[go: up one dir, main page]

JPH01204461A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH01204461A
JPH01204461A JP2799688A JP2799688A JPH01204461A JP H01204461 A JPH01204461 A JP H01204461A JP 2799688 A JP2799688 A JP 2799688A JP 2799688 A JP2799688 A JP 2799688A JP H01204461 A JPH01204461 A JP H01204461A
Authority
JP
Japan
Prior art keywords
type
diffusion region
resistor
parasitic
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2799688A
Other languages
Japanese (ja)
Inventor
Koichi Kanezaki
金崎 孝一
Isao Yoshida
功 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP2799688A priority Critical patent/JPH01204461A/en
Publication of JPH01204461A publication Critical patent/JPH01204461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent a semiconductor integrated circuit from erroneously operating due to a parasitic transistor by connecting a first diffused region of P-type to a semiconductor substrate. CONSTITUTION:A P-type resistor 2 and crossover wirings 5 formed with an N-type second diffused region 52 in a P-type first diffused region 51 are provided in an insular region isolated from an N-type epitaxial layer 1 formed on a P-type semiconductor substrate 8, and a third diffused region of P-type and the P-type region 51 of the wirings 5 are connected to the substrate 8. Accordingly, even if the potential of the layer 1 becomes lower than that of the resistor 2 so that parasitic P-N-P transistors 10, 12 are operated to cause currents to flow, the currents flow to the substrate 8. thus, the current does not flow to the base of a parasitic N-P-N transistor 11 thereby to prevent a current from flowing to the wiring 5. In this manner, it can prevent it from erroneously operating due to the parasitic transistor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路、特にクロスオーバ配線体の近
傍に抵抗体が形成されている場合の寄生トランジスタに
よる誤動作を防止する構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor integrated circuit, and particularly to a structure for preventing malfunctions caused by parasitic transistors when a resistor is formed near a crossover wiring body.

従来の技術 従来の半導体集積回路の一例を第4図に示した平面図と
、第5図に示した第4図のB−B ’線に沿った断面図
と、第6図に示したこれらの構造の等価回路図を参照し
て説明する。
2. Description of the Related Art FIG. 4 shows a plan view of an example of a conventional semiconductor integrated circuit, FIG. 5 shows a cross-sectional view taken along the line B-B' in FIG. This will be explained with reference to an equivalent circuit diagram of the structure.

半導体集積回路において、図に示すように、配線層間が
交差する場合、クロスオーバ配線体が抵抗体の近くに形
成される場合がある。第4図と第6図において、1はN
形のエピタキシャル層、2はP形の抵抗体、3はP形の
抵抗体2と外部接続端子4を接続する配線層、5はP形
の拡散領域51内にN形の拡散領域52を設けたクロス
オーバ配縁体、6はクロスオーバ配線体5に接続された
配線層、8はP形の半導体基板である。
In a semiconductor integrated circuit, as shown in the figure, when wiring layers intersect, a crossover wiring body may be formed near a resistor. In Figures 4 and 6, 1 is N
2 is a P-type resistor, 3 is a wiring layer connecting the P-type resistor 2 and the external connection terminal 4, and 5 is an N-type diffusion region 52 provided in a P-type diffusion region 51. 6 is a wiring layer connected to the crossover wiring body 5, and 8 is a P-type semiconductor substrate.

上記構成において、P形の抵抗体2とN形のエピタキシ
ャル層1及びP形の拡散領域51により寄生PNP ト
ランジスタ10が構成されると共に、N形エピタキシャ
ル層1とP形の拡散領域51の内にN形の拡散領域52
を設けたクロスオーバ配線体5により寄生NPN)ラン
ジスタ11が構成される。これらの寄生トランジスタに
よって形成された等価回路図を第6図に示す。ところで
、N形エピタキシャル層1の電位をP形抵抗体2及びク
ロスオーバ配線体5の電位よりも高(して用いるのが一
般的である。このため、寄生PNPトランジスタや寄生
NPN トランジスタが構成されても、それらの寄生ト
ランジスタは動作しないために何んら問題はない。
In the above configuration, a parasitic PNP transistor 10 is configured by the P-type resistor 2, the N-type epitaxial layer 1, and the P-type diffusion region 51, and the parasitic PNP transistor 10 is N-type diffusion region 52
A parasitic NPN (NPN) transistor 11 is configured by the crossover wiring body 5 provided with a parasitic NPN transistor. An equivalent circuit diagram formed by these parasitic transistors is shown in FIG. By the way, it is common to use the N-type epitaxial layer 1 with a potential higher than the potential of the P-type resistor 2 and the crossover wiring body 5. For this reason, a parasitic PNP transistor or a parasitic NPN transistor is configured. However, there is no problem because those parasitic transistors do not operate.

発明が解決しようとする課題 このような従来の半導体集積回路では、N形のエピタキ
シャル層1の電位が回路の何んらかの都合でP形の抵抗
体2よりも下がった場合、P形の抵抗体2とN形のエピ
タキシャル層1及びP形の拡散領域51内にN形の拡散
領域52を設けたクロスオーバ配線体5とで構成された
寄生PNP )ランジスタおよび寄生NPNトランジス
タが動作し、P形の抵抗体2からN形エピタキシャル層
1を通り、P形の拡散領域51に向かって電流が流れる
。そして、この寄生PNP トランジスタによって発生
した電流が、寄生NPNトランジスタのベースを形成す
るP形の拡散領域51に流れると、N形エピタキシャル
層1より、クロスオーバ配線体5に電流が流れ、クロス
オーバ配線体5に接続された配線層6に流れ出る。この
ため配線層6の電位が変動するという問題があった。本
発明は、このような従来の問題点を解決するもので、N
形エピタキシャル層1の電位が下がっても、寄生PNP
 トランジスタや寄生NPN トランジスタの影響を全
く受けない半導体集積回路を提供することを目的とする
ものである。
Problems to be Solved by the Invention In such a conventional semiconductor integrated circuit, if the potential of the N-type epitaxial layer 1 becomes lower than that of the P-type resistor 2 for some reason in the circuit, the P-type A parasitic PNP transistor and a parasitic NPN transistor, which are composed of a resistor 2, an N-type epitaxial layer 1, and a crossover wiring body 5 in which an N-type diffusion region 52 is provided in a P-type diffusion region 51, operate, A current flows from the P-type resistor 2 through the N-type epitaxial layer 1 toward the P-type diffusion region 51 . When the current generated by this parasitic PNP transistor flows into the P-type diffusion region 51 forming the base of the parasitic NPN transistor, the current flows from the N-type epitaxial layer 1 to the crossover wiring body 5, and the crossover wiring The liquid flows out to the wiring layer 6 connected to the body 5. Therefore, there was a problem that the potential of the wiring layer 6 fluctuated. The present invention solves such conventional problems, and
Even if the potential of the epitaxial layer 1 decreases, the parasitic PNP
The object of the present invention is to provide a semiconductor integrated circuit that is completely unaffected by transistors and parasitic NPN transistors.

課題を解決するための手段 上記問題点を解決するための本発明の半導体集積回路は
、P形の半導体基板の上に形成されたN形のエピタキシ
ャル層を分離した島領域内に、P形の抵抗体と、P形の
第1の拡散領域内にN形の第2拡散領域を設けたクロス
オーバ配線体とを備えるとともに、時には前記抵抗体と
前記クロスオーバ配線体の間にP形の第3の拡散領域を
設け、同P形の第3の拡散領域と前記クロスオーバ配線
体のP形の第1の拡散領域を前記半導体基板と接続する
ものである。
Means for Solving the Problems In order to solve the above problems, the semiconductor integrated circuit of the present invention has a P-type semiconductor integrated circuit in which a P-type epitaxial layer is separated from an N-type epitaxial layer formed on a P-type semiconductor substrate. It includes a resistor and a crossover wiring body in which an N-type second diffusion region is provided in a P-type first diffusion region, and sometimes a P-type second diffusion region is provided between the resistor and the crossover wiring body. 3 diffusion regions are provided, and the P-type third diffusion region and the P-type first diffusion region of the crossover wiring body are connected to the semiconductor substrate.

作用 この構成によって、N形エピタキシャル層の電位が、P
形の抵抗体よりも下がって、寄生PNPトランジスタが
動作して電流が流れても、この電流を半導体基板に流し
出すため、寄生NPN トランジスタのベースに電流が
供給されず、クロスオーバ配線体に電流が流れるのを阻
止することができる。
Effect: With this configuration, the potential of the N-type epitaxial layer becomes P
Even if the parasitic PNP transistor operates and current flows, the current flows to the semiconductor substrate, so no current is supplied to the base of the parasitic NPN transistor, and no current flows to the crossover wiring body. can be prevented from flowing.

実施例 以上、本発明半導体集積回路の実施例を第1図に示した
平面図と、第2図に示した第1図のA−A′線に沿った
断面図と、第3図に示したこれらの構造による等価回路
図を参照して説明する。
Embodiments As described above, the embodiments of the semiconductor integrated circuit of the present invention are shown in the plan view shown in FIG. 1, the cross-sectional view taken along the line A-A' in FIG. This will be explained with reference to equivalent circuit diagrams of these structures.

この半導体集積回路は、P形半導体基板8の上に形成さ
れたエピタキシャル層1を分離領域9により分離して島
領域が形成され、この島領域の中にP形の抵抗体2と、
P形の分離領域9にまで延圧したP形の拡散領域51と
この拡散領域内に形成されたN形の拡散領域52で構成
されたクロスオーバ配線体5と、P形の抵抗体2とクロ
スオーバ配線体5との間に、P形の分離領域9にまで延
圧したP形の拡散領域7が形成され、抵抗体2に配線層
3が、クロスオーバ配線体5に配線層6が接続された構
成である。なお4は外部接続端子である。また、クロス
オーバ配線体5の上に交差する配線層は図面をわかりや
すくするため省略されている。
In this semiconductor integrated circuit, an epitaxial layer 1 formed on a P-type semiconductor substrate 8 is separated by a separation region 9 to form an island region, and a P-type resistor 2 is provided in this island region.
A crossover wiring body 5 composed of a P-type diffusion region 51 rolled to a P-type isolation region 9 and an N-type diffusion region 52 formed within this diffusion region, and a P-type resistor 2. A P-type diffusion region 7 rolled to a P-type separation region 9 is formed between the crossover wiring body 5 and a wiring layer 3 on the resistor 2 and a wiring layer 6 on the crossover wiring body 5. This is a connected configuration. Note that 4 is an external connection terminal. Furthermore, the wiring layer that crosses over the crossover wiring body 5 is omitted to make the drawing easier to understand.

P形の拡散領域7の一部をP形の分離領域9まで延圧さ
せることによりP形の半導体基板8に接続させる。N形
のエピタキシャル層1の電位がP形の抵抗体2の電位よ
りも下がった場合に、P形の抵抗体2とN形のエピタキ
シャル層1及びP形の拡散領域7とでできる第1の寄生
PNPトランジスタ10によりP形の抵抗体2からN形
エピタキシャル層1に流れる電流をP形の拡散領域7を
通して半導体基板8に流してやることにより、他の素子
への電流供給を停止させる。P形の拡散領域7と同様に
、N形のエピタキシャル層1内に構成されたP形の拡散
領域51もこの一部を分離領域9に延圧させることによ
り半導体基板8と接続させる。ここでP形の拡散領域7
とN形のエピタキシャル層1及びP形の拡散領域51と
で第2の寄生PNP トランジスタ12が、また、N形
エピタキシャル層1とP形拡散領域51と、この中に形
成されたN形の拡散領域52とで構成されたクロスオー
バ配線体5とで寄生NPN トランジスタ11が構成さ
れる。しかし、第1の寄生PNP トランジスタ10の
効果によりP形の拡散領域7を通して半導体基板8へほ
とんどの電流が流れるが、仮に一部の電流が第2の寄生
PNP トランジスタ12へ流れ込んでも、P形の拡散
領域51を通して半導体基板8へ電流が流れるため、寄
生NPN トランジスタには電流が流れず、クロスオー
バ配線体5に接続された配線層6の電位はN形゛のエピ
タキシャル層1の電位がP形の抵抗体2よりも電位が下
がっても、寄生PNP トランジスタや寄生NPNトラ
ンジスタの影響を全く受けない。
A part of the P-type diffusion region 7 is rolled to the P-type isolation region 9 to connect it to the P-type semiconductor substrate 8 . When the potential of the N-type epitaxial layer 1 falls below the potential of the P-type resistor 2, a first By causing the current flowing from the P-type resistor 2 to the N-type epitaxial layer 1 to flow into the semiconductor substrate 8 through the P-type diffusion region 7 by the parasitic PNP transistor 10, the current supply to other elements is stopped. Similar to the P-type diffusion region 7, the P-type diffusion region 51 formed in the N-type epitaxial layer 1 is also connected to the semiconductor substrate 8 by rolling a portion thereof into the isolation region 9. Here, P-type diffusion region 7
, the N-type epitaxial layer 1 and the P-type diffusion region 51 form a second parasitic PNP transistor 12, and the N-type epitaxial layer 1, the P-type diffusion region 51, and the N-type diffusion formed therein form a second parasitic PNP transistor 12. A parasitic NPN transistor 11 is constituted by the cross-over wiring body 5 constituted by the region 52. However, although most of the current flows to the semiconductor substrate 8 through the P-type diffusion region 7 due to the effect of the first parasitic PNP transistor 10, even if some of the current flows to the second parasitic PNP transistor 12, the P-type Since current flows to the semiconductor substrate 8 through the diffusion region 51, no current flows to the parasitic NPN transistor, and the potential of the wiring layer 6 connected to the crossover wiring body 5 is N-type, whereas the potential of the epitaxial layer 1 is P-type. Even if the potential is lower than that of the resistor 2, it is not affected by the parasitic PNP transistor or parasitic NPN transistor at all.

なお、実施例ではP形の拡散領域7を設けた構造を説明
したが、P形の拡散領域7を省略しても、P形の拡散領
域51を半導体基板8に接続してあればよい。この場合
、N形のエピタキシャル層1の電位が抵抗体2よりも電
位が下がって、寄生PNPトランジスタ10により抵抗
体2よりP形の拡散領域51へ電流が流れ込んでも半導
体基板8に電流が流れ出るので寄生NPN トランジス
タ11には電流が流れず同様の効果がある。
In the embodiment, a structure in which the P-type diffusion region 7 is provided has been described, but the P-type diffusion region 7 may be omitted as long as the P-type diffusion region 51 is connected to the semiconductor substrate 8. In this case, even if the potential of the N-type epitaxial layer 1 is lower than that of the resistor 2 and a current flows from the resistor 2 to the P-type diffusion region 51 due to the parasitic PNP transistor 10, the current flows to the semiconductor substrate 8. No current flows through the parasitic NPN transistor 11, and a similar effect is achieved.

また、実施例ではP形の抵抗体2よりN形のエピタキシ
ャル層1の電位が下がった場合について説明したが、P
形の抵抗体2の電位がN形のエピタキシャル層1より電
位が高くなった場合にも同様の効果がある。
Furthermore, in the embodiment, the case where the potential of the N-type epitaxial layer 1 is lower than that of the P-type resistor 2 has been explained.
A similar effect can be obtained when the potential of the N-type resistor 2 is higher than that of the N-type epitaxial layer 1.

また、実施例ではP形の抵抗体2とP形の拡散領域51
を半導体基板8に接続するのにそれぞれを分離領域9に
まで延圧していたが、コンタクト窓を形成して配線層に
より接地配線層に接続してもよい。
In addition, in the embodiment, a P-type resistor 2 and a P-type diffusion region 51
In order to connect the semiconductor substrate 8 to the semiconductor substrate 8, each was rolled to the isolation region 9, but a contact window may be formed and the wiring layer connected to the ground wiring layer.

発明の効果 以上のように本発明の半導体集積回路によれば、半導体
基板に接続されたP形の抵抗体およびクロスオーバ配線
体のP形の拡散領域の効果によりN形のエピタキシャル
層1の電位がクロスオーバ配線体近傍の抵抗体の電位よ
り下がっても、寄生PNP トランジスタや寄生NPN
 トランジスタの影響を受けない半導体集積回路を構成
することができ、誤動作をなくシ、信頼性を高めること
ができる。
Effects of the Invention As described above, according to the semiconductor integrated circuit of the present invention, the potential of the N-type epitaxial layer 1 is reduced by the effects of the P-type resistor connected to the semiconductor substrate and the P-type diffusion region of the crossover wiring body. Even if the voltage drops below the potential of the resistor near the crossover wiring body, parasitic PNP transistors and parasitic NPN
It is possible to configure a semiconductor integrated circuit that is not affected by transistors, eliminate malfunctions, and improve reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体集積回路の一実施例を示す平面
図、第2図は第1図のA−A ’線に沿った断面図、第
3図は第1図の等価回路図、第4図は従来の半導体集積
回路の平面図、第5図は第4図のB−B ’線に沿った
断面図、第6図は第4図の等価回路図である。 1・・・・・・N形のエピタキシャル層、2・・・・・
・P形の抵抗体、3,6・・・・・・配線層、4・・・
・・・外部接続端子、5・・・・・・クロスオーバ配線
体、51・・・・・・P形の拡散領域、52・・・・・
・N形の拡散領域、7・・・・・・P形の拡散領域、8
・・・・・・半導体基板、9・・・・・・分離領域、1
0・・・・・・第1の寄生PNP トランジスタ、11
・・・・・・寄生NPNトランジスタ、12・・・・・
・第2の寄生PNP トランジスタ。 代理人の氏名 弁理士 中尾敏男 ほか1名派    
     派 !? 法
FIG. 1 is a plan view showing an embodiment of the semiconductor integrated circuit of the present invention, FIG. 2 is a sectional view taken along line A-A' in FIG. 1, and FIG. 3 is an equivalent circuit diagram of FIG. 1. FIG. 4 is a plan view of a conventional semiconductor integrated circuit, FIG. 5 is a sectional view taken along line BB' in FIG. 4, and FIG. 6 is an equivalent circuit diagram of FIG. 4. 1... N-type epitaxial layer, 2...
・P-type resistor, 3, 6... wiring layer, 4...
... External connection terminal, 5 ... Crossover wiring body, 51 ... P-type diffusion region, 52 ...
・N-type diffusion region, 7...P-type diffusion region, 8
... Semiconductor substrate, 9 ... Separation region, 1
0...First parasitic PNP transistor, 11
...parasitic NPN transistor, 12...
- Second parasitic PNP transistor. Name of agent: Patent attorney Toshio Nakao and one other person
School! ? law

Claims (2)

【特許請求の範囲】[Claims] (1)一導電形の半導体基板の上に形成された逆導電形
のエピタキシャル層を分離した島領域の内に、一導電形
の抵抗体と、一導電形の第1の拡散領域と同第1の拡散
領域内に形成された逆導電形の第2の拡散領域とで構成
されたクロスオーバ配線体を備えるとともに、前記第1
の拡散領域を前記半導体基板に接続したことを特徴とす
る半導体集積回路。
(1) A resistor of one conductivity type, a first diffusion region of one conductivity type, and a first diffusion region of one conductivity type are placed in an island region separated from an epitaxial layer of an opposite conductivity type formed on a semiconductor substrate of one conductivity type. and a second diffusion region of an opposite conductivity type formed in the first diffusion region, and the first diffusion region
A semiconductor integrated circuit characterized in that a diffusion region of is connected to the semiconductor substrate.
(2)一導電形の半導体基板の上に形成された逆導電形
のエピタキシャル層を分離した島領域の内に、一導電形
の抵抗体と、一導電形の第1の拡散領域と同第1の拡散
領域内に形成された逆導電形の第2の拡散領域とで構成
されたクロスオーバ配線体と、前記抵抗体と前記クロス
オーバ配線体の間に形成された一導電形の第3の拡散領
域を備えるとともに、前記第1の拡散領域と前記第3の
拡散領域を前記半導体基板に接続したことを特徴とする
半導体集積回路。
(2) A resistor of one conductivity type, a first diffusion region of one conductivity type, and a first diffusion region of one conductivity type are placed in an island region separated from an epitaxial layer of an opposite conductivity type formed on a semiconductor substrate of one conductivity type. a cross-over wiring body constituted by a second diffusion region of an opposite conductivity type formed in the first diffusion region; and a third diffusion region of one conductivity type formed between the resistor and the crossover wiring body. What is claimed is: 1. A semiconductor integrated circuit comprising: a diffusion region; and the first diffusion region and the third diffusion region are connected to the semiconductor substrate.
JP2799688A 1988-02-09 1988-02-09 Semiconductor integrated circuit Pending JPH01204461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2799688A JPH01204461A (en) 1988-02-09 1988-02-09 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2799688A JPH01204461A (en) 1988-02-09 1988-02-09 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH01204461A true JPH01204461A (en) 1989-08-17

Family

ID=12236432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2799688A Pending JPH01204461A (en) 1988-02-09 1988-02-09 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH01204461A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50156383A (en) * 1974-06-05 1975-12-17
JPS59225544A (en) * 1983-06-06 1984-12-18 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPS61144846A (en) * 1984-12-18 1986-07-02 Toshiba Corp Large scale integrated circuit device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50156383A (en) * 1974-06-05 1975-12-17
JPS59225544A (en) * 1983-06-06 1984-12-18 Sanyo Electric Co Ltd Semiconductor integrated circuit
JPS61144846A (en) * 1984-12-18 1986-07-02 Toshiba Corp Large scale integrated circuit device

Similar Documents

Publication Publication Date Title
JPH025532A (en) P-m-p vertical isolated collector transistor
JPH0318347B2 (en)
JPH0550852B2 (en)
JPH01204461A (en) Semiconductor integrated circuit
JPH0618253B2 (en) Semiconductor integrated circuit
US4547743A (en) Variable resistance gain control integrated circuit
JP3179630B2 (en) Epitaxial tub bias structure and integrated circuit
JPH0244759A (en) Semiconductor integrated circuit device
JP2926801B2 (en) Semiconductor integrated device
JPH02237311A (en) Feedforward darington circuit which decreased npn reverse beta sensitivity
JPH0456465B2 (en)
JPS5886769A (en) Horizontal PNP transistor
JPH0691194B2 (en) Method for preventing parasitic effect of semiconductor integrated circuit
JPS61208863A (en) Cmos semiconductor device
KR940008215B1 (en) Bidirectional transistor device
JPS61255065A (en) Switching transistor
JPS626658B2 (en)
JPS5882559A (en) Semiconductor integrated circuit device
JPH0613555A (en) Electrostatic damage preventing circuit
JPH04323860A (en) Semiconductor integrated circuit
JPH0520344U (en) Semiconductor device
JPS6086857A (en) semiconductor integrated circuit
JPS63314865A (en) Semiconductor device
JPS63229855A (en) Semiconductor integrated circuit
JPH01291457A (en) Semiconductor integrated circuit