JPH01206891A - Motor - Google Patents
MotorInfo
- Publication number
- JPH01206891A JPH01206891A JP63027991A JP2799188A JPH01206891A JP H01206891 A JPH01206891 A JP H01206891A JP 63027991 A JP63027991 A JP 63027991A JP 2799188 A JP2799188 A JP 2799188A JP H01206891 A JPH01206891 A JP H01206891A
- Authority
- JP
- Japan
- Prior art keywords
- windings
- phase
- motor
- connection
- winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004804 winding Methods 0.000 claims abstract description 92
- 238000001514 detection method Methods 0.000 claims 2
- 230000001360 synchronised effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 6
- 238000003754 machining Methods 0.000 description 6
- 230000006378 damage Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
Landscapes
- Brushless Motors (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はモータに関し、特に工作8!考戒をダイレクト
ドライブするモータとして好適に利用できるモータに関
するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to motors, and particularly to motors. The present invention relates to a motor that can be suitably used as a motor for directly driving a meditation.
従来の技術
工作機械における主軸は、高速回忙域から低速回転域に
わたって定出力負荷で使用されるので、通常は、モータ
と主軸を直結することなく、変速機構を介して連結され
ている。これによって、比較的低出力のモータを泪いて
広い回転速度の範囲にわたって一定の出力が得られるよ
うに構成されている。即ち、工作機械の主軸駆動用とし
て一般的に用いられているモータの固定子においては、
U相、■相、W相の各巻線が120°間隔で配設されて
おり、各相の巻線は複数のコイルを直列に接続してbM
t&されている。Since the main spindle in conventional technical machine tools is used with a constant output load over a high-speed rotation range to a low-speed rotation range, the motor and the main shaft are usually not directly connected, but are connected via a transmission mechanism. This allows a relatively low-output motor to provide a constant output over a wide range of rotational speeds. In other words, in the stator of a motor commonly used to drive the main shaft of a machine tool,
The U-phase, ■-phase, and W-phase windings are arranged at 120° intervals, and each phase winding is made by connecting multiple coils in series.
It has been t&.
発明もCへイ決しようとする課題
ところで、近年の工作機械においては、高精度の加工を
自動化することが強く要i!71されており、そのため
に主軸をダイレクトドライブする必要が生じてきている
。しかしながら、上記のようなモータをmいてダイレク
トドライブするには、低速域及び高速域で所定の出力を
得るために非常に大きな定格出力のモータが必要となり
、ロスが大さくなるという問題があった。Challenges for Inventions to Be Decided on C By the way, in modern machine tools, there is a strong need to automate high-precision machining! 71, and for this reason it has become necessary to directly drive the spindle. However, to directly drive the motor as described above requires a motor with a very large rated output in order to obtain the specified output in the low speed and high speed ranges, which poses the problem of increased loss. .
例えば、800−8700 r、p、m、の範囲で所定
の出力値を得るような場合には、回転速度範囲の両端域
で所定の出力値を得るために、中間の回転速度域で必要
とされる出力に比べて極めて大きな定格出力のモータを
用いなければならず、モータが異常に大形になるととも
にそれに伴ってロスが大きくなるという問題があった。For example, in order to obtain a specified output value in the range of 800-8700 r, p, m, in order to obtain the specified output value at both ends of the rotation speed range, it is necessary to It is necessary to use a motor with a rated output that is extremely large compared to the output that is used, and there is a problem in that the motor becomes abnormally large and loss increases accordingly.
そこで、本出願人は先に回転速度に応じて巻線数を変え
るようにしたモータ、具体的には巻線を複数に分割した
分割巻線群にて構成し、その分割巻線を回転数に応じて
1又は複数のグループに分けて、各グループ内を直列接
続するとともにグループ間を並列接続する接続切換手段
を設け、例えば第4図(n) 、 (b)に示すように
、低速回転域では巻線数を多くして低速域で最大出力と
なる出力特性P、 を得、中・高速回転域では巻線数を
少なくしてそれぞれ中・高速域で最大出力となる出力特
性P2、P3を得ることによって、低定格出力で小型の
モータを用いながら広い回転数御域で所定の出力を得る
ことができるようにしたモータを提案した。Therefore, the present applicant first constructed a motor in which the number of windings was changed according to the rotational speed, specifically, the winding was divided into a plurality of divided winding groups, and the divided windings were For example, as shown in Fig. 4(n) and (b), a connection switching means is provided to connect each group in series and connect the groups in parallel. In the range, the number of windings is increased to obtain the output characteristic P, which has the maximum output in the low speed range, and in the medium and high speed range, the number of windings is decreased to obtain the output characteristic P2, which has the maximum output in the medium and high speed range, respectively. By obtaining P3, we have proposed a motor that can obtain a predetermined output over a wide rotational speed range while using a small motor with a low rated output.
ところが、上記分割巻線の接続切換を行うと、その時に
は巻線に電流が流れず、瞬間的に出力が零となってしよ
う。そのため、加工中に回転速度を広い範囲で変化させ
るために巻線の接続切換を必要とするような加工には適
泪できないという制限を受けることになる。しかるに、
工作機械の自動化においては加工条件を一定にするため
加工点の周速を一定にする必要があり、そのため加工点
の径の変化に応じて回転数を広範囲で変化させる必要が
あり、上記制限を解消することはm要な課題である。However, when the connection of the divided windings is switched, no current flows through the windings, and the output becomes zero instantaneously. Therefore, it is limited in that it cannot be applied to machining that requires switching the connection of windings in order to vary the rotational speed over a wide range during machining. However,
In the automation of machine tools, it is necessary to keep the circumferential speed of the machining point constant in order to maintain constant machining conditions. Therefore, it is necessary to vary the rotation speed over a wide range according to changes in the diameter of the machining point, and the above limitations cannot be met. This is an extremely important issue to resolve.
本発明は上記課題に鑑み、工作機械の主軸をダイレクト
ドライブできるとともに小型で低コストであり、かつ広
い回転速度範囲にわたって使用可能なモータを提供する
ことを目的とする。In view of the above problems, it is an object of the present invention to provide a motor that can directly drive the main axis of a machine tool, is small and inexpensive, and can be used over a wide rotational speed range.
課題を解決するための手段
上記目的を達成するため、本発明に係るモータにおいて
は、各相の巻線を分割8線群にて構成し、各相の分割巻
線を、回転速度に応じて1又は複数のグループに別ける
ととも1こグループ内を直列接続しグループ間を並列接
続する接続切換手段を設け、この接続切換手段は各相の
巻線を順次切換えるように構成しており、さらに、前記
各相の8線の接続切換をその相の電流値が零又は零近傍
のときに行うように、前記接続切換手段に指令する切換
指令手段を設けている。また、好ましくは各相の巻線の
終端を相互に、又は他の相の巻線の始端と結合せず、各
相の巻線の電流制御を独立して行うようにしている。Means for Solving the Problems In order to achieve the above object, in the motor according to the present invention, the windings of each phase are configured into eight divided wire groups, and the divided windings of each phase are divided according to the rotational speed. The method is divided into one or more groups, and is provided with a connection switching means for connecting one group in series and connecting the groups in parallel, and this connection switching means is configured to sequentially switch the windings of each phase, and further A switching command means is provided for commanding the connection switching means to switch the connection of the eight wires of each phase when the current value of that phase is zero or near zero. Preferably, the terminal ends of the windings of each phase are not coupled to each other or to the starting ends of the windings of other phases, and the current control of the windings of each phase is performed independently.
作用
本発明によれば、分割巻線の接続切換を各相の巻線毎に
順次行うことによって切換時にも残りの2相は駆動され
ており、少なくとも定格出力の50%の出力は得ること
ができ、接続切換を必要とするような回転速度範囲での
使用が可能となる。According to the present invention, by sequentially switching the connection of the divided windings for each winding of each phase, the remaining two phases are driven even at the time of switching, and it is possible to obtain an output of at least 50% of the rated output. This makes it possible to use it in a rotational speed range that requires connection switching.
さらに上記切換をその相を流れる電流が零又は零近傍の
ときに行うことによって接続切換によって殆ど影響を受
けずに使用できる。Furthermore, by performing the above switching when the current flowing through that phase is zero or near zero, it can be used with almost no influence from the connection switching.
また、各相の巻線の電流制御を独立して行うことにより
、切換時に完全に電流値を零とすることができ、スイッ
チング素子の破壊防止及び艮か命化を図れる。Furthermore, by controlling the current of the windings of each phase independently, the current value can be completely reduced to zero at the time of switching, thereby preventing destruction of the switching element and saving its life.
実施例
以下、本発明の一実施例を第1図〜fjS4図を参照し
ながら説明する。EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIG. 1 to FIG. fjS4.
モータの巻線は、U相巻線1、■相8線2、W相巻線3
から成り、それぞれ2.4.8・・・等、2の乗数分の
1に分割され(第1図及び第3図の例は2分割されてい
る)、各分割巻線1a、1b、2a 、2+) 、3a
、3bの両端は、第3図に示すように、巻線切換部2
0に接続され、第1図(、)〜(d)に示すように、各
相の分割巻線18〜3bを直列接続した状態と、並列接
続した状態とに切換可能に構成されている。The motor windings are U-phase winding 1, ■ phase 8 wire 2, and W-phase winding 3.
2, 4, 8, etc., respectively (the examples in FIGS. 1 and 3 are divided into two), and each divided winding 1a, 1b, 2a , 2+) , 3a
, 3b, as shown in FIG.
0, and as shown in FIGS. 1(a) to (d), the divided windings 18 to 3b of each phase are configured to be switchable between a state where they are connected in series and a state where they are connected in parallel.
尚、図示していないが各相の巻線を4分割した場合には
、各相の巻線について、すべての分割巻線を直列接続し
た状態と、分v18線を2つづつ直列接続したものを並
列接続した状態と、すべての分割巻線を並列接続した状
態とに切換可能に構成される。Although not shown, when the windings of each phase are divided into four parts, all the divided windings are connected in series, and two V18 wires each are connected in series. It is configured such that it can be switched between a state in which all the divided windings are connected in parallel and a state in which all divided windings are connected in parallel.
次に、巻線を4分割して接続切換した場合の使用態様と
出力特性を第4図により説明する。Next, the usage mode and output characteristics when the winding is divided into four and the connections are switched will be explained with reference to FIG.
モータを800−2000 r、p、+n、の低速回転
で使用する場合は、すべての分割巻線を直列接続する。If the motor is used at low rotation speeds of 800-2000 r, p, +n, all split windings are connected in series.
すると、巻線の総巻数が巻線数となり、そのときの回転
数−トルク特性は第4図(a)のT、、回転数−出力特
性は第4図(b)のPlとなり、上記低速回転域で回転
数に応じて電流制御を行うことによって所定の(図示例
では8KW)定出力を得ることができる。尚、モータが
所定の出力と回転数に達するまでは定トルク・定電流制
御によって立ち上がり制御が行なわれる。Then, the total number of turns of the winding becomes the number of turns, the rotation speed-torque characteristic at that time becomes T in Fig. 4 (a), the rotation speed - output characteristic becomes Pl in Fig. 4 (b), and the above-mentioned low speed A predetermined (8 KW in the illustrated example) constant output can be obtained by controlling the current according to the rotation speed in the rotation range. Incidentally, startup control is performed by constant torque/constant current control until the motor reaches a predetermined output and rotation speed.
又、モータを1500−4500r、p、+a、の中速
回転で使用する場合は、分割巻線を2つづつ直列接続し
たものを並列接続する。すると、巻線数は巻線1の総巻
数の2分の1となり、そのときの回転数−トルク特性は
第4図(、)の72、回転数−出力特性はI:JS4図
(b)のP2となり、上記中速回転域゛で回転数に応じ
て電流制御を行うことによって所定の定出力を得ること
ができる。なお、起動時にはすべての分割巻線を直列接
続して上記低速回転時の制御を行い、回転数の増加に伴
って分割8線の接続を切り換える。Further, when the motor is used at medium speed rotation of 1500-4500r, p, +a, two divided windings each connected in series are connected in parallel. Then, the number of windings becomes one half of the total number of turns of winding 1, and the rotation speed-torque characteristic at that time is 72 as shown in Figure 4 (,), and the rotation speed-output characteristic is I:JS4 diagram (b) P2, and a predetermined constant output can be obtained by controlling the current according to the rotation speed in the medium speed rotation range. At startup, all the divided windings are connected in series to control the low speed rotation, and as the rotational speed increases, the connection of the eight divided wires is switched.
さらに、モータを3500−8700r、p、+n、の
高速回転で使用する場合は、すべての分割8線を互いに
並列接続する。すると、巻線数は巻線1の総巻数の4分
の1となり、そのときの回転数−トルク特性は第4図(
a)のT1、回転数−出力特性は第4図(b)のP3と
なり、上記高速回転域で回転数に応じて電流制御を行う
ことによって所定の定出力を得ることができる。Further, when the motor is used at high speed rotation of 3500-8700r, p, +n, all the divided 8 wires are connected in parallel to each other. Then, the number of windings becomes one quarter of the total number of turns of winding 1, and the rotation speed-torque characteristic at that time is shown in Figure 4 (
T1 in a), the rotational speed-output characteristic becomes P3 in FIG. 4(b), and a predetermined constant output can be obtained by controlling the current according to the rotational speed in the high speed rotation range.
なお、モータの使用形態が低速、中速、高速回転にわた
る場合は当然その作動中において回転速度に応じて分割
巻線の接続を切換える。Incidentally, when the motor is used at low speed, medium speed, and high speed rotation, the connection of the divided windings is naturally switched according to the rotational speed during operation.
次に、この接続切換について第1図〜f53図に基づい
て説明する。なお、説明を簡単にするため、各相の84
Qを2分割した例について説明する。Next, this connection switching will be explained based on FIGS. 1 to 53. In addition, to simplify the explanation, 84 of each phase
An example in which Q is divided into two will be explained.
分割巻線を直列接続した低速回転状態から回転速度が上
昇して並列接続に切換える場合、第1図(a)に示すよ
うに、U、■、W相の8#Xの分割巻線がすべて直列接
続された状態から、まず第1図(b)に示すように、U
相の分割巻線1a、1bのみを並列接続に切換え、次に
第1図(c)に示すように、■相の分割巻線2a、2b
を並列接続に切換え、最後に第1図(d)に示すように
、W相の分割巻線3a、3I)を並列接続に切換える。When switching from a low-speed rotation state in which split windings are connected in series to parallel connection due to an increase in rotational speed, all of the 8#X split windings in the U, ■, and W phases are From the series connected state, first, as shown in Fig. 1(b),
Switch only the phase divided windings 1a and 1b to parallel connection, and then connect the phase divided windings 2a and 2b as shown in Fig. 1(c).
are switched to parallel connection, and finally, as shown in FIG. 1(d), the W-phase divided windings 3a, 3I) are switched to parallel connection.
このように、各相の巻線の接続を順次切換えるようにす
ることによって、その切換時に他の相の巻線には電流が
流れているため、出力の低下を50%以下に抑えること
ができる。In this way, by switching the connections of the windings of each phase sequentially, current flows through the windings of other phases at the time of switching, so it is possible to suppress the drop in output to 50% or less. .
逆に並列接続から直列接続に切換える場合も上記とは逆
に順次切換えればよい。Conversely, when switching from parallel connection to series connection, it is sufficient to switch sequentially in the opposite manner to the above.
さらに、各相の巻線の切換えは、第2図に示すように、
その相を流れる電流が零又は零近傍のときに、即ちU相
の巻線1の切換えはタイミングT1で、■相の巻m2の
切換えはタイミングT2で、W相の巻線3の切換えはタ
イミングT、でそれぞれ行うようにしている。このよう
に、各相の巻線の切換を、その相を流れる電流が零又は
零に近いときに行うことによって、切換によって出力に
影響を殆ど与えずに済むのである。Furthermore, the switching of the windings of each phase is as shown in Figure 2.
When the current flowing through that phase is zero or near zero, that is, the U-phase winding 1 is switched at timing T1, the ■-phase winding m2 is switched at timing T2, and the W-phase winding 3 is switched at timing T2. I try to do each with T. In this way, by switching the windings of each phase when the current flowing through that phase is zero or close to zero, the switching hardly affects the output.
さらに、第1図及びrjS3図に示すように、各相の巻
線の終端を相互に結合せず、各相の巻線の電流制御を独
立して行うようにすることによって、切換動作中に、他
の巻線から電流が流れ込むことがなく、電流値を完全に
零に維持するようにでさるため、スイッチング素子の破
壊防止と艮か命化を図ることができる。Furthermore, as shown in Fig. 1 and rjS3, the terminal ends of the windings of each phase are not connected to each other, and the current control of the windings of each phase is performed independently, so that the current control of the windings of each phase is performed independently. Since no current flows from other windings and the current value is maintained at completely zero, it is possible to prevent destruction of the switching element and save its life.
次に、このような巻線の切換えを行うための構成を備え
た3相交流間期モータのサーボ制御回路を第3図に基づ
いて説明する。Next, a servo control circuit for a three-phase AC interphase motor having a configuration for switching the windings as described above will be described with reference to FIG.
上記各a1〜3を有するモータ10に、その回転位置を
検出するエンコーグ11が結合され、その出力信号と位
置指令人力パルスが偏差カウンタ12に入力されている
。この偏差カウンタ12からの出力がD/A変換器13
にてアナログ信号に変換され、増幅器14にて増幅され
て三相同期整流部15に入力されている。三相同期整流
部15からは、前記増幅器14からの偏差に応じた出力
信号とエンコーグ11からの信号によって得られたモー
タの回転位置とから各相に流すべ!電流値が演算されて
それに対応する電流が出力され、電流増幅器16にて増
幅されてインバータ部17に入力されている。このイン
バータ部17には、コンバータ部18を介して動力源と
して電源が入力され、電流増幅器16からの電流に応じ
て制御された電流が前記巻線切換g20を介して各8線
1.2.3に入力されでいる。An encoder 11 for detecting the rotational position of the motor 10 having each of a1 to a3 is coupled to the motor 10, and its output signal and position command human power pulse are input to a deviation counter 12. The output from this deviation counter 12 is sent to the D/A converter 13.
The signal is converted into an analog signal by the amplifier 14, and is then amplified by the amplifier 14 and input to the three-phase synchronous rectifier 15. From the three-phase synchronous rectifier 15, an output signal corresponding to the deviation from the amplifier 14 and the rotational position of the motor obtained from the signal from the encoder 11 should be sent to each phase! A current value is calculated and a corresponding current is output, amplified by a current amplifier 16, and input to an inverter section 17. A power source is input to the inverter section 17 as a power source via the converter section 18, and a current controlled according to the current from the current amplifier 16 is passed through the winding switching g20 to each of the eight wires 1.2. 3 has already been entered.
なお、インバータ部17からの出力電流を検出して前記
電流増幅器16にフィードバックされている。また、前
記増幅器14には、エンコーグ11の出力パルスの周波
数を速度信号に変換するF/■変換器21からの速度信
号がフィードパ・ンクされている。Note that the output current from the inverter section 17 is detected and fed back to the current amplifier 16. Further, the amplifier 14 is fed with a speed signal from an F/■ converter 21 that converts the frequency of the output pulse of the encoder 11 into a speed signal.
前記巻線切換部20は切換指令部22からの信号に基づ
いて巻線の接続切換を行うように構成されており、この
切換指令部22には、モータ10の回転速度に応じて巻
線の接続切換を行うために前記F/V変換器21がらの
速度信号と、各相の電流が零の位置で接続切換を行うた
めに前記エンコーグ11からの位置信号が入力されてい
る。また、巻線の接続切換を行うと、その巻線に流すべ
!!−電流値が変化するため、この切換指令部22カ・
ら前記電流増幅器16に対して電流リミント指令が出力
されている。The winding switching unit 20 is configured to switch the connection of the windings based on a signal from a switching command unit 22. A speed signal from the F/V converter 21 is inputted in order to switch the connection, and a position signal from the encoder 11 is inputted in order to switch the connection at the position where the current of each phase is zero. Also, when switching the connection of a winding, the flow should be applied to that winding! ! - Since the current value changes, this switching command section 22
A current rimming command is output from the current amplifier 16 to the current amplifier 16.
以上の回路構成により、上記のような巻線の接続切換を
自動的に行うことができる。With the above circuit configuration, the winding connection switching as described above can be performed automatically.
尚、以上の実施例ではモータの回転位置を検出するのに
エンコーグを用いた例を示したが、レゾルバを用いても
良く、さらにロータの磁極を利用して磁気飽和素子にて
位置を直接検出するようにしてもよい。In the above embodiment, an encoder is used to detect the rotational position of the motor, but a resolver may also be used, and the position can also be directly detected by a magnetic saturation element using the magnetic poles of the rotor. You may also do so.
また、第1図の例では8ai、2.3をスター結線に対
応させ、各巻線にそれぞれに応じた電流を独立しで流す
ようにしたが、スイッチング素子の容量が大きい場合は
スター結線にしてもよく、さらに本発明は巻線をデルタ
結線してもよく、またそれらの巻線の始端と終端を結合
せずにそれぞれに対応するような電流を独立して流すよ
うにしてもよい。In addition, in the example shown in Figure 1, 8ai and 2.3 correspond to star connection, and the corresponding current flows through each winding independently, but if the capacity of the switching element is large, star connection is used. Furthermore, in the present invention, the windings may be connected in a delta manner, or the starting and ending ends of these windings may not be connected, and corresponding currents may be made to flow through each winding independently.
発明の効果
本発明のモータによれば、以上のように回転速度に応じ
て巻線数を変えることができるので、低速回転域では巻
線数を多くして低速域での出力を大きくし、高速回転域
では巻線数を少なくして高速回転域で最大出力が得られ
るようにでき、低定格出力の小型モータを用いながら広
い回転速度範囲で所定の出力を得ることができ、しかも
本発明では分割巻線の接続切換を各相の巻線毎に順次行
)ので、接続切換時にも残りの2相は駆動されており、
接続切換を心変とするような広い回転速度範囲で使用可
能となり、さらに上記接続切換をその相を流れる電流が
零又は零近傍のときに行うことによって接続切換の彰1
を殆ど受けずに使用でき、さらに各相の巻線の電流制御
を独立して行うようにすると、切換時に完全に電流値を
零とすることができ、スイッチング素子の破壊防止及V
長寿命化を図れる等、工作機械のダイレクトドライブに
よる自動化が可能な小型のモータを提供することができ
るという大なる効果を発揮する。Effects of the Invention According to the motor of the present invention, the number of windings can be changed according to the rotation speed as described above, so the number of windings is increased in the low speed rotation range to increase the output in the low speed range. In the high-speed rotation range, the number of windings can be reduced to obtain the maximum output in the high-speed rotation range, and the specified output can be obtained over a wide rotation speed range while using a small motor with a low rated output. (The connection switching of the divided windings is performed sequentially for each winding of each phase), so the remaining two phases are driven even when the connection is switched.
It can be used in a wide rotational speed range where connection switching can be done at will, and by performing the above connection switching when the current flowing through that phase is zero or near zero, connection switching can be easily performed.
Furthermore, if the current of each phase winding is controlled independently, the current value can be completely reduced to zero at the time of switching, which prevents damage to the switching element and reduces voltage.
This has the great effect of being able to provide a small motor that can be automated by direct drive in machine tools, such as having a longer lifespan.
第1図〜第3図は本発明の一実施例を示し、第1図(、
)〜(d)は巻線の接続切換過程を示す説明図、第2図
の切換のタイミングを示す説明図、第3図は制御ブロッ
ク図、第4図は本発明対象のモータの特性を示し、(a
)は回転数−トルク特性図、同(b)は回転数−出力特
性図である。
1.2.3・・・・・・・・・8線
la、1b・・・・・・・・・分割巻線2a、2b・・
・・・・・・・分割−8線3a、3b・・・・・・・・
・分割巻線10・・・・・・・・・・・・・・・・・・
・・・モータ11・・・・・・・・・・・・・・・・・
・・・・エンコーグ20・・・・・・・・・・・・・・
・・・・・・・巻線切換部22・・・・・・・・・・・
・・・・・・・・・・切換指令部。
代理人の賜弁理士 中尾敏男 ほか1名−A 2 図1 to 3 show an embodiment of the present invention, and FIG.
) to (d) are explanatory diagrams showing the winding connection switching process, Fig. 2 is an explanatory diagram showing the switching timing, Fig. 3 is a control block diagram, and Fig. 4 shows the characteristics of the motor targeted by the present invention , (a
) is a rotation speed-torque characteristic diagram, and (b) is a rotation speed-output characteristic diagram. 1.2.3...8 wires la, 1b......divided windings 2a, 2b...
......Division - 8 lines 3a, 3b...
・Split winding 10・・・・・・・・・・・・・・・・・・
・・・Motor 11・・・・・・・・・・・・・・・・・・
・・・・Encog 20・・・・・・・・・・・・・・・・
...... Winding switching section 22 ......
・・・・・・・・・Switching command unit. Representative Patent Attorney Toshio Nakao and 1 other person - A 2 Figure
Claims (4)
巻線を、回転速度に応じて1又は複数のグループに分け
るとともにグループ内を直列接続しグループ間を並列接
続する接続切換手段を設け、この接続切換手段は各相の
巻線を順次切換えるように構成したことを特徴とするモ
ータ。(1) The windings of each phase are composed of divided winding groups, and the divided windings of each phase are divided into one or more groups according to the rotation speed, and the groups are connected in series and the groups are connected in parallel. 1. A motor comprising a connection switching means configured to sequentially switch windings of each phase.
零近傍のときに行うように、前記接続切換手段に指令す
る切換指令手段を設けた請求項1記載のモータ。(2) The motor according to claim 1, further comprising switching command means for instructing the connection switching means to switch the connection of the windings of each phase when the current value of that phase is zero or near zero.
の信号とモータの回転速度検出手段からの信号が入力さ
れている請求項2記載のモータ。(3) The motor according to claim 2, wherein the switching command means receives a signal from the motor rotational position detection means and a signal from the motor rotational speed detection means.
始端と結合せず、各相の巻線の電流制御を独立して行う
ようにした請求項1、2又は3記載のモータ。(4) The terminal ends of the windings of each phase are not connected to each other or to the starting ends of the windings of other phases, and the current control of the windings of each phase is performed independently. The motor described in 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63027991A JPH01206891A (en) | 1988-02-09 | 1988-02-09 | Motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63027991A JPH01206891A (en) | 1988-02-09 | 1988-02-09 | Motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01206891A true JPH01206891A (en) | 1989-08-21 |
Family
ID=12236291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63027991A Pending JPH01206891A (en) | 1988-02-09 | 1988-02-09 | Motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01206891A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0527845A (en) * | 1991-07-22 | 1993-02-05 | Okuma Mach Works Ltd | Numerical controller having control parameter changing function |
JP2002354872A (en) * | 2001-05-18 | 2002-12-06 | Sony Corp | Motor drive and motor driving method |
JP2008022627A (en) * | 2006-07-12 | 2008-01-31 | Jtekt Corp | Motor controller |
JP2009225617A (en) * | 2008-03-18 | 2009-10-01 | Yaskawa Electric Corp | Coil switching device and method for three-phase ac motor |
CN103683786A (en) * | 2012-09-14 | 2014-03-26 | 济南吉美乐电源技术有限公司 | Magnetizing and boosting inner filter doubly salient electro-magnetic direct-current generator |
CN106301102A (en) * | 2016-09-09 | 2017-01-04 | 湖南大学 | A kind of multiphase permanent magnet synchronous motor drive system and control method thereof |
-
1988
- 1988-02-09 JP JP63027991A patent/JPH01206891A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0527845A (en) * | 1991-07-22 | 1993-02-05 | Okuma Mach Works Ltd | Numerical controller having control parameter changing function |
JP2002354872A (en) * | 2001-05-18 | 2002-12-06 | Sony Corp | Motor drive and motor driving method |
JP2008022627A (en) * | 2006-07-12 | 2008-01-31 | Jtekt Corp | Motor controller |
JP2009225617A (en) * | 2008-03-18 | 2009-10-01 | Yaskawa Electric Corp | Coil switching device and method for three-phase ac motor |
CN103683786A (en) * | 2012-09-14 | 2014-03-26 | 济南吉美乐电源技术有限公司 | Magnetizing and boosting inner filter doubly salient electro-magnetic direct-current generator |
CN106301102A (en) * | 2016-09-09 | 2017-01-04 | 湖南大学 | A kind of multiphase permanent magnet synchronous motor drive system and control method thereof |
CN106301102B (en) * | 2016-09-09 | 2019-03-01 | 湖南大学 | A kind of multiphase permanent magnet synchronous motor drive system and its control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4933621A (en) | Current chopping strategy for switched reluctance machines | |
US4961038A (en) | Torque estimator for switched reluctance machines | |
US5424595A (en) | Integrated magnetic bearing/switched reluctance machine | |
US4782272A (en) | Electrical drive systems | |
US5173651A (en) | Electrical drive systems | |
KR0132904B1 (en) | Method and apparatus for controlling and driving induction motor | |
US6054819A (en) | Driving circuit for switched reluctance machines | |
US6093993A (en) | Set of laminations for a switched reluctance machine | |
JP2001157487A (en) | Controller for electric rotating machine | |
JP2001516552A (en) | Brushless DC motor with adjustable motor characteristics | |
IE801715L (en) | Electric machine | |
JP3400436B2 (en) | Method for aligning rotor position of switched reluctance motor and driving circuit thereof | |
JP2799604B2 (en) | Switching reluctance motor and operating method thereof | |
JP4432396B2 (en) | 9-phase motor drive device | |
US6456033B1 (en) | Pole change induction motor | |
US5146148A (en) | Process and a device for changing the effective speed of a polyphase asynchronous motor and a suitable motor system for the application of the process | |
JP3596711B2 (en) | Machine tool motor winding switching device | |
JPH01206891A (en) | Motor | |
CN1322668C (en) | Method and apparatus for maintaining force of a variable reluctance motor | |
JP3133207B2 (en) | Motor control device | |
CN103650297B (en) | Electric rotating machine and electric rotating machinery apparatus | |
JPH01164293A (en) | Motor | |
JPH09168271A (en) | Synchronous motor and method of controlling the same | |
JP2670022B2 (en) | Commutatorless motor | |
JP2679879B2 (en) | Speed control device for brushless motor |