.22
The data is time-divided by the ta9 multiplexer 23 and sampled by the CPU. The CPU determines which detector has the larger signal, and identifies the component corresponding to the detector giving the largest signal as the terminal base of the DNA fragment being measured.

また大きいと判別された検出器の信号を使って螢光強度
が測定され、これにエリDNA1ffT片の量が測定さ
れる□DNA断片Vi泳動ゲ/L15上を順次移動し励
起光12の位置を横切るので氾定は各断片各々に順次行
われる。
In addition, the fluorescent light intensity is measured using the signal of the detector determined to be large, and the amount of Eri DNA1ffT fragment is measured. As the area is traversed, flood determination is carried out on each section in turn.

以上簡略化した説明をしたが実際にはDNA’4構成す
る塩基は4種あるので、2種の末端塩基毎のI) N 
A断片に区分し、泳動レーンを2本使用し本発明を実施
することができる。この場合には例えばポリゴンミラー
を使用して励起光を2本のレーンに走査する構成とする
ことができる。更に受光装置を4つ持つ装置とすること
がより好ましい。
Although the above is a simplified explanation, there are actually four types of bases that make up DNA'4, so I) N for each of the two types of terminal bases.
The present invention can be carried out by dividing into A fragments and using two electrophoresis lanes. In this case, for example, a polygon mirror may be used to scan the excitation light into two lanes. Furthermore, it is more preferable to use a device having four light receiving devices.

この場合は4棺の螢光標識9例えば前記5F−505の
誘導体が使用される。
In this case, four fluorescent markers 9 are used, for example a derivative of the aforementioned 5F-505.

1だ光ファイバー東15 、16の受光端面は他の形状
にすることもできる。第3図は光フアイバー束の受光端
の他の実施態様を示す図である。第3図に示す=9に各
受光装置の元ファイバー束26〜29の受光端面を泳動
ゲルの端面26にモザイク状に配置することができる。
The receiving end faces of the single optical fibers 15 and 16 can also have other shapes. FIG. 3 is a diagram showing another embodiment of the light receiving end of the optical fiber bundle. At =9 shown in FIG. 3, the light-receiving end faces of the original fiber bundles 26 to 29 of each light-receiving device can be arranged in a mosaic pattern on the end face 26 of the electrophoretic gel.

本発明にかかる装置は螢光物質の代りに燐光物質をラベ
ル化剤とする塩基配列決定法に使用できる0 また本発明はオフラインの測定装置に適用される。
The device according to the present invention can be used in a base sequencing method using a phosphorescent substance as a labeling agent instead of a fluorescent substance.The present invention can also be applied to an off-line measuring device.

(効 果) 本発明装置によれば泳動ゲ〜の1本のレーンを使用して
DNA断片を測定することができ、測定の手間が減少す
る。
(Effects) According to the apparatus of the present invention, DNA fragments can be measured using one lane of the electrophoresis gel, reducing the time and effort required for measurement.

4個の受光装置を備えた装置では励起光を各レーンに走
査する機構が省略される。44半異嬰其
In an apparatus equipped with four light receiving devices, a mechanism for scanning excitation light onto each lane is omitted. 44 half-different infants

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明をオンライン方式の塩基配列決定装置に
適用した実施例を示し、第2図は第1図装置のデータ処
理回路を示し、第3図は元フ1イノベー束の受光端の他
の実施態様を示す図である。 図中 5  泳動ゲル 11   アルゴンレーザ 13.14  受光装置 15.16  光ファイバー東 17、18  螢光選択用フィルタ 21.22  アンプ 23   マルチプレクサ 25   泳動ゲル端面 26〜29  光フアイバー束 特許出願人 株式会社島津製作所 11.:。
FIG. 1 shows an embodiment in which the present invention is applied to an online base sequencing device, FIG. 2 shows the data processing circuit of the device shown in FIG. 1, and FIG. It is a figure which shows another embodiment. In the figure 5 Migrating gel 11 Argon laser 13.14 Light receiving device 15.16 Optical fiber east 17, 18 Fluorescence selection filter 21.22 Amplifier 23 Multiplexer 25 Migrating gel end faces 26 to 29 Optical fiber bundle patent applicant Shimadzu Corporation 11 .. :.

Claims (1)

【特許請求の範囲】[Claims] (1)標識色素によりラベルされた核酸断片を電気泳動
により展開させた又は展開中のスラブ状泳動ゲルに、こ
のスラブ状泳動ゲルの面の法線方向から励起光ビームを
入射させる機構と、泳動ゲル中に展開した核酸断片の標
識色素の出す螢光を泳動ゲルの端面で受光する受光装置
とを備えた塩基配列決定装置において、前記標識色素と
して螢光波長の異なる複数のラベル化剤を用いると共に
、前記受光装置をそれぞれ分光波長の異なる分光手段と
複数の光検出器とで構成したことを特徴とする塩基配列
決定装置。
(1) A mechanism for injecting an excitation light beam into a slab-like migration gel in which nucleic acid fragments labeled with a labeling dye have been electrophoretically developed or are being developed from the normal direction of the surface of the slab-like migration gel; In a base sequencing apparatus equipped with a light receiving device that receives fluorescence emitted by a labeling dye of a nucleic acid fragment developed in a gel at an end surface of a migration gel, a plurality of labeling agents having different fluorescent wavelengths are used as the labeling dye. In addition, a base sequence determining device characterized in that the light receiving device is constituted by spectroscopic means each having a different spectral wavelength and a plurality of photodetectors.
JP63034805A 1988-02-17 1988-02-17 Base sequence determining apparatus Pending JPH01209351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63034805A JPH01209351A (en) 1988-02-17 1988-02-17 Base sequence determining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63034805A JPH01209351A (en) 1988-02-17 1988-02-17 Base sequence determining apparatus

Publications (1)

Publication Number Publication Date
JPH01209351A true JPH01209351A (en) 1989-08-23

Family

ID=12424438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63034805A Pending JPH01209351A (en) 1988-02-17 1988-02-17 Base sequence determining apparatus

Country Status (1)

Country Link
JP (1) JPH01209351A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425759A (en) * 1990-05-22 1992-01-29 Hitachi Software Eng Co Ltd Fluorescent pattern reader
JPH04204151A (en) * 1990-11-30 1992-07-24 Hitachi Software Eng Co Ltd Polychromatic-migration-pattern reading apparatus
WO2001016586A1 (en) * 1999-08-30 2001-03-08 Integrated Genetic Devices Ltd. Electrophoretic system for real time detection of multiple electrophoresed biopolymers
CN111272715A (en) * 2018-12-04 2020-06-12 长光华大基因测序设备(长春)有限公司 Fluorescence imaging system of gene sequencer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220860A (en) * 1984-01-16 1985-11-05 カリフオルニア・インステイテユ−ト・オブ・テクノロジ− Oligonucleotide analysis method
JPS60242368A (en) * 1984-05-16 1985-12-02 Hitachi Ltd Determination of base sequence of nucleic acid
JPS61173158A (en) * 1985-01-02 1986-08-04 カリフオルニア・インステイテユ−ト・オブ・テクノロジ− DNA sequencing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220860A (en) * 1984-01-16 1985-11-05 カリフオルニア・インステイテユ−ト・オブ・テクノロジ− Oligonucleotide analysis method
JPS60242368A (en) * 1984-05-16 1985-12-02 Hitachi Ltd Determination of base sequence of nucleic acid
JPS61173158A (en) * 1985-01-02 1986-08-04 カリフオルニア・インステイテユ−ト・オブ・テクノロジ− DNA sequencing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425759A (en) * 1990-05-22 1992-01-29 Hitachi Software Eng Co Ltd Fluorescent pattern reader
JPH04204151A (en) * 1990-11-30 1992-07-24 Hitachi Software Eng Co Ltd Polychromatic-migration-pattern reading apparatus
WO2001016586A1 (en) * 1999-08-30 2001-03-08 Integrated Genetic Devices Ltd. Electrophoretic system for real time detection of multiple electrophoresed biopolymers
CN111272715A (en) * 2018-12-04 2020-06-12 长光华大基因测序设备(长春)有限公司 Fluorescence imaging system of gene sequencer
CN111272715B (en) * 2018-12-04 2023-03-14 长春长光华大智造测序设备有限公司 Fluorescence imaging system of gene sequencer

Similar Documents

Publication Publication Date Title
EP0284660B1 (en) Apparatus for determining base sequence
EP1835281B1 (en) Multiplexed capillary electrophoresis system
US5498324A (en) Multiplexed fluorescence detector system for capillary electrophoresis
US5667656A (en) DNA detector and DNA detection method
JP2539172B2 (en) Capillary row confocal fluorescence scanner and method
JPH1194798A (en) Light detection electrophoresis device
KR19980070485A (en) Multi-Capillary Electrophoresis Device
US4971677A (en) Fluorescence detection type electrophoresis apparatus
JPH07209251A (en) Electrophoresis device
JP3456070B2 (en) Capillary array electrophoresis device
JPH01209351A (en) Base sequence determining apparatus
Neumann et al. Capillary array scanner for time-resolved detection and identification of fluorescently labelled DNA fragments
JPH01112147A (en) Method for determining base sequence of nucleic acid
JP3481831B2 (en) Capillary electrophoresis apparatus and capillary state determination method
JPH1019846A (en) Multicapillary electrophoretic apparatus
JP2610870B2 (en) Base sequencer
JP3536851B2 (en) Capillary array electrophoresis device
EP0275440B1 (en) Photo detection system for dna base analysis
JP3544812B2 (en) Multi-capillary base sequencer
JPH02218941A (en) Apparatus for analyzing electrophoretic pattern of fluorescent light detecting type gel
JP2840586B2 (en) Light detection electrophoresis device
JPH09178703A (en) Base arrangement determining device
JPH09243562A (en) Dna sequencer
JP2001330588A (en) Dna base sequence determination device
JPH0210266A (en) Apparatus for determining arrangement of base