[go: up one dir, main page]

JPH01202183A - Article levitation supporting device - Google Patents

Article levitation supporting device

Info

Publication number
JPH01202183A
JPH01202183A JP62173012A JP17301287A JPH01202183A JP H01202183 A JPH01202183 A JP H01202183A JP 62173012 A JP62173012 A JP 62173012A JP 17301287 A JP17301287 A JP 17301287A JP H01202183 A JPH01202183 A JP H01202183A
Authority
JP
Japan
Prior art keywords
support
coil
force
superconducting
article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62173012A
Other languages
Japanese (ja)
Inventor
Keizo Sugita
杉田 恵三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62173012A priority Critical patent/JPH01202183A/en
Publication of JPH01202183A publication Critical patent/JPH01202183A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/041Passive magnetic bearings with permanent magnets on one part attracting the other part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/10Railway vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PURPOSE:To increase a levitation supporting force in a small size by levitating and supporting an article by a ferromagnetic element in a magnetic field by a superconducting coil. CONSTITUTION:An article levitation supporting device is composed of a superconducting coil 11 made of an yttrium-barium series oxide superconducting material, ferromagnetic units 12-13, and a support 14, and an article 15 is placed on the support 14. Thus, forces F12...F15 are generated at the units 12-13, the support 14 and the article 15. Then, the coil 11 is secured, set to a superconducting state, and the support 14 is so mounted as to receive an upward force at the support 14. When a current flows to the coil 11 in this state, the support 14 is levitated and supported. Thus, since it is in a noncontact structure, no wear and no fatigue are provided, and the levitating and supporting force can be varied by regulating the current.

Description

【発明の詳細な説明】 〔産業上の利用分野) この発明は、浮揚支持力が可変で浮揚支持部分の摩擦や
疲労などがなく、半永久的に浮揚支持力を発生し、この
浮揚支持力の経年変化がない物体浮揚支持装置に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention has a variable buoyancy support force, eliminates friction and fatigue of the buoyancy support part, generates a buoyancy support force semi-permanently, and improves the buoyancy support force. This invention relates to an object levitation support device that does not change over time.

〔従来の技術〕[Conventional technology]

従来の物体浮揚支持装置の一例を第6図(a)〜第6図
(d)に示す。第6図(a)において、1は板ばね、2
は物体である。物体2の重量に対応した強さの板ばね1
を1枚または複数枚重ね、湾曲させて両端を接合し、こ
れらの板ばね1の中央部3を地面または台4に固定し、
対向する板ば7ね1の中央の支持部5において物体2を
浮揚支持するものである。
An example of a conventional object levitation support device is shown in FIGS. 6(a) to 6(d). In FIG. 6(a), 1 is a leaf spring, 2
is an object. Leaf spring 1 whose strength corresponds to the weight of object 2
One or more leaf springs are stacked, bent and joined at both ends, and the central part 3 of these leaf springs 1 is fixed to the ground or a stand 4,
The object 2 is supported in a floating manner at the central support portion 5 of the opposing leaf springs 7 and 1.

また、第6図(b)に示すように、重ねた板ばね1の両
端6を、直接地面または台4に固定しても前記と同様の
効果が得られる。これらは主に車両の浮揚支持用に用い
られている。
Furthermore, as shown in FIG. 6(b), the same effect as described above can be obtained even if both ends 6 of the stacked leaf springs 1 are directly fixed to the ground or the base 4. These are mainly used for floating support of vehicles.

第6図(C)はコイルスプリングによる浮揚支持装置で
ある。7はコイルスプリングで、剛性の高い金属をコイ
ル状にし、一方を固定することにより他方の端点に取り
付けられた支持部5で物体2を浮揚支持するものである
FIG. 6(C) shows a floating support device using a coil spring. Reference numeral 7 denotes a coil spring, which is made of highly rigid metal into a coil shape, and by fixing one end of the spring, the object 2 is suspended and supported by a support section 5 attached to the other end.

第6図(d)は空気ばね(エアシリンダ)による浮揚支
持装置である。8はコンプレッサ、9は空気ばね(エア
シリンダ)、10はシリンダの密閉用のシール材で、シ
リンダ内にコンプレッサにより圧縮された空気が送り込
まれ、この圧縮空気の弾性力により物体が浮揚支持され
る。
FIG. 6(d) shows a floating support device using an air spring (air cylinder). 8 is a compressor, 9 is an air spring (air cylinder), and 10 is a sealing material for sealing the cylinder. Air compressed by the compressor is sent into the cylinder, and the object is suspended and supported by the elastic force of this compressed air. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記第6図(a)、(b)の従来例は、装置が大型であ
ること、疲労による金属のへたり、あるいは板ばね1の
破損の恐れがあること、組み合わせる板ばね1によりば
ね定数は決まるので、浮揚支持力の変更は容易でないこ
となどの欠点を持っている。また、第6図(C)に示す
ものは、板ばね1と同様に、疲労による金属のへたりや
スプリングの破損の恐れがある。そして、ばね定数はば
ね材の材質や太さなどにより決まるため、浮揚支持力の
変更は困難である。さらに、第6図(d)に示すものは
、圧縮空気の圧力を変化させることによりばね定数を変
化させることができるが、コンプレッサ8を必要とする
ため装置の大型化は避けられないなどの欠点を有する。
In the conventional examples shown in FIGS. 6(a) and 6(b), the device is large, there is a risk of metal fatigue or damage to the leaf spring 1, and the spring constant is limited due to the combination of the leaf springs 1. However, it has the disadvantage that it is not easy to change the buoyancy support force. Further, in the case shown in FIG. 6(C), like the leaf spring 1, there is a risk that the metal may weaken or the spring may be damaged due to fatigue. Since the spring constant is determined by the material, thickness, etc. of the spring material, it is difficult to change the buoyancy support force. Furthermore, although the spring constant shown in FIG. 6(d) can be changed by changing the pressure of compressed air, it has drawbacks such as the need for a compressor 8, which inevitably increases the size of the device. has.

この発明の目的は、上記従来例の欠点を除き、小形で浮
揚支持力が大きく、浮揚支持力を容易に変更することが
でき、しかも発熱や摩耗がないため経年変化がなく、さ
らにこれらの機能を実現するための定常的に加えるエネ
ルギーを必要としない浮揚支持装置を提供することにあ
る。
The purpose of this invention is to eliminate the drawbacks of the above-mentioned conventional examples, to be small in size, to have a large buoyancy support force, to be able to easily change the buoyancy support force, and to prevent deterioration over time as there is no heat generation or wear. The object of the present invention is to provide a buoyancy support device that does not require constant application of energy to achieve this.

(問題点を解決するための手段) この発明にかかる物体浮揚支持装置は、超伝導材料を用
いてループを成すようにリング状に形成した超伝導コイ
ルと、この超伝導コイル内にループ状に流れる電流によ
りて生じる磁界によりコイル中心部に向かう電磁力を受
ける物体を浮揚支持する強磁性体とにより構成されたも
のである。
(Means for Solving the Problems) An object levitation support device according to the present invention includes a superconducting coil formed in a ring shape using a superconducting material, and a loop shape inside the superconducting coil. It is composed of a ferromagnetic material that levitates and supports an object that receives an electromagnetic force directed toward the center of the coil due to a magnetic field generated by a flowing current.

〔作用) この発明においては、超伝導コイルが作る磁界中におか
れた強磁性体がコイル中心部に向かう電磁力を受け、こ
の磁力により物体を浮揚支持する。
[Function] In this invention, a ferromagnetic material placed in a magnetic field created by a superconducting coil receives an electromagnetic force directed toward the center of the coil, and this magnetic force levitates and supports an object.

〔実施例〕〔Example〕

はじめに、この発明の原理について第3図により説明す
る。第3図において、円筒座標系(x−r−θ面)にお
いて超伝導コイル11をr−0面上におくと、コイル内
を流れる電流はX軸方向成分を持たないとみなすことが
できる。したがって、 rotH= iの関係により生
起される磁界Hは、電流ベクトルと外積の関係になるた
めθ成分を持たず、r−x面の2次元ベクトルとなる。
First, the principle of this invention will be explained with reference to FIG. In FIG. 3, when the superconducting coil 11 is placed on the r-0 plane in the cylindrical coordinate system (x-r-θ plane), it can be assumed that the current flowing in the coil does not have an X-axis direction component. Therefore, the magnetic field H generated by the relationship rotH=i has a cross product relationship with the current vector, so it does not have a θ component and becomes a two-dimensional vector on the r-x plane.

第3図は超伝導コイル11に図中矢印の方向(■は紙面
に対して上から下、■は紙面に対して下から上)に電流
を流したときに生じる磁界分布を示す。
FIG. 3 shows the magnetic field distribution generated when a current is passed through the superconducting coil 11 in the direction of the arrow in the figure (■ indicates from top to bottom with respect to the plane of the paper, and ■ indicates from bottom to top with respect to the plane of the paper).

これにより、r−θ面と直交するコイル中心軸(X軸)
上におけるX軸方向の磁束密度Bの分布は第4図(a)
に示すようになる。また、X軸方向の磁束密度Bの傾き
d B / d xは第4図(b)に示すように超伝導
コイルの十×方向、−x方向とでは原点に対して対称と
なる。また、このときX軸上の強磁性体に作用す磁気力
Fは磁束密度BとdB/dXの積に比例するので、第4
図(C)のような磁気力が得られる。また、電流の方向
が逆でも第4図(C)と同様にコイル中心に向う力が得
られる。
This allows the coil center axis (X-axis) to be perpendicular to the r-θ plane.
The distribution of magnetic flux density B in the X-axis direction above is shown in Figure 4(a).
It becomes as shown in . Further, the slope dB/dx of the magnetic flux density B in the X-axis direction is symmetrical with respect to the origin in the 10x direction and the -x direction of the superconducting coil, as shown in FIG. 4(b). Also, since the magnetic force F acting on the ferromagnetic material on the X-axis at this time is proportional to the product of magnetic flux density B and dB/dX, the fourth
A magnetic force as shown in figure (C) is obtained. Further, even if the direction of the current is reversed, a force directed toward the center of the coil can be obtained as in FIG. 4(C).

すなわち、第3図においてP点(−p、0゜0)に強磁
性体をおくと、原点(コイル中心)に向かう力Fpを受
け、また、超伝導コイル面に対しP点とは逆のQ点(p
、0.O)におかれた強磁性体は、P点におかれた強磁
性体と同様にコイル中心に向かうカーFpを受ける。
In other words, if a ferromagnetic material is placed at point P (-p, 0°0) in Fig. 3, it will receive a force Fp directed toward the origin (coil center), and a force Fp will be applied to the superconducting coil surface opposite to point P. Q point (p
,0. The ferromagnetic material placed at point O) receives a Kerr Fp directed toward the center of the coil in the same way as the ferromagnetic material placed at point P.

このように、一定方向に電流を流したコイルが作る磁界
によって、コイル中心部付近にある強磁性体はコイル中
心部に向かう力を受ける。したがって、第5図(a)の
ように、両方向の力を受ける強磁性体12.13を結合
すれば、ある位置において両者の力は打ち消し合い安定
するが、この状態から第5図(b)のように、どちらか
にΔX変位させれば作用する力のバランスが崩れ、元の
安定状態に戻ろうとする力FΔXが働き、ばねと同等の
作用を得ることができる(第5図(C)。
In this way, the ferromagnetic material near the center of the coil receives a force directed toward the center of the coil due to the magnetic field created by the coil in which current flows in a certain direction. Therefore, as shown in Fig. 5(a), if the ferromagnetic bodies 12 and 13 which are subjected to forces in both directions are combined, the two forces cancel each other out at a certain position and become stable, but from this state, as shown in Fig. 5(b). As shown in FIG. .

(d))。(d)).

同様の構造のものは常伝導のコイルにおいても実現でき
るが、電流を常時流す必要があることから発熱や電力消
費の点から汎用的な浮揚物体支持装置としての実用性は
ない。これに対し、超伝導コイルを使用した物体浮揚支
持装置は、超伝導物質の持つマイスナー効果によりコイ
ル中心部に磁束を封じ込めることができるため、中心部
に向かう力を十分大きくすることができ、抵抗0で電流
が流れ続けるので発熱の問題もなく、電力消費も0であ
る。また、ばねとしての弾性力を変化させるときはコイ
ルに流れる電流を制御するだけでよく、従来の金属の弾
性力を利用したばねに比べて小形化できるだけでなく、
経年変化による疲労や摩耗などの欠点を解消することが
できる。
A similar structure can be realized using a normal conduction coil, but it is not practical as a general-purpose floating object support device due to the heat generation and power consumption as it requires constant current flow. On the other hand, object levitation support devices using superconducting coils can confine the magnetic flux in the center of the coil due to the Meissner effect of superconducting materials, so the force directed toward the center can be sufficiently large and the resistance Since the current continues to flow at zero, there is no problem of heat generation, and power consumption is zero. In addition, when changing the elastic force of a spring, it is only necessary to control the current flowing through the coil, which not only allows for a smaller size compared to conventional springs that utilize the elastic force of metal.
It is possible to eliminate defects such as fatigue and wear due to aging.

第1図(a)は上記原理に基づくこの発明の第1の実施
例で、第1図(b)は各部に作用する力の説明図である
。11は、例えばイツトリウムバリウム系の酸化物超伝
導材料からなる超伝導コイル、12.13は強磁性体、
14は支持部、15は前記支持部14の上に乗せる物体
である。
FIG. 1(a) shows a first embodiment of the present invention based on the above principle, and FIG. 1(b) is an explanatory diagram of the forces acting on each part. 11 is a superconducting coil made of yttrium barium-based oxide superconducting material, 12.13 is a ferromagnetic material,
Reference numeral 14 indicates a support portion, and reference numeral 15 indicates an object to be placed on the support portion 14.

F 121  F 131  F 141 F +sは
それぞれ前記強磁性体12.13.支持部14および物
体15に作用する力を示す。 超伝導コイル11を固定
し、これを超伝導状態にし、支持部14が下向きの力を
受けるように、強磁性体部分12が上向きの力を受ける
ように支持部14を設置し、この状態で超伝導コイル1
1に電流を流すと支持部14は浮揚支持される。このと
きの各部の力関係は、F13=F 12十F 14+ 
F 15となる。この支持部14の上に物体15を乗せ
ることにより、非接触で浮揚支持することができる。
F 121 F 131 F 141 F +s are the ferromagnetic materials 12, 13, respectively. The forces acting on the support 14 and the object 15 are shown. The superconducting coil 11 is fixed and brought into a superconducting state, and the supporting part 14 is installed so that the supporting part 14 receives a downward force and the ferromagnetic part 12 receives an upward force. Superconducting coil 1
When a current is applied to the support portion 14, the support portion 14 is supported in a floating manner. The force relationship of each part at this time is F13=F 120F 14+
It becomes F15. By placing the object 15 on this support portion 14, it is possible to support the object 15 in a floating manner without contact.

このような非接触の構造であるため、摩耗や疲労がなく
、超伝導コイル11に流す電流を調節するか、もしくは
強磁性体12.13の配置を変えることにより浮揚支持
力を変化することができる。また、−環電流を流せば後
はエネルギーを供給する必要はなため、半永久的に使用
できる。
Because of this non-contact structure, there is no wear or fatigue, and the levitation support force can be changed by adjusting the current flowing through the superconducting coil 11 or by changing the arrangement of the ferromagnetic materials 12 and 13. can. Furthermore, once a ring current is applied, there is no need to supply energy, so it can be used semi-permanently.

第2図はこの発明の第2の実施例を示すものである。I
IA、11Bは超伝導コイル、14は支持部(回転軸)
、16は前記支持部14の中央に取り付けられた導体円
盤、17はリニアモータであり、リニアモータ17でト
ルクを受け回転する導体円盤16は2つの超伝導コイル
11A、11Bによる浮揚支持を受けることになるため
、軸受けが非接触となり、従来のベアリングによる軸受
け機構に比べ摩耗、騒音、潤滑油(グリース)の使用な
どの点で大幅に改善できる。
FIG. 2 shows a second embodiment of the invention. I
IA, 11B are superconducting coils, 14 is a support part (rotating shaft)
, 16 is a conductor disk attached to the center of the support part 14, 17 is a linear motor, and the conductor disk 16, which is rotated by receiving torque from the linear motor 17, is supported in levitation by two superconducting coils 11A and 11B. As a result, the bearings are non-contact, and compared to conventional bearing mechanisms, there are significant improvements in terms of wear, noise, and the use of lubricating oil (grease).

なお、上記実施例では、1個の超伝導コイル11、II
A、IIB等に対し2個の強磁性体12.13を用いた
が、これは上方への力を発生する強磁性体13だけでも
、物体15等を含めた下方への力と釣合えばよい。
In the above embodiment, one superconducting coil 11, II
Two ferromagnetic bodies 12 and 13 were used for A, IIB, etc., but even if only the ferromagnetic body 13 that generates an upward force balances the downward force including the object 15 etc. good.

〔発明の効果〕 以上説明したようにこの発明は、超伝導材料を用いてル
ープを成すようにリング状に形成した超伝導コイルと、
超伝導コイル内にループ状に流れる電流によって生じる
磁界によりコイル中心部に向かう電磁力を受け物体を浮
揚支持する強磁性体とにより構成したものであるので、
板ばねやコイルスプリングなどによる金属の弾性力を利
用した従来の浮揚支持装置に比べ、摩耗や疲労などによ
る破損の心配がなく、浮揚支持力を容易に可変でき、し
かも定常的にエネルギーを供給する必要がないなどの利
点を有する。また、浮揚支持力が可変である空気ばねに
比べて装置の小形化が図れ、発熱しないので、あらゆる
浮揚支持に適用できる。
[Effects of the Invention] As explained above, the present invention includes a superconducting coil formed in a ring shape using a superconducting material to form a loop;
It is composed of a ferromagnetic material that levitates and supports an object by receiving electromagnetic force toward the center of the coil due to the magnetic field generated by the current flowing in a loop inside the superconducting coil.
Compared to conventional levitation support devices that utilize the elastic force of metal such as leaf springs or coil springs, there is no fear of damage due to wear or fatigue, the levitation support force can be easily varied, and energy is constantly supplied. It has the advantage that it is not necessary. In addition, the device can be made more compact than an air spring with variable levitation support force, and does not generate heat, so it can be applied to any type of levitation support.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)はこの発明の一実施例を示す構成略図、第
1図(a’ )は、第1図(b)の実施例における各部
の力関係の説明図、第2図はこの発明の他の実施例を示
す構成略図、第3図は超伝導コイルに一定方向の電流を
流したときに生じる磁界と、この磁界中におかれた強磁
性体が受けるカの方向を示した図、第4図(a)は、第
3図におけるX軸上の磁束密度BのX方向成分、第4図
(b)はそのX方向の傾き、第4図(C)はX方向の力
Fをそれぞれ示す図、第5図(a)は超伝導コイルの両
側におかれた強磁性体が受けるカのバランス状態を示す
図、第5図(b)は変位Xを与えたときに生じる力の方
向を示す図、第5図(C)、(d)は、第5図(a)、
(b)の状態をグラフで表した図、第6図(a)〜(d
)は従来の浮揚支持装置の各種の例を示す図である。 図中、11.IIA、11Bは超伝導コイル、12.1
3は力を受ける強磁性体、14は支持部、15は浮揚支
持される物体、16は導体円盤、17はリニアモータで
ある。 第1図 (a) 第2図 第3図 第4図 第5図 第6図 (a)       (b) (c)      (d) 手続補正書(方刻 昭和63年12月23日
FIG. 1(a) is a schematic configuration diagram showing one embodiment of the present invention, FIG. 1(a') is an explanatory diagram of the force relationship of each part in the embodiment of FIG. 1(b), and FIG. Figure 3, a schematic diagram of the configuration of another embodiment of the invention, shows the magnetic field generated when a current is passed in a certain direction through a superconducting coil, and the direction of the force exerted on a ferromagnetic material placed in this magnetic field. 4(a) is the X-direction component of the magnetic flux density B on the X-axis in FIG. 3, FIG. 4(b) is the slope in the X-direction, and FIG. 4(C) is the force in the X-direction. Fig. 5(a) is a drawing showing the balanced state of force exerted on the ferromagnetic material placed on both sides of the superconducting coil, and Fig. 5(b) is a diagram showing the force that occurs when displacement X is applied. Diagrams showing the direction of force, Figures 5(C) and (d), Figure 5(a),
A graph representing the state of (b), Figures 6(a) to (d)
) are diagrams showing various examples of conventional floating support devices. In the figure, 11. IIA, 11B is a superconducting coil, 12.1
3 is a ferromagnetic material that receives force, 14 is a support portion, 15 is an object to be supported in levitation, 16 is a conductor disk, and 17 is a linear motor. Figure 1 (a) Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 (a) (b) (c) (d) Procedural amendment (engraved December 23, 1988)

Claims (1)

【特許請求の範囲】[Claims] 超伝導材料を用いてループを成すようにリング状に形成
した超伝導コイルと、この超伝導コイル内にループ状に
流れる電流によって生じる磁界によりコイル中心部に向
かう電磁力を受け物体を浮揚支持する強磁性体とにより
構成されたことを特徴とする物体浮揚支持装置。
A superconducting coil formed in a ring shape using a superconducting material and a magnetic field generated by a current flowing in a loop inside this superconducting coil receives an electromagnetic force directed toward the center of the coil to levitate and support an object. An object levitation support device comprising a ferromagnetic material.
JP62173012A 1987-07-13 1987-07-13 Article levitation supporting device Pending JPH01202183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62173012A JPH01202183A (en) 1987-07-13 1987-07-13 Article levitation supporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62173012A JPH01202183A (en) 1987-07-13 1987-07-13 Article levitation supporting device

Publications (1)

Publication Number Publication Date
JPH01202183A true JPH01202183A (en) 1989-08-15

Family

ID=15952561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62173012A Pending JPH01202183A (en) 1987-07-13 1987-07-13 Article levitation supporting device

Country Status (1)

Country Link
JP (1) JPH01202183A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332987A (en) * 1992-07-31 1994-07-26 Intermagnetics General Corporation Large gap magnetic suspension system with superconducting coils
WO2006126307A1 (en) * 2005-05-23 2006-11-30 Central Japan Railway Company Superconductivity utilizing support mechanism, and permanent magnet utilizing support mechanism
JP2007174749A (en) * 2005-12-20 2007-07-05 Railway Technical Res Inst Electromagnetic force support device using superconducting magnet device
JP2007189796A (en) * 2006-01-12 2007-07-26 Railway Technical Res Inst Superconducting magnet device capable of supporting heavy objects
JP2007209129A (en) * 2006-02-02 2007-08-16 Railway Technical Res Inst Testing device for electromagnetic force support device using superconducting magnet device
JP2008529465A (en) * 2005-01-31 2008-07-31 ライプニッツ−インスティトゥート フュア フェストケルパー− ウント ヴェルクシュトフフォルシュング ドレスデン エー ファオ Magnetic levitation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332987A (en) * 1992-07-31 1994-07-26 Intermagnetics General Corporation Large gap magnetic suspension system with superconducting coils
JP2008529465A (en) * 2005-01-31 2008-07-31 ライプニッツ−インスティトゥート フュア フェストケルパー− ウント ヴェルクシュトフフォルシュング ドレスデン エー ファオ Magnetic levitation device
WO2006126307A1 (en) * 2005-05-23 2006-11-30 Central Japan Railway Company Superconductivity utilizing support mechanism, and permanent magnet utilizing support mechanism
EP1884671A4 (en) * 2005-05-23 2011-04-13 Tokai Ryokaku Tetsudo Kk Superconductivity utilizing support mechanism, and permanent magnet utilizing support mechanism
US7969054B2 (en) 2005-05-23 2011-06-28 Central Japan Railway Company Superconductivity utilizing support mechanism, and permanent magnet utilizing support mechanism
JP2007174749A (en) * 2005-12-20 2007-07-05 Railway Technical Res Inst Electromagnetic force support device using superconducting magnet device
JP2007189796A (en) * 2006-01-12 2007-07-26 Railway Technical Res Inst Superconducting magnet device capable of supporting heavy objects
JP2007209129A (en) * 2006-02-02 2007-08-16 Railway Technical Res Inst Testing device for electromagnetic force support device using superconducting magnet device

Similar Documents

Publication Publication Date Title
US6304015B1 (en) Magneto-dynamic bearing
US6657344B2 (en) Passive magnetic bearing for a horizontal shaft
US5398571A (en) Flywheel storage system with improved magnetic bearings
US3493274A (en) Magnetic support systems
IE850634L (en) Magnetic bearing
JPS5833932B2 (en) Automatic pressure generating gas floating segment bearing
EP0585351A1 (en) Magnet-superconductor systems having high thrust and high stability
WO2007101271A2 (en) Permanent magnetic male and female levitation supports
CA2278510C (en) Electrodynamic magnetic bearing
Qian et al. Novel magnetic spring and magnetic bearing
Hirani et al. Hybrid (hydrodynamic+ permanent magnetic) journal bearings
KR101552350B1 (en) Thrust Magnetic Bearing for Bias Compensation
CN206874654U (en) A kind of based superconductive magnetic suspension and the device of air supporting composite support
JPH01202183A (en) Article levitation supporting device
US6601519B1 (en) Hybrid magnetically supported carriage transporter
JPH04245408A (en) Electromagnetic support depending upon no current
JP2008249011A (en) Electromagnetic attraction type magnetic bearing and its control method
US7969054B2 (en) Superconductivity utilizing support mechanism, and permanent magnet utilizing support mechanism
US10830278B2 (en) Halbach-array levitating passive magnetic bearing configuration
CN206874653U (en) A kind of device based on permanent magnet suspension Yu air supporting composite support
US5789838A (en) Three-axis force actuator for a magnetic bearing
Komori et al. Basic study of a magnetically levitated conveyer using superconducting magnetic levitation
Komori et al. Evaluations of a hybrid-type superconducting magnetic bearing system
KR20060003954A (en) Flotation and propulsion integrated energy converter
JPH01186104A (en) Magnetic levitation device