[go: up one dir, main page]

JPH01203285A - Ceramic implant and production thereof - Google Patents

Ceramic implant and production thereof

Info

Publication number
JPH01203285A
JPH01203285A JP63027031A JP2703188A JPH01203285A JP H01203285 A JPH01203285 A JP H01203285A JP 63027031 A JP63027031 A JP 63027031A JP 2703188 A JP2703188 A JP 2703188A JP H01203285 A JPH01203285 A JP H01203285A
Authority
JP
Japan
Prior art keywords
zirconia
sintered body
implant
hap
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63027031A
Other languages
Japanese (ja)
Inventor
Naoto Kijima
直人 木島
Yasuo Oguri
康生 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Kasei Corp
Mitsubishi Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Mitsubishi Chemical Industries Ltd filed Critical Mitsubishi Kasei Corp
Priority to JP63027031A priority Critical patent/JPH01203285A/en
Priority to DE68917947T priority patent/DE68917947T2/en
Priority to EP89102069A priority patent/EP0328041B1/en
Priority to US07/307,640 priority patent/US4983182A/en
Publication of JPH01203285A publication Critical patent/JPH01203285A/en
Priority to US07/596,954 priority patent/US5185177A/en
Priority to US07/903,327 priority patent/US5192325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ジルコニア焼結体の表面に、リン酸三カルシ
ウム(以下、α−TCPと略す)とジルコニアの混合物
からなる多孔質焼結体の被覆層を有するセラミックス製
インプラント及びその製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a porous sintered body made of a mixture of tricalcium phosphate (hereinafter abbreviated as α-TCP) and zirconia on the surface of a zirconia sintered body. The present invention relates to a ceramic implant having a coating layer and a method for manufacturing the same.

(従来の技術) 人工歯根などの硬組織用の生体インプラント材料として
は、従来からステンレス合金、チタン合金などの金属、
及び単結晶アルミナ、アルミナ焼結体、ジルコニア焼結
体、カーボンなどのセラミックスが主に使用されており
、これらは生体組織と直接に結合しないために生体不活
性なインプラント材料と言われている。一方、ヒドロキ
シアパタイト(以下、HAPと略す)焼結体、α型リン
酸三カルシウム(以下α−TCPと略す。)焼結体、β
型リン酸三カルシウム焼結体は、いわゆる生体活性なイ
ンプラント材料であり、生体組織と直接忙化学結合が起
こる材料として注目されている。また、近年では生体活
性な物質を生体不活性な材料の表面にプラズマ溶射によ
りて被着する試みがなされている。
(Conventional technology) As biological implant materials for hard tissues such as artificial tooth roots, metals such as stainless steel alloys and titanium alloys,
Ceramics such as single-crystal alumina, alumina sintered body, zirconia sintered body, and carbon are mainly used, and these are said to be bioinert implant materials because they do not bond directly to living tissue. On the other hand, hydroxyapatite (hereinafter abbreviated as HAP) sintered body, α-type tricalcium phosphate (hereinafter abbreviated as α-TCP) sintered body, β
The type tricalcium phosphate sintered body is a so-called bioactive implant material, and is attracting attention as a material that directly chemically bonds with living tissue. Furthermore, in recent years, attempts have been made to deposit bioactive substances onto the surface of bioinactive materials by plasma spraying.

(発明が解決しようとする問題点) しかしながら、上記の生体不活性なインプラント材料を
生体内に埋入して使用した場合には、生体組織と直接に
結合しないために、長期間経過すると緩みが発生してし
まう。一方、生体活性なインプラント材料は、前述のよ
うな緩みが発生しないが、機械的強度においては生体不
活物質を生体不活性な材料の表面にプラズマ溶射によっ
て被着したものは、プラズマ溶射表面層と芯材との接合
力が弱(て剥離しやすい。
(Problem to be solved by the invention) However, when the above-mentioned bioinert implant material is implanted in a living body, it does not bond directly to living tissue, so it tends to loosen over a long period of time. It will happen. On the other hand, bioactive implant materials do not cause loosening as mentioned above, but in terms of mechanical strength, materials in which a bioinactive material is deposited on the surface of a bioinactive material by plasma spraying have a plasma sprayed surface layer. The bond between the core material and the core material is weak (and easily peels off).

(問題点を解決するための手段) 本発明者等は上記の点に鑑み種々検討した結果、ジルコ
ニア焼結体の表面にα−TCPとジルコニアの混合物か
らなる多孔質焼結体の被覆層を有するセラミックス製イ
ンプラントは、機械的強度が高(て生体内で破損せず、
かつ芯材と強固に接合された生体活性な表面多孔層が生
体内で生体組織と結合し、長期間の使用にも耐え得る材
料となるとの知見を得て本発明に到達した。
(Means for Solving the Problems) As a result of various studies in view of the above points, the present inventors added a coating layer of a porous sintered body made of a mixture of α-TCP and zirconia to the surface of a zirconia sintered body. Ceramic implants have high mechanical strength (do not break in vivo,
In addition, the present invention was achieved based on the knowledge that the bioactive surface porous layer that is firmly bonded to the core material bonds with living tissue in vivo, resulting in a material that can withstand long-term use.

すなわち、本発明の要旨は、ジルコニア焼結体の表面に
α−TCPとジルコニアの混合物からなる多孔質焼結体
の被覆層を有するセラミックス製インプラント及びその
製造方法に存し、更には、部分安定化ジルコニアよりな
る成形体の表面にヒドロキシアパタイトとジルコニアの
混合粉末を被着したのち焼成することを特徴とするセラ
ミックス製インプラントの製造方法に存する。
That is, the gist of the present invention resides in a ceramic implant having a coating layer of a porous sintered body made of a mixture of α-TCP and zirconia on the surface of a zirconia sintered body, and a method for manufacturing the same, and furthermore, The present invention relates to a method for manufacturing a ceramic implant, which comprises depositing a mixed powder of hydroxyapatite and zirconia on the surface of a molded body made of oxidized zirconia, and then firing the mixture.

以下、本発明の詳細な説明するに、本発明で使用する部
分安定化ジルコニア粉末としては、CaOlMgO,Y
2O3、Gd2O3、Ce 02などを安定化剤として
固溶したジルコニア粉末である。
In the following, the present invention will be described in detail. Partially stabilized zirconia powder used in the present invention includes CaOlMgO, Y
It is a zirconia powder containing 2O3, Gd2O3, Ce 02, etc. as a solid solution as a stabilizer.

部分安定化ジルコニア粉末よりなる成形体は、プレス成
形、押出成形、鋳込成形、射出成形およびテープ成形な
ど、さまざまな成形方法によって成形されるが、好まし
くは、複雑形状の成形体の製造が可能な鋳込成形法及び
射出成形法によるのが良い。
Molded bodies made of partially stabilized zirconia powder can be molded by various molding methods such as press molding, extrusion molding, cast molding, injection molding, and tape molding, but preferably molded bodies with complex shapes can be manufactured. It is preferable to use a cast molding method or an injection molding method.

ジルコニア焼結体の表面にα−TCPとジルコニアの焼
結体の被覆層を設ける手法は種々有り得ようが、最も好
適には、焼結前のジルコニア成形体の表面にジルコニア
粉末とHAPを被着せしめ、全体を焼成すると、HAP
はα−TCPに変化し、併せてジルコニアも焼結されろ
こととなる。この場合にジルコニア成形体に被着させる
Although there are various methods for providing a coating layer of α-TCP and zirconia sintered body on the surface of the zirconia sintered body, the most suitable method is to coat zirconia powder and HAP on the surface of the zirconia molded body before sintering. When the whole thing is fired, HAP
is changed to α-TCP, and zirconia is also sintered. In this case, it is applied to a zirconia molded body.

HAP粉末は、Ca+o−x (HPO4)X (PO
4)6−x (OH)2−x ・nH2O(ただし、0
くXく/)の化学式で示されるものが使用される。
HAP powder is Ca+o-x (HPO4)X (PO
4) 6-x (OH)2-x ・nH2O (however, 0
The compound represented by the chemical formula (xx/) is used.

HAPと混合されるジルコニア粉末としては、安定化剤
の含有の有無に関係な(、ジルコニアを主成分とする粉
末ならば良い。
The zirconia powder to be mixed with HAP may be any powder containing zirconia as a main component, regardless of the presence or absence of a stabilizer.

HAPとジルコニアの混合割合は、HAPに対するジル
コニアの重量比率が0.0 & −20の範囲内で選択
される。より好ましくは、前記比率が0.7〜2.3に
なるように混合する。HAPに対するジルコニアの重量
比率がO,OSより小さいと、得られたインプラントの
被覆層の気孔率が小さくなって生体活性が小さくなると
ともに、芯材となるジルコニア焼結体と被覆層の熱膨張
率の大きな差により、焼成後の冷却時に被覆層表面及び
ジルコニア焼結体と被覆層の界面に多数の亀裂が発生し
てしまう。一方、HAPに対するジルコニアの重量比率
が20より大きいと、得られたインプラントの被覆層の
気孔率が小さ(なるとともにα−TCPの含有量が減る
ために、生体活性は小さ(なってしまう。
The mixing ratio of HAP and zirconia is selected so that the weight ratio of zirconia to HAP is within the range of 0.0 & -20. More preferably, they are mixed so that the ratio is 0.7 to 2.3. If the weight ratio of zirconia to HAP is smaller than O,OS, the porosity of the coating layer of the obtained implant will be small and the bioactivity will be low, and the thermal expansion coefficient of the zirconia sintered body serving as the core material and the coating layer will be reduced. Due to the large difference in the temperature, many cracks occur on the surface of the coating layer and at the interface between the zirconia sintered body and the coating layer during cooling after firing. On the other hand, if the weight ratio of zirconia to HAP is larger than 20, the porosity of the coating layer of the obtained implant becomes small (and the content of α-TCP decreases, so the bioactivity becomes small).

部分安定化ジルコニアよりなる成形体の表面にHAPと
ジルコニアの混合粉末を被着する方法としては、混合粉
末を成形体の表面に均一に被着する方法が選ばれる。具
体的には、HAPとジルコニアの混合粉末を水に均一に
分散させてスラリーを作り、このスラリー中に部分安定
化ジルコニアよりなる成形体を浸漬することにより、ス
ラリー中の水分が成形体内に吸収されると同時に混合粉
末が均一に成形体表面に被着される方法が用いられる。
As a method for applying a mixed powder of HAP and zirconia to the surface of a molded body made of partially stabilized zirconia, a method is selected in which the mixed powder is uniformly applied to the surface of the molded body. Specifically, a mixed powder of HAP and zirconia is uniformly dispersed in water to create a slurry, and a molded body made of partially stabilized zirconia is immersed in this slurry, so that the water in the slurry is absorbed into the molded body. A method is used in which the mixed powder is uniformly applied to the surface of the molded body at the same time as the molded body is coated.

また、上記スラリーを成形体上に噴霧することによって
も、同様な被覆が可能である。
A similar coating can also be achieved by spraying the slurry onto the molded body.

焼成は、/λ00℃〜/S50℃の温度範囲で行う。温
度が低すぎると、ジルコニア焼結体の密度と強度が低(
なってしまう。一方、温度が高すぎると、α−TCPと
ジルコニアの混合物からなる多孔質焼結体の気孔率が低
下するとともに、生成したα−TCPが溶融してしまう
Firing is performed at a temperature range of /λ00°C to /S50°C. If the temperature is too low, the density and strength of the zirconia sintered body will be low (
turn into. On the other hand, if the temperature is too high, the porosity of the porous sintered body made of a mixture of α-TCP and zirconia will decrease, and the generated α-TCP will melt.

また、温度が高すぎると、ジルコニア焼結体の密度と強
度が低下してしまう。すなわち、焼成を適正な温度範囲
内で行うことにより、インプラントの芯材となるジルコ
ニア焼結体の密度と強度を高(すると同時罠、インプラ
ントの被覆層となる多孔質焼結体の気孔率を太き(でき
る。
Furthermore, if the temperature is too high, the density and strength of the zirconia sintered body will decrease. In other words, by performing firing within an appropriate temperature range, the density and strength of the zirconia sintered body, which is the core material of the implant, can be increased (and at the same time, the porosity of the porous sintered body, which is the covering layer of the implant, can be increased). Thick (can be done)

なお、この焼成によりHAPかも生じるα−TCPとジ
ルコニアは、多孔性を保ちながら強固に結合し、また、
芯材となるジルコニア焼結体と多孔質焼結体との間でも
両者の強固な結合が得られるが、これらはいずれもHA
P中の2+ Ca  イオンのジルコニア粉末及び芯材ジルコニアへ
の移動、拡散によるものと推定される。
In addition, α-TCP and zirconia, which are also produced as HAP by this firing, are strongly bonded while maintaining porosity, and
A strong bond can also be obtained between the zirconia sintered body and the porous sintered body, which are the core materials, but both of these are made of HA.
This is presumed to be due to the movement and diffusion of 2+ Ca ions in P to the zirconia powder and core zirconia.

次に本発明を実施例により更に詳細に説明するが、本発
明はその要旨を超えない限り、下記実施例によって限定
されるものではない。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例 内容積ssomiのジルコニア袈ボールミルポットに蒸
留水211.6gと分散剤としてポリアクリル酸アンモ
ニウムの!<7wt%水溶液0.1..3Jを入れて混
合した後、イツトリア部分安定化シk ニア = 7 
/ 2 A、 、2 gト/ OHll 96のジルコ
ニアボー・ルIIoogを加えた。これを振動ボールミ
ル及び回転ボールミルで湿式粉砕処理してジルコニアス
ラリーを得た。このスラリーの/3りlに@2wt%水
溶液の結合剤a、bggと消泡剤0.0 & 49を添
加して30分簡混合した後、ロータリーエバポレーター
中で20Torrで20分間減圧脱泡した。このスラリ
ーを2J℃の室温下で/ 21nz91 X / !r
 Ommの円柱状に固形鋳込成形した。これを23℃で
/昼夜乾燥した後に施盤を用いて’1. !; mx 
yf x 、y o gIEの円柱状に機械加工してジ
ルコニア成形体を得た。
Example 211.6 g of distilled water and ammonium polyacrylate as a dispersant were added to a zirconia ball mill pot with an internal volume of ssomi! <7wt% aqueous solution 0.1. .. After adding 3J and mixing, Ittria partial stabilization Sr. = 7
/ 2 A, 2 g/OHll 96 of zirconia ball IIoog was added. This was wet-pulverized using a vibrating ball mill and a rotary ball mill to obtain a zirconia slurry. To 1/3 liter of this slurry, @2wt% aqueous solution of binder a, bgg, and antifoaming agent 0.0 & 49 were added and briefly mixed for 30 minutes, and then defoamed under reduced pressure at 20 Torr for 20 minutes in a rotary evaporator. . This slurry was heated at room temperature of 2J℃/21nz91X/! r
Solid casting was carried out into a cylindrical shape of 0 mm. After drying this at 23°C day and night, use a platen to dry it '1. ! ; mx
A zirconia molded body was obtained by machining yf x and y o gIE into a cylindrical shape.

“ 次に、内容積2 !; Omlのアルミナ製ボール
ミルポットに蒸留水3 g、 A9と分散剤としてポリ
アクリル酸アンモニウムのll0wt%水溶液o、 9
4 gを入れて混合した後、ヒドロキシアパタイト粉末
36.0gとイツトリア部分安定化ジルコニア粉末2 
’1. Og及’CJ / Omtn915のジルコニ
アポールtioogを加えた。これを振動ボールミル及
び回転ボールミルで湿式粉砕処理して、ヒドロキシアパ
タイトとジルコニアの混合スラリーを得た。このスラリ
ーのヲ3gに#Jwt%水溶液の結合剤/ 、?、、?
 fiと消泡剤0.02 r g及び蒸留水273gを
添加して30分間混合した後、ロータリーエバポレータ
ー中で20Torrで20分間減圧脱泡した。
“Next, in an Oml alumina ball mill pot with an internal volume of 2!, 3 g of distilled water, A9 and a 0wt% aqueous solution of ammonium polyacrylate as a dispersant, 9
After mixing, add 36.0 g of hydroxyapatite powder and 2 g of ittria partially stabilized zirconia powder.
'1. Zirconia pole tioog of Og and 'CJ/Omtn915 was added. This was wet-pulverized using a vibrating ball mill and a rotating ball mill to obtain a mixed slurry of hydroxyapatite and zirconia. Add #Jwt% aqueous solution binder to 3g of this slurry. ,,?
fi, 0.02 r g of an antifoaming agent, and 273 g of distilled water were added and mixed for 30 minutes, followed by defoaming under reduced pressure at 20 Torr for 20 minutes in a rotary evaporator.

!;0rnl−jjラスビーカー中にヒドロキシアパタ
イトとジルコニアの混合スラリーを入れ、このスラリー
中に前記の機械加工したジルコニア成形体を長平方向の
半分の15間だけ30秒間浸漬して、ジルコニア成形体
表面にヒドロキシアパタイトとジルコニアの混合粉末な
被着した。
! ;0rnl-jj A mixed slurry of hydroxyapatite and zirconia is placed in a lath beaker, and the machined zirconia molded body is immersed in this slurry for 30 seconds for 15 minutes in the longitudinal direction to form hydroxyl on the surface of the zirconia molded body. A mixed powder of apatite and zirconia was deposited.

これを2!℃で/昼夜乾燥した後に90℃で/昼夜乾燥
した。さらにこれを電気炉中でro。
This is 2! After drying at 90° C. day and night, it was dried at 90° C. day and night. Further, this was roasted in an electric furnace.

℃まで10℃/hで昇温してroo℃で1時間保持して
脱脂した後に、200℃/hで昇温して/ 2!;0℃
で2を時間焼成した。
℃ at a rate of 10℃/h, held at roo℃ for 1 hour to degrease, and then heated at a rate of 200℃/h/2! ;0℃
The mixture was baked for 2 hours.

このようにして、ジルコニア焼結体の表面にα−TCP
とジルコニアの混合物からなる多孔質焼結体の被覆層を
有するセラミックス製インプラントを得た。
In this way, α-TCP was applied to the surface of the zirconia sintered body.
A ceramic implant having a coating layer of a porous sintered body made of a mixture of zirconia and zirconia was obtained.

(発明の効果) 以上述べた方法によれば、機械的強度が筒(て生体内で
破損せず、かつ芯材と強固に接合された生体活性な表面
多孔層を有するセラミックス製インプラントを容易に得
ることができ、従って、人工歯根、人工関節、人工骨な
どの生体インプラント材料として好適に利用することが
できる。
(Effects of the Invention) According to the method described above, it is possible to easily produce a ceramic implant having a bioactive surface porous layer that is not damaged in vivo due to its mechanical strength and is firmly bonded to the core material. Therefore, it can be suitably used as a material for biological implants such as artificial tooth roots, artificial joints, and artificial bones.

Claims (2)

【特許請求の範囲】[Claims] (1)ジルコニア焼結体の表面にα型リン酸三カルシウ
ムとジルコニアの混合物からなる多孔質焼結体の被覆層
を有するセラミックス製インプラント。
(1) A ceramic implant having a coating layer of a porous sintered body made of a mixture of α-type tricalcium phosphate and zirconia on the surface of the zirconia sintered body.
(2)部分安定化ジルコニアよりなる成形体の表面にヒ
ドロキシアパタイトとジルコニアの混合粉末を被着した
のち焼成することを特徴とするセラミックス製インプラ
ントの製造方法。
(2) A method for manufacturing a ceramic implant, which comprises depositing a mixed powder of hydroxyapatite and zirconia on the surface of a molded body made of partially stabilized zirconia and then firing it.
JP63027031A 1988-02-08 1988-02-08 Ceramic implant and production thereof Pending JPH01203285A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63027031A JPH01203285A (en) 1988-02-08 1988-02-08 Ceramic implant and production thereof
DE68917947T DE68917947T2 (en) 1988-02-08 1989-02-07 Ceramic implant and method for its manufacture.
EP89102069A EP0328041B1 (en) 1988-02-08 1989-02-07 Ceramic implant and process for its production
US07/307,640 US4983182A (en) 1988-02-08 1989-02-08 Ceramic implant and process for its production
US07/596,954 US5185177A (en) 1988-02-08 1990-10-15 Producing a ceramic implant by coating a powder mixture of zirconia and either tricalcium phosphate or hydroxyapatite on a molded unsintered body of partially stabilized zirconia and then sintering the article
US07/903,327 US5192325A (en) 1988-02-08 1992-06-24 Ceramic implant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63027031A JPH01203285A (en) 1988-02-08 1988-02-08 Ceramic implant and production thereof

Publications (1)

Publication Number Publication Date
JPH01203285A true JPH01203285A (en) 1989-08-16

Family

ID=12209702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63027031A Pending JPH01203285A (en) 1988-02-08 1988-02-08 Ceramic implant and production thereof

Country Status (1)

Country Link
JP (1) JPH01203285A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023775A1 (en) * 1994-03-02 1995-09-08 Kabushiki Kaisya Advance TYPE α TRICALCIUM PHOSPHATE CERAMIC AND PROCESS FOR PRODUCING THE SAME
KR100501674B1 (en) * 2002-12-12 2005-07-20 성윤모 Synthesis of Hydroxyapatite Composite Nanopowder Using Co-precipitation
US7611781B1 (en) 1999-11-02 2009-11-03 Panasonic Electric Works Co., Ltd. Hard tissue repairing material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105764A (en) * 1986-10-21 1988-05-11 株式会社 香蘭社 Ceramic for living body prosthesis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105764A (en) * 1986-10-21 1988-05-11 株式会社 香蘭社 Ceramic for living body prosthesis

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023775A1 (en) * 1994-03-02 1995-09-08 Kabushiki Kaisya Advance TYPE α TRICALCIUM PHOSPHATE CERAMIC AND PROCESS FOR PRODUCING THE SAME
US5679294A (en) * 1994-03-02 1997-10-21 Kabushiki Kaisya Advance α-tricalcium phosphate ceramic and production method thereof
US7611781B1 (en) 1999-11-02 2009-11-03 Panasonic Electric Works Co., Ltd. Hard tissue repairing material
KR100501674B1 (en) * 2002-12-12 2005-07-20 성윤모 Synthesis of Hydroxyapatite Composite Nanopowder Using Co-precipitation

Similar Documents

Publication Publication Date Title
US4983182A (en) Ceramic implant and process for its production
US5192325A (en) Ceramic implant
JPS5911843A (en) Dental implant for mounting denture
Kim et al. Pressureless sintering and mechanical and biological properties of fluor‐hydroxyapatite composites with zirconia
US4626392A (en) Process for producing ceramic body for surgical implantation
US5356436A (en) Materials for living hard tissue replacements
JP2005519194A (en) Method for covering a device with a ceramic layer, ceramic surface layer and coated device
CN106904962B (en) Preparation method of bioactive zirconia dental ceramic material
US5185177A (en) Producing a ceramic implant by coating a powder mixture of zirconia and either tricalcium phosphate or hydroxyapatite on a molded unsintered body of partially stabilized zirconia and then sintering the article
JPS62202884A (en) Live body substitute ceramic material
JP3648968B2 (en) Biological zirconia composite ceramic sintered body
JPS63134672A (en) Formation of calcium phosphate film and member to be implanted in living body
JPH02182261A (en) Preparation of ceramic member for living body
JPH01203285A (en) Ceramic implant and production thereof
JPH0720486B2 (en) Calcium phosphate-based bioprosthetic material and method for producing the same
US5783248A (en) Process for producing a bioceramic composite material containing natural bone material on an alumina substrate
JPS5945384B2 (en) Manufacturing method for high-strength biological components
JP5400317B2 (en) Implant material
JPH01203284A (en) Ceramic implant and its manufacturing method
JP3769427B2 (en) Ceramic biomaterial
CN113548890A (en) A kind of modified zirconia ceramics with high biological activity and high mechanical strength and preparation method thereof
JP3773301B2 (en) Calcium phosphate porous composite and method for producing the same
JPH11178912A (en) Bioprosthetic members
JPS63105764A (en) Ceramic for living body prosthesis
JPS60203263A (en) Production of ceramic body for implant