JPH01200223A - Optical isolator and its production - Google Patents
Optical isolator and its productionInfo
- Publication number
- JPH01200223A JPH01200223A JP2441188A JP2441188A JPH01200223A JP H01200223 A JPH01200223 A JP H01200223A JP 2441188 A JP2441188 A JP 2441188A JP 2441188 A JP2441188 A JP 2441188A JP H01200223 A JPH01200223 A JP H01200223A
- Authority
- JP
- Japan
- Prior art keywords
- prism
- optical
- permanent magnet
- optical isolator
- soldering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は光通信システムや光計測器等で用いる光アイソ
レータに関し、更に詳しくは、各部品同士の結合部に半
田付は可能な金属膜を形成して全ての結合部を半田付け
により結合一体化した光アイソレータ及びその製造方法
に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical isolator used in optical communication systems, optical measuring instruments, etc., and more specifically, the present invention relates to an optical isolator used in optical communication systems, optical measuring instruments, etc. The present invention relates to an optical isolator in which all the joints are formed and integrated by soldering, and a method for manufacturing the same.
[従来の技術〕
光アイソレータは、一方向への光の通過は許容するが逆
方向への光の通過は阻止する機能を持つ非可逆光デバイ
スであり、例えば半導体レーザを光源とする光通信シス
テムにおいてレーザ光が反射によって光源側に戻るのを
防止するため等に用いられている。[Prior Art] An optical isolator is an irreversible optical device that allows light to pass in one direction but blocks light to pass in the opposite direction, and is used, for example, in optical communication systems that use a semiconductor laser as a light source. It is used to prevent laser light from returning to the light source side due to reflection.
光アイソレータは第5図に示すように、偏光子lOと検
光子11との間に45度ファラデー回転子12を配置し
て構成される。ここで偏光子10及び検光子11は、プ
リズムホルダ14゜15内にプリズム16.17を装着
した構造をなし、ファラデー回転子12は永久磁石18
内に磁気光学結晶20を装着した構造をなす。The optical isolator is constructed by arranging a 45 degree Faraday rotator 12 between a polarizer lO and an analyzer 11, as shown in FIG. Here, the polarizer 10 and the analyzer 11 have a structure in which prisms 16 and 17 are mounted in prism holders 14 and 15, and the Faraday rotator 12 has a permanent magnet 18.
It has a structure in which a magneto-optical crystal 20 is mounted inside.
このような光アイソレータは、各構成部品の接合面に接
着剤を塗布し、全て接着剤によって固着し組み立てられ
ていた。接着個所を第5図において破線で示す。Such an optical isolator was assembled by applying adhesive to the joint surfaces of each component and fixing all components with the adhesive. The bonded locations are indicated by broken lines in FIG.
[発明が解決しようとする課題]
ところが光アイソレータのように高精度で組み立てるこ
とが重要な装置において接着剤の信頼性は未だ十分確立
されていない、つまり接着剤には耐候性、アウトガス、
熱膨張等の問題があり、組み立てられた光アイソレータ
の信頼性を低下させる大きな要因となっている。[Problem to be solved by the invention] However, the reliability of adhesives in devices such as optical isolators that require high-precision assembly has not yet been fully established.
There are problems such as thermal expansion, which is a major factor in reducing the reliability of assembled optical isolators.
本発明の目的は、上記のような従来技術が有する諸課題
を解決し、周囲温度変動による光学特性の変化が少なく
、長期間にわたって光学特性が安定化し長寿命化を図る
ことができ、信頼性が高くしかも生産性も大幅に向上さ
せることができる光アイソレータとその製造方法を提供
することにある。The purpose of the present invention is to solve the problems of the prior art as described above, to reduce the change in optical properties due to ambient temperature fluctuations, to stabilize the optical properties over a long period of time, to extend the service life, and to improve reliability. An object of the present invention is to provide an optical isolator and a method for manufacturing the same, which can have high productivity and greatly improve productivity.
[課題を解決するための手段]
上記の目的を達成することのできる本発明は、ともにプ
リズムホルダ内にプリズムを装着した構造の偏光子と検
光子との間に、永久磁石内に磁気光学結晶を装着したフ
ァラデー回転子を配置して結合一体化した光アイソレー
タにおいて、各構成部品同士の互いに結合する部分に半
田付は可能な金属膜を形成し、全て半田付けにより結合
一体化した光アイソレータである。[Means for Solving the Problems] The present invention, which can achieve the above object, includes a magneto-optic crystal in a permanent magnet between a polarizer and an analyzer, both of which have a structure in which a prism is mounted in a prism holder. In an optical isolator in which a Faraday rotator equipped with a Faraday rotator is arranged and integrated, a metal film that can be soldered is formed on the parts where each component is connected to each other. be.
ここでプリズムホルダとプリズムとの結合及び永久磁石
と磁気光学結晶との結合は、例えばプリズムホルダ及び
永久磁石に外側から内側に達する通し孔を形成して半田
を挿入し、該通し孔を通してレーザビームを照射し半田
付けする方法がある。Here, the coupling between the prism holder and the prism and the coupling between the permanent magnet and the magneto-optical crystal can be achieved by, for example, forming a through hole in the prism holder and the permanent magnet that reaches from the outside to the inside, inserting solder, and passing the laser beam through the through hole. There is a method of irradiating and soldering.
永久磁石とプリズムホルダとの結合は、一方の外周にテ
ーバや溝等を形成し、それを利用して外側から半田付け
するのが望ましい。It is desirable to connect the permanent magnet and the prism holder by forming a taper, groove, etc. on the outer periphery of one of them, and using this to solder from the outside.
各部品同士の結合部分に半田付は可能な金属膜を形成す
るには、例えば金メツキがよい。Gold plating, for example, is suitable for forming a metal film that can be soldered onto the joints between the parts.
[作用]
本発明ではプリズムホルダとプリズムとの結合及び永久
磁石と磁気光学結晶との結合は全て半田付けで行われ、
それらによって作られる偏光子、ファラデー回転子、検
光子も半田付けにより互いに結合され一体化される。[Function] In the present invention, the connection between the prism holder and the prism and the connection between the permanent magnet and the magneto-optic crystal are all performed by soldering,
The polarizer, Faraday rotator, and analyzer made by these devices are also connected to each other and integrated by soldering.
従って本発明では信頼性の点で問題のある接着剤を全く
使用していないから、接着剤のもつ種々の問題、例えば
接着剤からのアウトガスの発生や周囲温度変動による接
着剤の熱膨張等の問題が生じず、光学特性が安定化し長
寿命化が図られる。Therefore, since the present invention does not use adhesives that have problems with reliability, various problems with adhesives such as outgassing from the adhesive and thermal expansion of the adhesive due to ambient temperature fluctuations can be avoided. No problems occur, the optical characteristics are stabilized, and the lifespan is extended.
[実施例]
第1図は本発明に係る光アイソレータの一実施例を示す
分解斜視図である。この光アイソレータは、従来同様、
偏光子30と検光子32との間に45度ファラデー回転
子34を配置して結合一体化した構造である。[Embodiment] FIG. 1 is an exploded perspective view showing an embodiment of an optical isolator according to the present invention. This optical isolator, like the conventional one,
It has a structure in which a 45-degree Faraday rotator 34 is arranged between a polarizer 30 and an analyzer 32, and the polarizer 30 and analyzer 32 are coupled and integrated.
ファラデー回転子34は、軸方向に着磁された円筒状の
永久磁石36とその内部に装着される円柱状の磁気光学
結晶38とから構成される。The Faraday rotator 34 is composed of a cylindrical permanent magnet 36 magnetized in the axial direction and a cylindrical magneto-optic crystal 38 mounted inside the permanent magnet 36 .
本発明では、永久磁石36に、その外周面から内周面に
至る通し孔40が形成されており、永久磁石36の全面
及び磁気光学結晶38の外周面(即ち両端の光学面を除
く)は金メツキされている。永久磁石36は例えばサマ
リウム−コバルト系磁石からなり、磁気光学結晶3日は
1.2μm以上の長波長領域ではYIG (イツトリウ
ム−鉄−ガーネット)単結晶等からなる。In the present invention, the permanent magnet 36 is formed with a through hole 40 extending from its outer peripheral surface to its inner peripheral surface, and the entire surface of the permanent magnet 36 and the outer peripheral surface of the magneto-optic crystal 38 (that is, excluding the optical surfaces at both ends) are It is gold plated. The permanent magnet 36 is made of, for example, a samarium-cobalt magnet, and the magneto-optic crystal is made of YIG (yttrium-iron-garnet) single crystal in the long wavelength region of 1.2 μm or more.
磁気光学結晶38は第2図に示すように永久磁石36の
内部に挿入され半田付けにより結合される。この半田付
けは通し孔40に半田42を挿入し、その通し孔40を
通してレーザビームを照射することにより半田付けを行
う、このようにしてファラデー回転子34が組み立てら
れる。As shown in FIG. 2, the magneto-optic crystal 38 is inserted inside the permanent magnet 36 and connected by soldering. This soldering is performed by inserting solder 42 into the through hole 40 and irradiating a laser beam through the through hole 40. In this way, the Faraday rotator 34 is assembled.
偏光子30及び検光子32は共にプリズムホルダ44.
45内にプリズム46.47を装着した構造である。プ
リズムホルダ44.45は共に筒状をなし、外側は永久
磁石36と同様の外周面を持ち、内側にはプリズム46
.47が挿入される角形貫通孔48.49を有し、永久
磁石36と対向する面の外周側にはテーバ面50.51
が形成されており、且つ外周面から内面に至る通し孔5
2.53を有する構造である。ここでプリズムホルダ4
4.45は例えばアルミニウム等から構成され、その全
面に金メツキが施されている。またプリズム46.47
は例えばBK−7等からなり、その両側の光学面を除く
四面に金メツキが施されている。Both the polarizer 30 and the analyzer 32 are mounted in a prism holder 44.
It has a structure in which prisms 46 and 47 are mounted inside 45. The prism holders 44 and 45 are both cylindrical, and have the same outer peripheral surface as the permanent magnet 36 on the outside, and the prism 46 on the inside.
.. 47 is inserted, and a tapered surface 50.51 is provided on the outer peripheral side of the surface facing the permanent magnet 36.
is formed, and a through hole 5 extending from the outer circumferential surface to the inner surface
2.53. Here, prism holder 4
4.45 is made of, for example, aluminum, and its entire surface is plated with gold. Also prism 46.47
is made of, for example, BK-7, and has gold plating on all four sides except for the optical surfaces on both sides.
前記のように偏光子30と検光子32は同じ構造である
から、以下偏光子30についてのみ説明する。偏光子3
0は、第3図に示すようにプリズムホルダ44の角形貫
通孔48内にプリズム46を挿入し結合する。この結合
は、ファラデー回転子34の場合と同様、通し孔52に
半田56を挿入し、該通し孔52を通してレーザビーム
を照射し、その熱により半田56を溶融して結合する。Since the polarizer 30 and the analyzer 32 have the same structure as described above, only the polarizer 30 will be described below. Polarizer 3
0, the prism 46 is inserted into the rectangular through hole 48 of the prism holder 44 and coupled as shown in FIG. This bonding is achieved by inserting solder 56 into a through hole 52, irradiating a laser beam through the through hole 52, and melting the solder 56 by the heat, thereby bonding.
このようにして組み立てられた偏光子30、ファラデー
回転子34、検光子32は第4図に示すようにその順序
で配列され、テーパ面50゜51を利用して半田付けす
る。この半田付けは、テーパ面50,51に半田58を
載せ、レーザビームを照射すること等によって行う。The polarizer 30, Faraday rotator 34, and analyzer 32 thus assembled are arranged in that order as shown in FIG. 4, and soldered using the tapered surfaces 50.degree. 51. This soldering is performed by placing solder 58 on the tapered surfaces 50 and 51 and irradiating the tapered surfaces with a laser beam.
以上のようにして、本発明によれば全て半田付けにより
各構成部品を結合し光アイソレータが組み立てられる。As described above, according to the present invention, the optical isolator is assembled by connecting each component by soldering.
なお本発明は上記のような構成のみに限定されるもので
はない。上記の実施例ではプリズムホルダの全周にテー
パ面を形成しているが、そのような構造だと半田付けの
際に半田が拡がりすぎる虞れがあるから、複数個所溝を
形成しその溝部で半田付けを行うようにしてもよい。各
部品同士の結合面に形成する金属膜は、金メツキ膜に限
られるものではなく半田付は可能な良好な金属膜であれ
ばよい。その金属膜の形成個所は結合部分であり、プリ
ズムホルダ44゜45の外周面や永久磁石36の外周面
等はそのような金属膜を形成しなくてもよい。しかしマ
スキング等の処理が煩瑣になくなるから、それら構成部
品はプリズムホルダ46.47の両側の光学面と磁気光
学結晶38の両側の光学面を除いて全面に金メツキ等を
行った方が製作は容易である。Note that the present invention is not limited to the above configuration. In the above embodiment, a tapered surface is formed around the entire circumference of the prism holder, but with such a structure, there is a risk that the solder will spread too much during soldering, so grooves are formed in multiple places and the Soldering may also be performed. The metal film formed on the bonding surface between each component is not limited to a gold plating film, and any metal film that is suitable for soldering may be used. The metal film is formed at the joint portion, and it is not necessary to form such a metal film on the outer circumferential surfaces of the prism holders 44 and 45, the outer circumferential surfaces of the permanent magnets 36, and the like. However, since masking and other processes become trivial, it is easier to manufacture these components by gold-plating them all except for the optical surfaces on both sides of the prism holder 46 and 47 and the optical surfaces on both sides of the magneto-optic crystal 38. It's easy.
[発明の効果]
本発明は上記のように各部品同士の結合部分に半田付は
可能な金属膜を形成し、全ての構成部品を半田付けによ
り結合一体化した構造としたから、信顧性の点で問題が
ある接着剤を全く使用しなくて済むため次のような優れ
た効果を奏する。[Effects of the Invention] As described above, the present invention has a structure in which a solderable metal film is formed at the joining portions of each component, and all component parts are integrated by soldering. Since there is no need to use adhesives that are problematic in terms of problems, the following excellent effects can be achieved.
先ず周囲温度上昇による接着剤からのアウトガス発生が
なくなり、構成部品の寿命が長くなる。また周囲温度の
変動による接着剤の熱膨張によって従゛来技術では光軸
ずれが生じていたが、本発明ではそのような光軸ずれが
極力抑えられ光学特性が安定化する。また半田の寿命は
接着剤の寿命よりも長いから、光アイソレータは長期間
にわたって特性が安定化する。更に製作時に接着剤の硬
化時間待ちがなくなり、生産性が大幅に向上する。First, outgassing from the adhesive due to increased ambient temperature is eliminated, extending the life of the component parts. Further, in the conventional technology, optical axis misalignment occurred due to thermal expansion of the adhesive due to fluctuations in ambient temperature, but in the present invention, such optical axis misalignment is suppressed as much as possible and optical characteristics are stabilized. Furthermore, since the life of solder is longer than that of adhesive, the characteristics of the optical isolator are stabilized over a long period of time. Furthermore, there is no need to wait for the adhesive to harden during production, greatly improving productivity.
特にプリズムホルダとプリズムとの結合及び永久磁石と
磁気光学結晶との結合に際して、プリズムホルダ及び永
久磁石に外側から内側に至る通し孔を形成して半田を挿
入し、その通し孔を通してレーザビームを照射し半田付
けする製法を採用すれば、それらの組み立てを迅速且つ
容易に行うことができる。In particular, when coupling a prism holder and a prism or a permanent magnet and a magneto-optical crystal, a through hole is formed in the prism holder and the permanent magnet from the outside to the inside, solder is inserted, and a laser beam is irradiated through the through hole. By employing a manufacturing method that involves soldering, these components can be assembled quickly and easily.
第1図は本発明に係る光アイソレータの一実施例を示す
分解斜視図、第2図はそのファラデー回転子の断面図、
第3図は偏光子の断面図、第4図は組み立てた光アイソ
レータの全体構成図である。
また第5図は従来技術の例を示す説明図である。
30・・・偏光子、32・・・検光子、34・・・ファ
ラデー回転子、36・・・永久磁石、38・・・磁気光
学結晶、40,52.53・・・通し孔、44.45・
・・プリズムホルダ、46.47・・・プリズム、50
.51・・・テーパ面。
第2図 第3図
第4図 第5図FIG. 1 is an exploded perspective view showing an embodiment of the optical isolator according to the present invention, FIG. 2 is a sectional view of its Faraday rotator,
FIG. 3 is a sectional view of the polarizer, and FIG. 4 is an overall configuration diagram of the assembled optical isolator. Further, FIG. 5 is an explanatory diagram showing an example of the prior art. 30... Polarizer, 32... Analyzer, 34... Faraday rotator, 36... Permanent magnet, 38... Magneto-optic crystal, 40,52.53... Through hole, 44. 45・
... Prism holder, 46.47... Prism, 50
.. 51...Tapered surface. Figure 2 Figure 3 Figure 4 Figure 5
Claims (1)
の偏光子と検光子との間に、永久磁石内に磁気光学結晶
を装着したファラデー回転子を配置して結合一体化した
光アイソレータにおいて、各構成部品同士の互いに結合
する部分に半田付け可能な金属膜を形成し、全て半田付
けにより結合一体化したことを特徴とする光アイソレー
タ。 2、プリズムホルダとプリズムとの結合及び永久磁石と
磁気光学結晶との結合は、プリズムホルダ及び永久磁石
に外側から内側に達する通し孔を形成して半田を挿入し
、該通し孔を通してレーザビームを照射して半田付けす
る請求項1記載の光アイソレータの製造方法。[Claims] 1. A Faraday rotator, in which a magneto-optic crystal is mounted in a permanent magnet, is disposed between a polarizer and an analyzer, both of which have a structure in which a prism is mounted in a prism holder, and are coupled and integrated. 1. An optical isolator characterized in that a solderable metal film is formed on the parts of the component parts where they are joined to each other, and all the parts are joined together by soldering. 2. The coupling between the prism holder and the prism and between the permanent magnet and the magneto-optical crystal is achieved by forming a through hole in the prism holder and the permanent magnet that reaches from the outside to the inside, inserting solder, and passing the laser beam through the through hole. 2. The method of manufacturing an optical isolator according to claim 1, further comprising irradiating and soldering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2441188A JPH0750262B2 (en) | 1988-02-04 | 1988-02-04 | Method for manufacturing optical isolator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2441188A JPH0750262B2 (en) | 1988-02-04 | 1988-02-04 | Method for manufacturing optical isolator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01200223A true JPH01200223A (en) | 1989-08-11 |
JPH0750262B2 JPH0750262B2 (en) | 1995-05-31 |
Family
ID=12137417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2441188A Expired - Lifetime JPH0750262B2 (en) | 1988-02-04 | 1988-02-04 | Method for manufacturing optical isolator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0750262B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0335518U (en) * | 1989-08-12 | 1991-04-08 | ||
JPH0360312U (en) * | 1989-10-17 | 1991-06-13 | ||
JPH03179317A (en) * | 1989-12-07 | 1991-08-05 | Namiki Precision Jewel Co Ltd | Faraday rotor for optical isolator and metallizing method thereof |
JPH0493814A (en) * | 1990-08-03 | 1992-03-26 | Fuji Elelctrochem Co Ltd | Production of optical isolator |
JPH0493813A (en) * | 1990-08-03 | 1992-03-26 | Fuji Elelctrochem Co Ltd | Manufacture of optical isolator |
US5161049A (en) * | 1990-04-18 | 1992-11-03 | Shin-Etsu Chemical Co., Ltd. | Optical isolator and method for preparing same |
JPH04333818A (en) * | 1991-05-10 | 1992-11-20 | Nec Corp | Optical isolator and its manufacture |
JPH0545631U (en) * | 1991-11-22 | 1993-06-18 | 信越化学工業株式会社 | Optical isolator |
US5519467A (en) * | 1993-03-10 | 1996-05-21 | Tokin Corporation | Optical isolator device capable of preventing optical axis from inclining by deformation of adhesive |
EP0780717A3 (en) * | 1995-12-18 | 1999-05-06 | Shin-Etsu Chemical Co., Ltd. | Optical isolator and optical part having heat-resistant anti-reflection coating |
-
1988
- 1988-02-04 JP JP2441188A patent/JPH0750262B2/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0335518U (en) * | 1989-08-12 | 1991-04-08 | ||
JPH0360312U (en) * | 1989-10-17 | 1991-06-13 | ||
JPH03179317A (en) * | 1989-12-07 | 1991-08-05 | Namiki Precision Jewel Co Ltd | Faraday rotor for optical isolator and metallizing method thereof |
US5161049A (en) * | 1990-04-18 | 1992-11-03 | Shin-Etsu Chemical Co., Ltd. | Optical isolator and method for preparing same |
JPH0493814A (en) * | 1990-08-03 | 1992-03-26 | Fuji Elelctrochem Co Ltd | Production of optical isolator |
JPH0493813A (en) * | 1990-08-03 | 1992-03-26 | Fuji Elelctrochem Co Ltd | Manufacture of optical isolator |
JPH04333818A (en) * | 1991-05-10 | 1992-11-20 | Nec Corp | Optical isolator and its manufacture |
US5305137A (en) * | 1991-05-10 | 1994-04-19 | Nec Corporation | Optical isolator and method for fabricating the same |
JPH0545631U (en) * | 1991-11-22 | 1993-06-18 | 信越化学工業株式会社 | Optical isolator |
US5519467A (en) * | 1993-03-10 | 1996-05-21 | Tokin Corporation | Optical isolator device capable of preventing optical axis from inclining by deformation of adhesive |
EP0780717A3 (en) * | 1995-12-18 | 1999-05-06 | Shin-Etsu Chemical Co., Ltd. | Optical isolator and optical part having heat-resistant anti-reflection coating |
Also Published As
Publication number | Publication date |
---|---|
JPH0750262B2 (en) | 1995-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01200223A (en) | Optical isolator and its production | |
JPH04410A (en) | Optical isolator and its manufacturing method | |
WO2002008804A9 (en) | Optical isolator | |
JPH09325299A (en) | Optical fiber terminal with optical isolator and semiconductor laser module using the same | |
JPH10133146A (en) | Capillary optical isolator | |
JP2003075679A (en) | Receptacle with optical isolator and method of assembling the same | |
JPS61144613A (en) | Fixing method of optical parts | |
JP2618744B2 (en) | Manufacturing method of optical isolator | |
JP2614780B2 (en) | Manufacturing method of optical isolator | |
JP3556010B2 (en) | Optical isolator | |
JP3267711B2 (en) | Optical isolator | |
JP2922627B2 (en) | Optical isolator | |
JP2967616B2 (en) | Optical isolator | |
JP2529483Y2 (en) | Optical isolator | |
JP2567358Y2 (en) | Optical isolator | |
JPH0540243A (en) | Optical isolator | |
JP2922626B2 (en) | Optical isolator | |
JP2538408Y2 (en) | Optical isolator | |
JPH0610339Y2 (en) | Optical isolator | |
JPH02162319A (en) | Optical isolator | |
JP2538914Y2 (en) | Optical isolator | |
JP2021064010A (en) | Optical isolator | |
JP2001125043A (en) | Optical isolator | |
JPH06313862A (en) | Optical isolator | |
JPH02120707A (en) | Connection structure between optical waveguide and optical fiber |