JPH01206246A - Method of checking defect of metal pipe - Google Patents
Method of checking defect of metal pipeInfo
- Publication number
- JPH01206246A JPH01206246A JP3144588A JP3144588A JPH01206246A JP H01206246 A JPH01206246 A JP H01206246A JP 3144588 A JP3144588 A JP 3144588A JP 3144588 A JP3144588 A JP 3144588A JP H01206246 A JPH01206246 A JP H01206246A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- defect
- metal tube
- reception
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007547 defect Effects 0.000 title claims abstract description 124
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 122
- 239000002184 metal Substances 0.000 title claims abstract description 122
- 238000000034 method Methods 0.000 title claims description 18
- 239000000463 material Substances 0.000 claims description 39
- 238000007689 inspection Methods 0.000 claims description 35
- 238000012544 monitoring process Methods 0.000 claims description 7
- 230000000694 effects Effects 0.000 abstract description 8
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 230000005284 excitation Effects 0.000 description 6
- 230000002950 deficient Effects 0.000 description 5
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明はガス導管、水道管等の地中に埋設した鋼鉄製
等の金属管あるいはボイラや熱交換器の鋼鉄製等の金属
管の腐食等の欠陥を非破壊で検知するための金属管の欠
陥検査方法に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to corrosion of metal pipes such as steel pipes buried underground such as gas pipes and water pipes, or metal pipes such as steel pipes of boilers and heat exchangers. The present invention relates to a metal pipe defect inspection method for non-destructively detecting defects such as the above.
従来の金属管の欠陥検査方法は、第17図および第18
図に示すように、鋼鉄からなる金属管1内に送信コイル
2および複数の受信コイル3,4゜5、・・・を一定の
間隔(例えば管径の2倍前後)を保って移動可能に配設
し、送信コイル2および受信コイル3,4.5.・・・
を管軸方向に移動させながら送信コイル2から矢印Aで
示すように電磁波を発生させるとともにこの電磁波を受
信コイル3゜4.5.・・・で受け、受信コイル3.
4. 5.・・・による受信信号の金属管lの欠陥1a
に伴う位相変化により金属管1の欠陥検査を行うもので
ある。The conventional defect inspection method for metal pipes is shown in Figs. 17 and 18.
As shown in the figure, a transmitting coil 2 and a plurality of receiving coils 3, 4, 5, etc. can be moved within a metal tube 1 made of steel while maintaining a fixed interval (for example, around twice the tube diameter). The transmitter coil 2 and the receiver coil 3, 4.5. ...
While moving in the tube axis direction, an electromagnetic wave is generated from the transmitting coil 2 as shown by arrow A, and this electromagnetic wave is transmitted to the receiving coil 3°4.5. ..., receiving coil 3.
4. 5. Defect 1a of metal tube l of received signal due to...
The metal tube 1 is inspected for defects based on the phase change caused by the change in phase.
この場合、複数の受信コイル3,4,5.・・・は、金
属管1の内面に近接し、かつ金属管1の周方向に一列に
並べた状態に配置している。In this case, a plurality of receiving coils 3, 4, 5 . ... are arranged close to the inner surface of the metal tube 1 and arranged in a line in the circumferential direction of the metal tube 1.
いま、第17図に示すように、金属管1の途中において
一部の箇所に欠陥1aが存在する場合において、送信コ
イル2および受信コイル3,4゜5、・・・を一定の間
隔を保って金属管1の管軸方向に移動させながら、送信
コイル2からの発生電波を受信コイル3,4,5.・・
・で受けるようにしたときに、欠陥1aから離れた位置
に設置された受信コイル3,5による受信信号の位相は
、欠陥1aの影響をほとんど受けず、第19図(al、
(C1に示すようにほとんど変化しない。一方、欠陥
1aに近接した位置に設置された受信コイル4による受
信信号の位相は、欠陥1aの影響を受けることになり、
第19図(blに示すように欠陥1aが存在する位置に
応じて変化することになる。Now, as shown in FIG. 17, when there is a defect 1a in some part of the metal tube 1, the transmitter coil 2 and the receiver coils 3, 4, 5, . . . are kept at a constant distance. While moving the metal tube 1 in the tube axis direction, the radio waves generated from the transmitting coil 2 are transmitted to the receiving coils 3, 4, 5, .・・・
・When the signal is received at
(As shown in C1, there is almost no change. On the other hand, the phase of the received signal by the receiving coil 4 installed near the defect 1a will be affected by the defect 1a,
As shown in FIG. 19 (bl), it changes depending on the position where the defect 1a exists.
このように、金属管1に欠陥1aが存在すると、欠陥1
aの近傍に設置された受信コイル例えば4による受信信
号の位相が欠陥1aの位置に対応して変化することにな
るので、送信コイル2および受信コイル3,4,5.・
・・を管軸方向に移動させながら各受信コイル3,4,
5.・・・による受信信号の位相を監視することにより
、金属管1の欠陥1aの存在および位置を検知すること
ができる。In this way, if the defect 1a exists in the metal tube 1, the defect 1
Since the phase of the signal received by the receiving coil 4, for example, installed near the transmitting coil 2 and receiving coils 3, 4, 5, .a, will change in accordance with the position of the defect 1a.・
While moving the... in the tube axis direction, each receiving coil 3, 4,
5. By monitoring the phase of the received signal by..., the presence and position of the defect 1a in the metal tube 1 can be detected.
ところが、この金属管の欠陥検査方法では、金属管の製
造時の圧延による残留応力等に起因して管材質(透磁率
等)の変化(欠陥の検出の際のノイズとなる)が生じて
いる場合や金属管の途中に継手(欠陥の検出の際のノイ
ズとなる)が設けられている場合においても、複数の受
信コイル3゜4.5.・・・に位相変化が生じることに
なり、欠陥1aによる位相変化が埋もれてしまい、欠陥
の検知精度が低いという問題があった。However, with this metal tube defect inspection method, changes in the tube material (magnetic permeability, etc.) occur (resulting in noise when detecting defects) due to residual stress caused by rolling during manufacturing of the metal tube. Even in the case where a joint (which causes noise when detecting a defect) is provided in the middle of the metal tube, multiple receiving coils 3° 4.5. ... will occur, and the phase change due to the defect 1a will be buried, resulting in a problem of low defect detection accuracy.
以下、この点を第20図および第21図により詳しく説
明する。いま、第20図に示すように、金属管1の途中
において管材質の変化部1bが全周にわたって存在し、
かつ管材質の変化部lb内の一部の箇所に欠陥1cが存
在する場合について考える。この場合、管材質の変化部
1bは、欠陥lcに比べてかなり広い範囲にわたって存
在し、しかも材質の変化は急激に生じているものではな
く、徐々に変化しているものである。This point will be explained in detail below with reference to FIGS. 20 and 21. Now, as shown in FIG. 20, there is a part 1b in which the material of the pipe changes along the entire circumference in the middle of the metal pipe 1.
Let us also consider a case where a defect 1c exists in a part of the pipe material changed portion lb. In this case, the pipe material change portion 1b exists over a considerably wider range than the defect lc, and the material change does not occur suddenly but gradually.
上記のような場合において、送信コイル2および受信コ
イル3. 4. 5.・・・を一定の間隔を保って金属
管1の管軸方向に移動させながら、送信コイル2からの
発生電波を受信コイル3. 4. 5゜・・・で受ける
ようにしたときに、欠陥1cから離れた位置に設置され
た受信コイル3,5による受信信号の位相は、欠陥IC
の影響をほとんど受けず、管材質の変化部1bの影響に
よってのみ位相を変化し、第21図(Ml、 (C)に
示すように管材質の変化部1bが存在する位置に応じて
それぞれ変化する。In the above case, the transmitting coil 2 and the receiving coil 3. 4. 5. While moving . 4. 5°..., the phase of the received signal by the receiving coils 3 and 5 installed at a position away from the defective IC is
The phase is hardly affected by the change in pipe material, and the phase changes only by the influence of the change in pipe material 1b, and as shown in FIG. do.
一方、欠陥ICに近接した位置に設置された受信コイル
4による受信信号の位相は、管材質の変化部1bの影響
および欠陥ICの影響の両方を受けることになり、第2
1図(blに示すように管材質の変化部1bおよび欠陥
ICがそれぞれ存在する位置に応じて変化することにな
る。On the other hand, the phase of the received signal by the receiving coil 4 installed in the vicinity of the defective IC is affected by both the tube material change section 1b and the defective IC.
As shown in FIG. 1 (bl), the pipe material changes depending on the location of the changed portion 1b and the defective IC.
なお、管継手の近傍に欠陥がある場合にも、上記と同様
の問題がある。Note that the same problem as above occurs also when there is a defect in the vicinity of the pipe joint.
したがって、この発明の目的は、金属管の欠陥の有無お
よび位置を精度よく検知することができる金属管の欠陥
検査方法を提供することである。Therefore, it is an object of the present invention to provide a metal tube defect inspection method that can accurately detect the presence or absence and location of defects in metal tubes.
〔課題を解決するための手段〕
この発明の金属管の欠陥検査方法は、金属管の管材質の
変化部および継手に比べて欠陥がかなり小さく、受信コ
イルを金属管の管材質の変化部および継手より十分に小
さく、かつ欠陥と略同等以上の大きさに設定することが
可能であることに着目してなされたものである。[Means for Solving the Problems] The metal tube defect inspection method of the present invention has considerably smaller defects than the parts of the metal pipe where the pipe material changes and the joints. This was done with the focus on the fact that it is possible to set the size to be sufficiently smaller than the joint and approximately equal to or larger than the defect.
すなわち、この金属管の欠陥検査方法は、金属管内に送
信コイルおよび受信コイルを一定の間隔を保って移動可
能に配設し、送信コイルおよび受信コイルを管軸方向に
移動させながら送信コイルから電磁波を放射するととも
にこの電磁波を受信コイルで受け、受信コイルによる受
信信号の金属管の欠陥に伴う位相変化を監視するにより
金属管の欠陥の有無および位置を検知する金属管の欠陥
検査方法において、
受信コイルを第1および第2のコイル部で構成するとと
もに第1および第2のコイル部を金属管の管材質の変化
および継手が第1および第2のコイル部の再受信信号の
位相に略同一の影響を与える範囲内に配置し、第1およ
び第2のコイル部の受信信号の差信号を受信コイルの受
信信号とすることを特徴とする。In other words, this metal tube defect inspection method involves movably disposing a transmitting coil and a receiving coil within a metal tube at a fixed interval, and transmitting electromagnetic waves from the transmitting coil while moving the transmitting coil and receiving coil in the tube axis direction. In a metal tube defect inspection method, the existence and location of a defect in the metal tube is detected by emitting electromagnetic waves and receiving this electromagnetic wave by a receiving coil, and monitoring the phase change of the signal received by the receiving coil due to a defect in the metal tube. The coil is composed of a first and a second coil part, and the first and second coil parts are arranged so that the tube material of the metal tube and the joint are substantially the same in phase with the re-received signals of the first and second coil parts. , and the difference signal between the reception signals of the first and second coil sections is used as the reception signal of the reception coil.
この発明の構成によれば、金属管の管材質の変化部およ
び継手に比べて欠陥がかなり小さく、受信コイルを金属
管の管材質の変化部および継手より十分に小さく、かつ
欠陥と略同等以上の大きさに設定することが可能である
ことに着目して、受信コイルを第1および第2のコイル
部で構成するとともに第1および第2のコイル部を金属
管の管材質の変化および継手が第1および第2のコイル
部の再受信信号の位相に略同一の影響を与える範囲内に
配置し、第1および第2のコイル部の受信信号の差信号
を受信コイルの受信信号とし、この受信コイルの受信信
号の位相変化を監視することにより金属管の欠陥の有無
および位置を検知するようにしているので、金属管の管
材質の変化部および継手の存在による位相変化がキャン
セルされることになり、金属管の管材質の変化および継
手の存在にかかわらず金属管の欠陥の有無および位置を
精度よく検知することができる。According to the configuration of the present invention, the defects are considerably smaller than the parts where the pipe material of the metal tube changes and the joints, and the receiving coil is made sufficiently smaller than the parts where the pipe material of the metal pipes changes and the joints, and is approximately equal to or larger than the defects. Focusing on the fact that it is possible to set the size to is arranged within a range that has substantially the same effect on the phase of the re-received signal of the first and second coil parts, and a difference signal between the reception signals of the first and second coil parts is used as the reception signal of the reception coil, The existence and location of defects in the metal tube is detected by monitoring the phase change of the received signal of this receiving coil, so phase changes due to changes in the material of the metal tube and the presence of joints are canceled out. Therefore, the presence or absence and position of defects in the metal tube can be detected with high accuracy regardless of changes in the tube material of the metal tube and the presence of joints.
また、第1および第2のコイル部を金属管の周方向に並
べて配置して管軸方向の位置ずれが無いようにしている
ので、金属管の軸方向の管材質の変化が急な場合におい
て第1および第2のコイル部が急変部分を横切るときや
金属管と継手との接合部を第1および第2のコイル部が
横切るときにおいても、第1および第2のコイル部の再
受信信号が同じ波形になり、上記の部分が第1および第
2のコイル部の受信信号の差信号には、上記の位置では
位相変化が現れず、金属管の欠陥の有無および位置をき
わめて精度よく検知することができる。In addition, since the first and second coil parts are arranged side by side in the circumferential direction of the metal tube to prevent positional deviation in the tube axis direction, even when the tube material changes suddenly in the axial direction of the metal tube, Even when the first and second coil sections cross a sudden change part or when the first and second coil sections cross a joint between a metal tube and a joint, the re-received signals of the first and second coil sections are have the same waveform, and the above part shows no phase change in the difference signal between the received signals of the first and second coil parts at the above position, allowing highly accurate detection of the presence and location of defects in the metal tube. can do.
この発明の第1の実施例を第1図ないし第13図に基づ
いて説明する。この金属管の欠陥検査方法は、金属管の
管材質の変化部および継手に比べて欠陥がかなり小さく
、受信コイルを金属管の管材質の変化部および継手より
十分に小さく、かつ欠陥と略同等以上の大きさに設定す
ることが可能であることに着目してなされたものである
。A first embodiment of the present invention will be described based on FIGS. 1 to 13. This metal pipe defect inspection method detects defects that are considerably smaller than the parts where the pipe material of the metal pipe changes and the joints, and detects the receiving coil which is sufficiently smaller than the parts where the pipe material of the metal pipe changes and the joints and is almost equivalent to the defects. This was done by focusing on the fact that it is possible to set the size to a size larger than that.
すなわち、この金属管の欠陥検査方法は、第1図および
第2図に示すように、金属管1)内に送信コイル12お
よび複数の受信コイル13,14゜15、・・・を一定
の間隔を保って移動可能に配設し、送信コイル12およ
び受信コイル13. l 4.15゜・・・を管軸方
向に移動させながら送信コイル12から電磁波を矢印B
の方向に発生させるとともにこの電磁波を受信コイル1
3..14.15.・・・で受け、受信コイル13.1
4,15.・・・による受信信号の金属管1)の欠陥1
)aに伴う位相変化を監視することにより金属管1)の
欠陥Zaの有無および位置を検知するようになっている
。That is, in this metal tube defect inspection method, as shown in FIGS. 1 and 2, a transmitting coil 12 and a plurality of receiving coils 13, 14, 15, . The transmitter coil 12 and the receiver coil 13 . l While moving 4.15°... in the tube axis direction, transmit electromagnetic waves from the transmitting coil 12 in the direction of arrow B.
This electromagnetic wave is generated in the direction of receiving coil 1.
3. .. 14.15. ..., receiving coil 13.1
4,15. Defect 1 in metal tube 1) of received signal due to...
) The existence and position of the defect Za in the metal tube 1) is detected by monitoring the phase change associated with a.
この場合、複数の受信コイル13,14,15゜・・・
は、金属管1の内面に近接し、かつ金属管1)の周方向
に一列に並べた状態に配置している。In this case, a plurality of receiving coils 13, 14, 15°...
are arranged close to the inner surface of the metal tube 1 and arranged in a line in the circumferential direction of the metal tube 1).
また、受信コイル13は、第1および第2のコイル部1
3a、13bで構成するとともに第1および第2のコイ
ル部13a、13bを金属管1)の管材質の変化および
継手が第1および第2のコイル部13a、13bの再受
信信号の位相に略同一の影響を与える範囲内に配置し、
すなわち金属管1)の周方向に並べて配置し、第1およ
び第2のコイル部13a、13bの受信信号の差信号を
受信コイル13の受信信号としている。また、受信コイ
ル14.15も、それぞれ受信コイル13と同様の構成
で、それぞれ第1のコイル部14a。Further, the receiving coil 13 includes the first and second coil portions 1
3a and 13b, and the first and second coil parts 13a and 13b are arranged so that the change in the tube material of the metal tube 1) and the joint are approximately in phase with the re-received signals of the first and second coil parts 13a and 13b. placed within the same range of influence,
That is, they are arranged side by side in the circumferential direction of the metal tube 1), and the difference signal between the reception signals of the first and second coil parts 13a and 13b is used as the reception signal of the reception coil 13. Further, the receiving coils 14 and 15 have the same configuration as the receiving coil 13, and each has a first coil portion 14a.
15aと第2のコイル部14b、15bからなる。15a and second coil portions 14b and 15b.
なお、上記の例では、一つおきのコイル部13a。In addition, in the above example, every other coil part 13a.
13b;14a、14b;15a、15bをペアにして
いるが、この組合わせは任意に設定することができる。13b; 14a, 14b; 15a, 15b are paired, but this combination can be set arbitrarily.
このように、例えば受信コイル13を第1および第2の
コイル部13a、13bで構成し、第1および第2のコ
イル部13a、13bの受信信号の差信号を受信コイル
13の受信信号として、その位相を監視すると、第1お
よび第2のコイル部13a、13bの各々の受信信号中
に金属管1)の管材質の変化および継手の存在による位
相変化が現れても、金属管1)の管材質の変化および継
手が第1および第2のコイル部13a、13bの再受信
信号の位相に略同一の影響を与える範囲内に配置してい
るため、上記差信号には、金属管1)の管材質の変化お
よび継手の存在による位相変化は現れない。In this way, for example, the reception coil 13 is configured with the first and second coil parts 13a and 13b, and the difference signal between the reception signals of the first and second coil parts 13a and 13b is used as the reception signal of the reception coil 13. When the phase is monitored, even if a phase change due to a change in the pipe material of the metal tube 1) and the presence of a joint appears in the received signal of each of the first and second coil parts 13a and 13b, the phase change of the metal tube 1) Since the changes in the pipe material and the joints are arranged within a range that has approximately the same effect on the phase of the re-received signals of the first and second coil parts 13a and 13b, the difference signal includes the metal pipe 1). There are no phase changes due to changes in pipe material or the presence of joints.
ここで、第1図に示すように、金属管1)の途中の管材
質の変化の無い位置において一部の箇所に欠陥1)aが
存在し、また金属管1)の途中において管材質の変化部
1)bが全・周にわたって存在し、かつ管材質の変化部
1)b内の一部の箇所に欠陥1)Cが存在する場合につ
いて説明する。Here, as shown in Fig. 1, there is a defect 1) a in some places in the middle of the metal pipe 1) where there is no change in the pipe material. A case will be described in which the changed portion 1)b exists over the entire circumference and the defect 1)C exists at some locations within the changed portion 1)b of the pipe material.
送信コイル12および受信コイルl 3. 14.15
゜・・・を一定の間隔を保って金属管1)の管軸方向に
移動させながら、送信コイル12からの放射電波を受信
コイル13,14,15.・・・で受けるようにしたと
きに、欠陥1)a、IICから離れた位置に設置された
受信コイル13.15によル受信信号の位相は、管材質
の変化部1)bによる変化はキャンセルされ、欠陥1)
8.1)Cによる影響もなく、第3図+a)、 (C1
に示すようにほとんど変化しない。Transmitting coil 12 and receiving coil l 3. 14.15
While moving the metal tube 1) at a constant interval in the tube axis direction, the radiated radio waves from the transmitting coil 12 are transmitted to the receiving coils 13, 14, 15, . ..., the phase of the received signal due to defect 1)a is due to the receiving coil 13.15 installed at a position far from the IIC, and the change due to the change in tube material 1)b is Canceled and defective 1)
8.1) No influence from C, Figure 3+a), (C1
As shown, there is almost no change.
一方、欠陥1)a、1)cに近接した位置に設置された
受信コイル14による受信信号の位相は、管材質の変化
部1)bによる変化がキャンセルされ、欠陥1)a、1
)cによる影響のみが残り、第3図Tblに示すように
欠陥1)a、llcに対応して変化するのみとなる。On the other hand, the phase of the received signal by the receiving coil 14 installed in the vicinity of defects 1) a, 1) c is canceled due to the change in tube material change part 1) b, and defects 1) a, 1)
) c remains, and as shown in FIG. 3 Tbl, it only changes in response to defects 1) a and llc.
このように、金属管1)に欠陥1)a、IICが存在す
ると、欠陥1)a、llcの近傍に設置された受信コイ
ル例えば14による受信信号の位相が欠陥1)a、ll
cに位置に対応して変化することになるので、送信コイ
ル12および受信コイル13,14,15.・・・を管
軸方向に移動させながら各受信コイル13,14,15
.・・・による受信信号の位相を監視することにより、
金属管1)の欠陥1)a、llcの存在およびその位置
を検知することができる。In this way, if defects 1)a, IIC exist in the metal tube 1), the phase of the received signal by the receiving coil, for example 14, installed near the defects 1)a, llc will change due to the defect 1)a, llc.
c will change depending on the position, so the transmitting coil 12 and the receiving coils 13, 14, 15 . Each receiving coil 13, 14, 15 is moved while moving ... in the tube axis direction.
.. By monitoring the phase of the received signal by...
The presence and position of defects 1) a, llc in the metal tube 1) can be detected.
ここで、金属管の欠陥検査方法にて用いる金属管の欠陥
検査装置の構成を第4図ないし第6図に基づいて説明す
る。第4図は金属管の欠陥検査装置の一例を示し、第5
図および第6図は他の例を示している。Here, the configuration of a metal tube defect inspection apparatus used in the metal tube defect inspection method will be explained based on FIGS. 4 to 6. Figure 4 shows an example of a metal pipe defect inspection device, and Figure 5 shows an example of a metal pipe defect inspection device.
The figures and FIG. 6 show other examples.
まず、第4図において、金属管の欠陥検査装置は、銅、
プラスチック等の非磁性材で形成されて可撓性を有する
連結棒21に樹脂性のコイルボビン22を外装してねじ
23で固定している。コイルボビン22には、送信コイ
ル24を巻軸が金属管の管軸と平行となるように巻装し
、その外周に絶縁用の樹脂25を塗布しでいる。また、
コイルボビン22の両フランジ22aの外周縁には、ス
ポンジなどからなるセンタリングクツション26を全周
または部分的に接着している。27は送信コイル24の
端部の固定用のねじである。First, in Fig. 4, the metal pipe defect inspection device
A flexible connecting rod 21 made of a non-magnetic material such as plastic is covered with a resin coil bobbin 22 and fixed with screws 23 . A transmitting coil 24 is wound around the coil bobbin 22 so that the winding axis is parallel to the tube axis of the metal tube, and an insulating resin 25 is applied to the outer periphery of the coil bobbin 22 . Also,
A centering cushion 26 made of sponge or the like is adhered entirely or partially to the outer periphery of both flanges 22a of the coil bobbin 22. 27 is a screw for fixing the end of the transmitting coil 24.
また、連結棒21には、金属管の管径の2倍前後の間隔
をあけて受信コイル保持体28を外装してねじ29で固
定している。受信コイル保持体28は、外周面は例えば
12個の受信コイル保持凹部28aを有し、この受信コ
イル保持凹部28a内にコイルボビン30に巻装した受
信コイル31を巻軸が金属管の管軸と直交するように嵌
め込み、樹脂(図示せず)で封入固定している。また、
受信コイル保持体28の最大径の部分の外周面にスポン
ジなどからなるセンタリングクツション33を全周また
は部分的に接着している。Further, receiving coil holders 28 are externally mounted on the connecting rod 21 at intervals of about twice the diameter of the metal tube and are fixed with screws 29. The receiving coil holder 28 has, for example, twelve receiving coil holding recesses 28a on its outer circumferential surface, and the receiving coil 31 wound around the coil bobbin 30 is held in the receiving coil holding recesses 28a, and the winding axis thereof is a metal tube. They are fitted perpendicularly and sealed and fixed with resin (not shown). Also,
A centering cushion 33 made of sponge or the like is adhered to the outer peripheral surface of the maximum diameter portion of the receiving coil holder 28 all around or partially.
なお、34.35は送信コイル24および受信コイル3
1にそれぞれ接続したリード線であり。Note that 34.35 indicates the transmitting coil 24 and the receiving coil 3.
These are the lead wires connected to 1 respectively.
また上記説明では、送信コイル24および受信コイル3
1はコアレスタイプであったが、コアを有するタイプで
もよい。Furthermore, in the above description, the transmitting coil 24 and the receiving coil 3
1 is a coreless type, but a type having a core may also be used.
そして、第4図に示した金属管の欠陥検査装置が金属管
の内部に挿入され、金属管内を管軸方向に移動させられ
る。Then, the metal tube defect inspection device shown in FIG. 4 is inserted into the metal tube and moved inside the metal tube in the tube axis direction.
第5図および第6図(al、 (blは、金属管の欠陥
検査装置の他の例を要部の断面図を示している。この金
属管の欠陥検査装置では、受信コイル保持体28の外周
面に設けた受信コイル保持凹部28bにU字形のコイル
ボビン36に巻装した受信コイル37を巻軸が金属管の
管軸と平行となるように嵌め込み、樹脂(図示せず)で
封入固定している。5 and 6 (al, (bl) are sectional views of main parts of another example of a metal tube defect inspection device. In this metal tube defect inspection device, the reception coil holder 28 is A receiving coil 37 wound around a U-shaped coil bobbin 36 is fitted into the receiving coil holding recess 28b provided on the outer circumferential surface so that the winding axis is parallel to the tube axis of the metal tube, and is sealed and fixed with resin (not shown). ing.
38は受信コイル37から引き出したリード線であり、
その他は第4図と同様である。38 is a lead wire drawn out from the receiving coil 37;
Other details are the same as in FIG. 4.
つぎに、実施例の構成による作用を明確にすることを目
的として、金属管の欠陥検査の実験を実施例と従来例と
で行った。Next, for the purpose of clarifying the effect of the configuration of the embodiment, experiments were conducted on defect inspection of metal tubes using the embodiment and the conventional example.
まず、実施例として、第7図に示すように、連結棒41
に送信コイル42と第1および第2のコイル部43a、
43bを周方向に近接配置してなる受信コイル43を有
する受信コイル保持ブロック44とを設けたものを使用
し、従来例として、第8図に示すように、連結棒45に
送信コイル46と受信コイル47を有する受信コイル保
持ブロック48とを設けたものを使用し、第9図に示す
ように、金属管(長さ1m、管径80mm)51のロー
リング(圧延時の残留応力)部分52に欠陥53が存在
する場合において、金属管51内を管軸方向(矢印Cの
方向)に移動させながら受信コイル43.47の受信信
号の位相変化を調べた。First, as an example, as shown in FIG.
the transmitting coil 42 and the first and second coil parts 43a,
As shown in FIG. 8, as a conventional example, as shown in FIG. A receiving coil holding block 48 having a coil 47 is used, and as shown in FIG. In the case where the defect 53 was present, the phase change of the received signal of the receiving coils 43 and 47 was examined while moving inside the metal tube 51 in the tube axis direction (direction of arrow C).
測定条件としては、送信コイル42と受信コイル43の
距離および送信コイル46と受信コイル47の距離がい
ずれも240 mlで、送信コイル42゜46に対する
励磁周波数がいずれも30Hzで、おなじく励磁電圧が
15Vr−rである。また、受信コイル43.47のう
ち一方が欠陥53の真上を通るように金属管の欠陥検査
装置を移動させた。The measurement conditions were that the distance between the transmitting coil 42 and the receiving coil 43 and the distance between the transmitting coil 46 and the receiving coil 47 were both 240 ml, the excitation frequency for the transmitting coils 42 and 46 was 30 Hz, and the excitation voltage was 15 Vr. -r. Further, the metal tube defect inspection device was moved so that one of the receiving coils 43 and 47 passed directly above the defect 53.
第10図fatは従来例の場合の受信信号の位相変化を
示し、第10図fblは実施例の場合の受信信号の位相
変化を示している。第1O図(alから明らかなように
、従来例の場合は、受信信号にローリング部分52によ
る位相変化P1が現れるとともに、この位相変化P1に
重畳して欠陥、53による位相変化P2が現れることに
なり、欠陥53による位相変化P2がローリング部分5
2による位相変化P1に埋もれてしまい、欠陥53によ
る位相変化P2の検知が困難であって、欠陥53の検知
精度が低い。FIG. 10 fat shows the phase change of the received signal in the case of the conventional example, and FIG. 10 fbl shows the phase change of the received signal in the case of the embodiment. As is clear from FIG. 1O (al), in the case of the conventional example, a phase change P1 due to the rolling portion 52 appears in the received signal, and a phase change P2 due to the defect 53 appears superimposed on this phase change P1. Therefore, the phase change P2 due to the defect 53 is the rolling part 5.
2, it is difficult to detect the phase change P2 due to the defect 53, and the detection accuracy of the defect 53 is low.
一方、第10図(blから明らかなように、実施例の場
合は、受信信号におけるローリング部分52による位相
変化Q1は極めて少な(なり、欠陥53による位相変化
Q2がローリング部分52による位相変化Q1に埋もれ
ることなく明瞭に現れることになり、欠陥53による位
相変化Q2の検知が容易で、欠陥53の有無および位置
の検知精度が高い。On the other hand, as is clear from FIG. This clearly appears without being buried, and the phase change Q2 due to the defect 53 can be easily detected, and the presence or absence and position of the defect 53 can be detected with high accuracy.
なお、第10図fatの波形において、両端が高くなっ
ているのは、管端による位相変化が現れているのであり
、実施例の場合はこれもなくなる。In addition, in the waveform of FIG. 10 fat, both ends are high because a phase change due to the tube ends appears, and this also disappears in the case of the embodiment.
つぎに、第7図および第8図の金属管の欠陥検査装置を
用いて、第1)図に示すように、金属管(長さ1m、管
径80+n)61.62間に長さ10cmの継手63が
設けられている場合において、金属管62の継手63の
近傍位置(継手端部から201■の位置)に人工の欠陥
64を形成前と欠陥64の形成後とで、金属管61.6
2内を管軸方向(矢印りの方向)に移動させながら受信
コイル43゜47の受信信号の位相変化を調べた。Next, using the metal tube defect inspection apparatus shown in FIGS. 7 and 8, as shown in FIG. In the case where the joint 63 is provided, the metal pipe 61. 6
2 was moved in the tube axis direction (in the direction of the arrow), and the phase change of the received signal of the receiving coil 43° 47 was examined.
測定条件としては、送信コイル42と受信コイル43の
距離および送信コイル46と受信コイル47の距離がい
ずれも300謹■で、送信コイル42゜46に対する励
磁周波数がいずれも301)zで、おなじく励磁電圧が
15VP−Pである。また、受信コイル43.47のう
ち一方が欠陥64の真上を通るように金属管の欠陥検査
装置を移動させた。The measurement conditions are that the distance between the transmitting coil 42 and the receiving coil 43 and the distance between the transmitting coil 46 and the receiving coil 47 are both 300cm, the excitation frequency for the transmitting coil 42° and 46 is 301)z, and the excitation is the same. The voltage is 15VP-P. Further, the metal tube defect inspection device was moved so that one of the receiving coils 43 and 47 passed directly above the defect 64.
第12図fatは従来例の場合の欠陥64の形成前の受
信信号の位相変化を示し、第12図tb+は従来例の場
合の欠陥64の形成後の受信信号の位相変化を示し、第
13図+81は実施例の場合の欠陥64の形成前の受信
信号の位相変化を示し、第13図+81は実施例の場合
の欠陥64の形成後の受信信号の位相変化を示している
。FIG. 12 fat shows the phase change of the received signal before the formation of the defect 64 in the conventional example, FIG. 12 tb+ shows the phase change of the received signal after the formation of the defect 64 in the conventional example, and FIG. Figure +81 shows the phase change of the received signal before the formation of the defect 64 in the case of the example, and Fig. 13 +81 shows the phase change of the received signal after the formation of the defect 64 in the case of the example.
第12図+a+、 tb+から明らかなように、従来例
の場合は、欠陥64の形成前は、受信信号に継手63に
よる位相変化R1が現れ、欠陥64の形成後は、受信信
号に継手63による位相変化R1が現れるとともに、こ
の位相変化R1に重畳して欠陥64による位相変化R2
が現れることになり、欠陥64による位相変化R2が継
手63による位相変化R1に埋もれてしまい、欠陥64
による位相変化R2の検知が困難であって、欠陥64の
検知精度が低い。As is clear from FIG. 12+a+ and tb+, in the case of the conventional example, before the defect 64 is formed, a phase change R1 due to the joint 63 appears in the received signal, and after the defect 64 is formed, the received signal has a phase change R1 due to the joint 63. A phase change R1 appears, and a phase change R2 due to the defect 64 is superimposed on this phase change R1.
appears, the phase change R2 due to the defect 64 is buried in the phase change R1 due to the joint 63, and the defect 64
It is difficult to detect the phase change R2 due to this, and the detection accuracy of the defect 64 is low.
一方、第13図+a+、 (blから明らかなように、
実施例の場合は、欠陥64・の形成前は、受信信号にお
ける継手63による位相変化S1は極めて少なくなり、
欠陥64による位相変化S2が継手63による位相変化
S1に埋もれることなく明瞭に現れることになり、欠陥
64による位相変化S2の検知が容易で、欠陥64の有
無および位置の検知精度が高い。On the other hand, as is clear from Fig. 13+a+, (bl),
In the case of the embodiment, before the defect 64 is formed, the phase change S1 caused by the joint 63 in the received signal is extremely small;
The phase change S2 due to the defect 64 appears clearly without being buried in the phase change S1 due to the joint 63, making it easy to detect the phase change S2 due to the defect 64, and the presence or absence and position of the defect 64 is detected with high accuracy.
また、第1および第2のコイル部13a、13b。Also, first and second coil portions 13a, 13b.
14a、14b、15a、 15b、−−−−を金属
管1)の周方向に並べて配置して管軸方向の位置ずれが
無いようにしているので、金属管1)の軸方向の管材質
の変化が急な場合において第1および第2のコイル部1
3a、13b、14a、14b。14a, 14b, 15a, 15b, etc. are arranged side by side in the circumferential direction of the metal tube 1) so that there is no displacement in the tube axis direction, so that the tube material of the metal tube 1) in the axial direction is When the change is sudden, the first and second coil parts 1
3a, 13b, 14a, 14b.
15a、15b、・・・が急変部分を横、切るときや金
属管1)と継手との接合部を第1および第2のコイル部
13a、13b、14a、14b、15a。15a, 15b, . . . when crossing or cutting a sudden change part or at the joint between the metal tube 1) and the joint.
15b、・・・が横切るときにおいても、第1および第
2のコイル部13a、13b、14a、14b。15b, . . . also cross the first and second coil portions 13a, 13b, 14a, 14b.
15a、15b、・・・の両受信信号が同じ波形になり
、上記の部分が第1および第2のコイル部13a。Both received signals 15a, 15b, . . . have the same waveform, and the above portions correspond to the first and second coil portions 13a.
13b、14a、14b、15a、15b、−・−の受
信信号の差信号には、上記の位置では位相変化が現れず
、金属管1)の欠陥の有無および位置をきわめて精度よ
く検知することができる。No phase change appears in the difference signal between the received signals 13b, 14a, 14b, 15a, 15b, -- at the above positions, making it possible to detect the existence and location of defects in the metal tube 1) with extremely high accuracy. can.
この発明の第2の実施例を第14図ないし第16図に基
づいて説明する。この金属管の欠陥検査方法の実施例で
は、受信コイル13,14..15゜・・・を構成する
第1および第2のコイル部13a。A second embodiment of the invention will be explained based on FIGS. 14 to 16. In this embodiment of the metal tube defect inspection method, the receiving coils 13, 14 . .. The first and second coil portions 13a constitute 15°...
13b、14a、14b、15a、15b、−・・を金
属管1)の管軸方向に近接状態で並べたもので、その他
の構成は第1の実施例と同様である。13b, 14a, 14b, 15a, 15b, . . . are arranged close to each other in the tube axis direction of the metal tube 1), and the other configurations are the same as in the first embodiment.
このように、構成した場合にも、金属管1)の管材質の
変化部1)bの影響を除去して欠陥1)Cのみによる位
相変化を検出することができ、金属管1)の管材質の変
化部1)bの存在に影響されることなく、精度よく欠陥
1)cの有無および位置を検知することができる。これ
は、金属管1)の管材質の軸方向の変化が緩やかである
からである。Even in this configuration, it is possible to remove the influence of the changed part 1)b of the tube material of the metal tube 1) and detect the phase change only due to the defect 1)C, The presence or absence and position of the defect 1)c can be detected with high accuracy without being affected by the presence of the material-changed portion 1)b. This is because the material of the metal tube 1) changes slowly in the axial direction.
つぎに、実施例の構成による作用を明確にすることを目
的として、金属管の欠陥検査の実験を実施例と従来例と
で行った。Next, for the purpose of clarifying the effect of the configuration of the embodiment, experiments were conducted on defect inspection of metal tubes using the embodiment and the conventional example.
まず、実施例として、第15図に示すように、連結棒4
1に送信コイル42と第1および第2のコイル部43a
、43bを軸方向に近接配置してなる受信コイル43を
有する受信コイル保持ブロック44とを設けたものを使
用し、従来例として、第8図に示すように、連結棒45
に送信コイル46と受信コイル47を有する受信コイル
保持ブロック48とを設けたものを使用し、第9図に示
すように、金属管(長さ1m、管径80m)51のロー
リング(圧延時の残留応力)部分52に欠陥53が存在
する場合において、金属管51内を管軸方向(矢印Cの
方向)に移動させながら受信コイル43.47の受信信
号の位相変化を調べた。First, as an example, as shown in FIG.
1 includes a transmitting coil 42 and first and second coil parts 43a.
, 43b and a receiving coil holding block 44 having a receiving coil 43 arranged close to each other in the axial direction.As a conventional example, as shown in FIG.
A receiving coil holding block 48 having a transmitting coil 46 and a receiving coil 47 is used, and as shown in FIG. In the case where a defect 53 existed in the (residual stress) portion 52, the phase change of the received signal of the receiving coils 43 and 47 was examined while moving inside the metal tube 51 in the tube axis direction (direction of arrow C).
測定条件としては、送信コイル42と受信コイル43の
距離および送信コイル46と受信コイル47の距離がい
ずれも240 mで、受信コイル43を構成するコイル
部43a、43bの中心間距離が1).5mmで、コイ
ル部43a、43bの間隔がl mmで、送信コイル4
2.46に対する励磁周波数がいずれも40Hzで、お
なじく励磁電圧が15V F−Pである。また、受信コ
イル43.47が欠陥53の真上を通るように金属管の
欠陥検査装置を移動させた。The measurement conditions are that the distance between the transmitting coil 42 and the receiving coil 43 and the distance between the transmitting coil 46 and the receiving coil 47 are both 240 m, and the distance between the centers of the coil parts 43a and 43b that constitute the receiving coil 43 is 1). 5 mm, the spacing between the coil parts 43a and 43b is l mm, and the transmitting coil 4
The excitation frequency for 2.46 is 40Hz, and the excitation voltage is 15V F-P. Further, the metal tube defect inspection device was moved so that the receiving coils 43 and 47 passed directly above the defect 53.
第16図fatは従来例の場合の受信信号の位相変化を
示し、第16図(blは実施例の場合の受信信号の位相
変化を示している。第16図ta+から明らかなように
、従来例の場合は、受信信号にローリング部分52によ
る位相変化T1が現れるとともに、この位相変化T1に
重畳して欠陥53による位相変化T2が現れることにな
り、欠陥53による位相変化T2がローリング部分52
による位相変化T1に埋もれてしまい、欠陥53による
位相変化T2の検知が困難であって、欠陥53の検知精
度が低い。FIG. 16 fat shows the phase change of the received signal in the case of the conventional example, and FIG. 16 (bl shows the phase change of the received signal in the case of the embodiment.) In the case of the example, a phase change T1 due to the rolling portion 52 appears in the received signal, and a phase change T2 due to the defect 53 appears superimposed on this phase change T1.
It is difficult to detect the phase change T2 due to the defect 53, and the detection accuracy of the defect 53 is low.
一方、第16図(blから明らかなように、実施例の場
合は、受信信号におけるローリング部分52による位相
変化v1は極めて少なくなり、欠陥53による位相変化
V2がローリング部分52による位相変化■、に埋もれ
ることなく明瞭に現れることになり、欠陥53による位
相変化V2の検知が容易で、欠陥53の有無および位置
の検知精度が高い。On the other hand, as is clear from FIG. This clearly appears without being buried, and the phase change V2 due to the defect 53 can be easily detected, and the presence or absence and position of the defect 53 can be detected with high accuracy.
なお、第16図fat、 (blの波形において、両端
が高くなっているのは、管端による位相変化が現れてい
るのである。この実施例では、管端のように管軸方向に
材質が急変するときは位相が変化する。In the waveforms of fat and (bl in Figure 16), the reason why both ends are high is that a phase change due to the tube ends appears.In this example, the material is When there is a sudden change, the phase changes.
なお、欠陥検査の対象となる金属管は、鉄以外に、銅、
アルミニウム等、どのような材質であってもよい。In addition to iron, the metal pipes subject to defect inspection include copper,
It may be made of any material such as aluminum.
この発明の金属管の欠陥検査方法によれば、金属管の管
材質の変化部および継手に比べて欠陥がかなり小さく、
受信コイルを金属管の管材質の変化部および継手より十
分に小さく、かつ欠陥と略同等以上の大きさに設定する
ことが可能であることに着目して、受信コイルを第1お
よび第2のコイル部で構成するとともに第1および第2
のコイル部を金属管の管材質の変化および継手が第1お
よび第2のコイル部の両受信信号の位相に諮問−の影響
を与える範囲内に配置し、第1および第2のコイル部の
受信信号の差信号を受信コイルの受信信号とし、この受
信コイルの受信信号の位相変化を監視することにより金
属管の欠陥の有無および位置を検知するようにしている
ので、金属管の管材質の変化部および継手の存在による
位相変化がキャンセルされることになり、金属管の管材
質の変化および継手の存在にかかわらず金属管の欠陥の
有無および位置を精度よく検知することができる。According to the metal pipe defect inspection method of the present invention, the defects are considerably smaller than those of the pipe material change parts and joints of metal pipes.
Focusing on the fact that it is possible to set the receiving coil to a size that is sufficiently smaller than the changing part of the pipe material of the metal pipe and the joint, and approximately the same size or larger than the defect, we set the receiving coil to the first and second parts. It consists of a coil part and a first and second
The coil portion of the first and second coil portions is arranged within a range where changes in the tube material of the metal tube and the joint have a negative effect on the phase of both the received signals of the first and second coil portions, and The difference signal between the received signals is used as the received signal of the receiving coil, and by monitoring the phase change of the received signal of the receiving coil, the existence and location of defects in the metal tube can be detected. The phase change caused by the presence of the changing portion and the joint is canceled out, and the presence or absence and position of a defect in the metal pipe can be detected with high accuracy regardless of the change in the tube material of the metal pipe and the presence of the joint.
また、第1および第2のコイル部を金属管の周方向に並
べて配置して管軸方向の位置ずれが無いようにしている
ので、金属管の軸方向の管材質の変化が急な場合におい
て第1および第2のコイル部が急変部分を横切るときや
金属管と継手との接合部を第1および第2のコイル部が
横切るときにおいても、第1および第2のコイル部の両
受信信号が同じ波形になり、上記の部分が第1および第
2のコイル部の受信信号の差信号には、上記の位置では
位相変化が現れず、金属管の欠陥の有無および位置をき
わめて精度よく検知することができる。In addition, since the first and second coil parts are arranged side by side in the circumferential direction of the metal tube to prevent positional deviation in the tube axis direction, even when the tube material changes suddenly in the axial direction of the metal tube, Even when the first and second coil sections cross a sudden change part or when the first and second coil sections cross a joint between a metal tube and a joint, both received signals of the first and second coil sections are have the same waveform, and the above part shows no phase change in the difference signal between the received signals of the first and second coil parts at the above position, allowing highly accurate detection of the presence and location of defects in the metal tube. can do.
【図面の簡単な説明】
第1図および第2図はそれぞれこの発明の第1の実施例
の金属管の欠陥検査方法において用いる金属管の欠陥検
査装置の概略断面図、第3図は受信コイルによる受信信
号の波形図、第4図は金属管の欠陥検査装置の一具体例
を示す断面図、第5図は同じく金属管の欠陥検査装置の
他の具体例を示す要部断面図、第6図(al、 (bl
はそれぞれ受信コイルの構成を示す正面図および側面図
、第7図。
第8図および第9図はそれぞれ実験条件を説明するため
の概略図、第10図(a)、 tblはそれぞれ金属管
に材質変化が存在する場合の従来例および実施例におけ
る受信信号の位相変化を示す波形図、第1)図は実験条
件を説明するための概略図、第12図(al、 (bl
はそれぞれ金属管の継手近傍の欠陥の形成前および形成
後の従来例における受イ3信号の位相変化を示す波形図
、第13図+8+、 (blはそれぞれ金属管の継手近
傍の欠陥の形成前および形成後の実施例における受信信
号の位相変化を示す波形図、第14図はこの発明の第2
の実施例の金属管の欠陥検査方法において用いる金属管
の欠陥検査装置の概略断面図、第15回は実験条件を説
明するための概略図、第16図(F)、 (blはそれ
ぞれ金属管に材質変化が存在する場合の従来例および実
施例における受信信号の位相変化を示す波形図、第17
図および第18図はそれぞれ従来の金属管の欠陥検査方
法において用いる金属管の欠陥検査装置の概略断面図、
第19図は受信コイルによる受信13号の波形図、第2
0図は従来例の欠点を説明するための断面図、第21図
は同じく欠点説明のための受信信号の波形図である。
1)・・・金属管、12・・・送信コイル、13,14
゜15−・・受信コイル、13a、14a、15a−・
第1のコイル部、13b、14b、15b・・・第2の
コイル部
特許出願人 大阪瓦斯株式会社
東京瓦斯株式会社
b
第1図
第2図
珀
↑
第3図
第5図
(a) (b)
第6図
第 7 図
第8図
第9図
り
第1)図
第12図
イf丁
第13図
第14図
第15図
第17図
第18図
1六[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1 and 2 are schematic sectional views of a metal tube defect inspection device used in the metal tube defect inspection method of the first embodiment of the present invention, and FIG. 3 is a receiving coil FIG. 4 is a sectional view showing a specific example of a metal tube defect inspection device; FIG. 5 is a sectional view of a main part of another specific example of a metal tube defect inspection device; Figure 6 (al, (bl)
FIG. 7 is a front view and a side view showing the configuration of a receiving coil, respectively. Figures 8 and 9 are schematic diagrams for explaining the experimental conditions, respectively, and Figures 10 (a) and tbl are phase changes of the received signal in the conventional example and the example when there is a material change in the metal tube, respectively. Figure 1) is a schematic diagram for explaining the experimental conditions, Figure 12 (al, (bl)
are waveform diagrams showing the phase change of the receiver signal 3 in the conventional example before and after the formation of a defect near the joint of a metal pipe, respectively, and (bl is a waveform diagram showing the phase change of the receiver signal 3 in the conventional example before and after the formation of a defect near the joint of a metal pipe, respectively. FIG. 14 is a waveform diagram showing the phase change of the received signal in the embodiment after formation.
A schematic cross-sectional view of the metal tube defect inspection apparatus used in the metal tube defect inspection method of Example 1, 15th is a schematic diagram for explaining the experimental conditions, FIG. 16 (F), (bl is a metal tube, respectively) Waveform diagram showing the phase change of the received signal in the conventional example and the example when there is a material change in the 17th waveform diagram
FIG. 18 is a schematic cross-sectional view of a metal tube defect inspection device used in a conventional metal tube defect inspection method, respectively;
Figure 19 is a waveform diagram of reception No. 13 by the reception coil,
FIG. 0 is a sectional view for explaining the drawbacks of the conventional example, and FIG. 21 is a waveform diagram of the received signal, also for explaining the drawbacks. 1)...Metal tube, 12...Transmission coil, 13, 14
゜15--Receiving coil, 13a, 14a, 15a--
First coil section, 13b, 14b, 15b... Second coil section Patent applicant Osaka Gas Co., Ltd. Tokyo Gas Co., Ltd. b Figure 1 Figure 2 B ↑ Figure 3 Figure 5 (a) (b ) Figure 6 Figure 7 Figure 8 Figure 9 Figure 1) Figure 12 Figure 13 Figure 14 Figure 15 Figure 17 Figure 18 Figure 16
Claims (2)
間隔を保って移動可能に配設し、前記送信コイルおよび
受信コイルを管軸方向に移動させながら前記送信コイル
から電磁波を発生させるとともにこの電磁波を前記受信
コイルで受け、前記受信コイルによる受信信号の前記金
属管の欠陥に伴う位相変化を監視することにより前記金
属管の欠陥の有無および位置を検知する金属管の欠陥検
査方法において、 前記受信コイルを第1および第2のコイル部で構成する
とともに前記第1および第2のコイル部を前記金属管の
管材質の変化および継手が前記第1および第2のコイル
部の両受信信号の位相に略同一の影響を与える範囲内に
配置し、前記第1および第2のコイル部の受信信号の差
信号を前記受信コイルの受信信号とすることを特徴とす
る金属管の欠陥検査方法。(1) A transmitting coil and a receiving coil are movably disposed within a metal tube at a constant interval, and while the transmitting coil and receiving coil are moved in the tube axis direction, an electromagnetic wave is generated from the transmitting coil, and the electromagnetic wave is generated. is received by the receiving coil, and the presence or absence and position of a defect in the metal tube is detected by monitoring a phase change of the reception signal caused by the defect in the metal tube by the receiving coil, the receiving The coil is composed of first and second coil parts, and the first and second coil parts are arranged so that the tube material of the metal tube changes and the joint changes the phase of both received signals of the first and second coil parts. A method for inspecting a metal tube for defects, characterized in that the first and second coil parts are arranged within a range that has substantially the same influence on the coil parts, and a difference signal between reception signals of the first and second coil parts is used as a reception signal of the reception coil.
方向に並べて配置する特許請求の範囲第(1)項記載の
金属管の欠陥検査方法。(2) The metal tube defect inspection method according to claim (1), wherein the first and second coil portions are arranged side by side in the circumferential direction of the metal tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63031445A JP2651177B2 (en) | 1988-02-12 | 1988-02-12 | Metal tube defect inspection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63031445A JP2651177B2 (en) | 1988-02-12 | 1988-02-12 | Metal tube defect inspection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01206246A true JPH01206246A (en) | 1989-08-18 |
JP2651177B2 JP2651177B2 (en) | 1997-09-10 |
Family
ID=12331449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63031445A Expired - Fee Related JP2651177B2 (en) | 1988-02-12 | 1988-02-12 | Metal tube defect inspection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2651177B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0629836A1 (en) * | 1993-06-15 | 1994-12-21 | Tokyo Gas Co., Ltd. | Method of inspecting abnormality occurring inside pipe and apparatus for practicing the method |
EP0745841A1 (en) * | 1994-12-16 | 1996-12-04 | Tokyo Gas Co., Ltd. | Electromagnetic inspection of elements of piping |
GB2435329A (en) * | 2006-02-16 | 2007-08-22 | Keith Reed | Fluid leak detection |
GB2487941A (en) * | 2011-02-09 | 2012-08-15 | Agilent Technologies Inc | Fluid separation system for determining an injection time |
CN112114031A (en) * | 2020-10-14 | 2020-12-22 | 西安石油大学 | A detector for measuring metal defects of oil pipeline base |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61223549A (en) * | 1985-03-29 | 1986-10-04 | Nippon Kokan Kk <Nkk> | Pit detector for pipeline |
JPS62255863A (en) * | 1986-04-28 | 1987-11-07 | Furukawa Electric Co Ltd:The | Eddy current flaw detector |
-
1988
- 1988-02-12 JP JP63031445A patent/JP2651177B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61223549A (en) * | 1985-03-29 | 1986-10-04 | Nippon Kokan Kk <Nkk> | Pit detector for pipeline |
JPS62255863A (en) * | 1986-04-28 | 1987-11-07 | Furukawa Electric Co Ltd:The | Eddy current flaw detector |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0629836A1 (en) * | 1993-06-15 | 1994-12-21 | Tokyo Gas Co., Ltd. | Method of inspecting abnormality occurring inside pipe and apparatus for practicing the method |
US5773984A (en) * | 1993-06-15 | 1998-06-30 | Tokyo Gas Co., Ltd. | Method of inspecting abnormality occurring inside pipe and apparatus for practicing the method |
EP0745841A1 (en) * | 1994-12-16 | 1996-12-04 | Tokyo Gas Co., Ltd. | Electromagnetic inspection of elements of piping |
EP0745841A4 (en) * | 1994-12-16 | 1998-04-29 | Tokyo Gas Co Ltd | ELECTROMAGNETIC INSPECTION OF PIPE ELEMENTS |
GB2435329A (en) * | 2006-02-16 | 2007-08-22 | Keith Reed | Fluid leak detection |
GB2435329B (en) * | 2006-02-16 | 2010-10-27 | Keith Reed | Fluid leak detection |
GB2487941A (en) * | 2011-02-09 | 2012-08-15 | Agilent Technologies Inc | Fluid separation system for determining an injection time |
CN112114031A (en) * | 2020-10-14 | 2020-12-22 | 西安石油大学 | A detector for measuring metal defects of oil pipeline base |
CN112114031B (en) * | 2020-10-14 | 2023-10-17 | 西安石油大学 | Detector for measuring metal defects of petroleum pipeline base body |
Also Published As
Publication number | Publication date |
---|---|
JP2651177B2 (en) | 1997-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6429650B1 (en) | Method and apparatus generating and detecting torsional wave inspection of pipes or tubes | |
US4806863A (en) | Eddy current apparatus including cylindrical coil with flux concentrator for high resolution detection of flaws in conductive objects | |
EP0813680B1 (en) | Non-destructive evaluation of pipes and tubes using magnetostrictive sensors | |
US6396262B2 (en) | Method and apparatus for short term inspection or long term structural health monitoring | |
JP3035713B2 (en) | Transient electromagnetic inspection system with transient electromagnetic inspection method and movement sensor | |
GB2277993A (en) | Method and device for nondestructively, magnetically inspecting elongated objects for structural faults | |
US7295004B2 (en) | Eddy current probe and method of manufacture thereof | |
US10473730B2 (en) | Defect detection device enabling easy removal of magnetic impurities | |
EP3422052A1 (en) | Apparatus and method of azimuthal magnetic sensor array for down-hole applications | |
EP2690433B1 (en) | Broadband eddy current probe | |
JPH01206246A (en) | Method of checking defect of metal pipe | |
GB2334107A (en) | Coiled tubing inspection system | |
EP0554958B1 (en) | Apparatus and method for pipe or tube inspection | |
GB2143331A (en) | Apparatus for detecting the defective portion of a metallic tube | |
KR890001536B1 (en) | Vortex probe to detect internal defect | |
JPH08278289A (en) | Ferromagnetic tube flaw detector and flaw detection method | |
JPH03105245A (en) | Remote field type probe for eddy current flaw detection | |
JP3058288B2 (en) | Piping flaw detection sensor | |
JP2007298323A (en) | Thickness loss detection method and device by electromagnetic wave pulse | |
RU2102737C1 (en) | Gear for intrapipe magnetic flaw detection of wall of steel pipe-lines | |
JPH06281628A (en) | Flaw detection sensor for remote field eddy current flaw detector | |
JPH08101168A (en) | Piping travel monitoring system for pipe inspection | |
JPH07294488A (en) | Residual magnetism measuring method | |
JPH04264256A (en) | Piping flaw detection sensor | |
JPS6298251A (en) | Pipe corrosion detection method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |