[go: up one dir, main page]

JPH01198340A - High corrosion resistance organic coated zinc-iron alloy plated steel material - Google Patents

High corrosion resistance organic coated zinc-iron alloy plated steel material

Info

Publication number
JPH01198340A
JPH01198340A JP2345588A JP2345588A JPH01198340A JP H01198340 A JPH01198340 A JP H01198340A JP 2345588 A JP2345588 A JP 2345588A JP 2345588 A JP2345588 A JP 2345588A JP H01198340 A JPH01198340 A JP H01198340A
Authority
JP
Japan
Prior art keywords
plating
layer
corrosion resistance
film
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2345588A
Other languages
Japanese (ja)
Inventor
Maki Ito
真樹 伊藤
Akito Sakota
章人 迫田
Shigeru Wakano
若野 茂
Toshiaki Shioda
俊明 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2345588A priority Critical patent/JPH01198340A/en
Publication of JPH01198340A publication Critical patent/JPH01198340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機被覆を最上層に有する耐食性に優れた亜
鉛−鉄(Zn −Fe)合金めっき鋼材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a zinc-iron (Zn-Fe) alloy plated steel material having excellent corrosion resistance and having an organic coating as the uppermost layer.

〔従来の技術〕[Conventional technology]

近年、鋼材の使用環境はますます厳しくなる傾向にあり
、例えば、自動車における袋構造部、合わせ部あるいは
車体下部等、また海洋構造物や橋梁等、腐食性の厳しい
環境(塩水による濡れ、乾きの繰り返し、特に高湿度下
における)において著しい高耐食性を示す鋼材が求めら
れている。
In recent years, the environments in which steel materials are used have become increasingly harsh.For example, they are used in corrosive environments such as bag structures, mating parts, and lower parts of automobiles, as well as marine structures and bridges (wetting with salt water, drying, etc.). There is a need for steel materials that exhibit significantly high corrosion resistance under repeated conditions (especially under high humidity conditions).

鋼材の耐食性の改善には材料自体の改善、あるいは保護
皮膜の形成イ」与の手段が考えられるが、Zn −Fe
合金めっき鋼材は比較的良好な耐食性を有することから
、従来よりそのような厳しい腐食環境で多く使用されて
いる。
To improve the corrosion resistance of steel materials, it is possible to improve the material itself or to form a protective film, but Zn-Fe
Alloy-plated steel materials have relatively good corrosion resistance, so they have traditionally been widely used in such severe corrosive environments.

このZn −Fe合金めっきは、電気めっき法と溶融め
っき法とで行われている。電気めっき法では、第2図(
a)に模式的に示すように、Fe”″イオンとZn2゛
イオンを含む水溶液からなるめっき浴(例、硫酸塩浴)
からZnとFeを同時に析出させて合金化させることに
より、Zn −Fe合金皮膜か形成される。
This Zn-Fe alloy plating is performed by electroplating and hot-dip plating. In the electroplating method, Fig. 2 (
As schematically shown in a), a plating bath (e.g., sulfate bath) consisting of an aqueous solution containing Fe"" ions and Zn2" ions
A Zn--Fe alloy film is formed by simultaneously precipitating Zn and Fe and alloying them.

電気化学的に卑な亜鉛の方が鉄より析出しやすいため、
めっき中に浴組成が常に変動することや、電流密度のバ
ラツキなどの影響を受けて合金組成が変動するため、電
気めっき法によるZn  Fe合金めっき皮膜には複数
のZn −Fe合金相が混在することになる。
Electrochemically less base zinc is easier to precipitate than iron, so
Because the bath composition changes constantly during plating and the alloy composition changes due to the effects of variations in current density, etc., multiple Zn-Fe alloy phases coexist in the Zn-Fe alloy plating film produced by electroplating. It turns out.

一方、溶融めっき法では、第2図(blに示すように、
純亜鉛の溶融めっきにより得られた亜鉛めっき層を加熱
処理してZnを素地のFeと相互に拡散させて合金化さ
せることにより、Zn −Fe合金皮膜が形成される。
On the other hand, in the hot-dip plating method, as shown in Figure 2 (bl),
A Zn--Fe alloy film is formed by heat-treating a galvanized layer obtained by hot-dipping pure zinc to mutually diffuse Zn and Fe in the base material to form an alloy.

この方法は一般に合金化溶融亜鉛めっき法と呼ばれてい
る。この方法によれば、素地鋼材/めっき界面でFe含
有量が最も高く、めっきの外表面に向かうにつれてFe
含有率が低下する。
This method is generally called alloyed hot-dip galvanizing method. According to this method, the Fe content is highest at the base steel/plating interface, and the Fe content increases toward the outer surface of the plating.
content decreases.

すなわち、めっき皮11Qの断面を見ると、素地M/め
っき界面に電気化学的に最も責なZn −Fe合金相が
存在し、表層側になるほど電気化学的に卑な合金層とな
るように複数のZn −Fe合金相が順に層状に配列し
た構造を成す。
That is, when looking at the cross section of the plating skin 11Q, there is a Zn-Fe alloy phase that is the most electrochemically harmful at the base M/plating interface, and there are multiple Zn-Fe alloy phases that become electrochemically less noble toward the surface. It has a structure in which Zn-Fe alloy phases are sequentially arranged in layers.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したZn−Fe合金めっき鋼材は、いずれのめっき
法のものでも、特に素地鋼材の腐食抑制に優れた効果を
発揮するが、近年問題となっている上記のような厳しい
腐食環境に対するような高水準の要求に対しては充分な
耐食性を示し得ない。
The above-mentioned Zn-Fe alloy plated steel materials, regardless of the plating method, are particularly effective in suppressing corrosion of base steel materials. It cannot show sufficient corrosion resistance to meet the standard requirements.

本発明の目的は、高耐食性の鋼材、特に自動車用、海洋
構造物、橋梁等に用いる鋼材のように厳しい腐食環境で
の使用に耐える高耐食性wAtjAを提供することであ
る。
An object of the present invention is to provide a highly corrosion-resistant steel material, particularly a highly corrosion-resistant wAtjA that can withstand use in severe corrosive environments such as steel materials used in automobiles, marine structures, bridges, etc.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、」二速のような目的を達成すべく、めっ
き鋼材のZn−Pe合金めっき皮膜自体の耐食性を向上
させることに着目し、電気めっきの場合については、各
種めっき条件と耐食性との関係および組成の異なるめっ
き層の重ね合わせによる影響等について、また、溶融め
っきの場合については、合金化度と耐食性との関係につ
いて広範な基礎的検討を試みた。更に、これら各種のめ
っき銅材に下層被膜としてクロメート処理を施し、上層
被膜としてさらに塗料を塗布、乾燥、硬化させて有機高
分子被膜を形成した試料も作成し、耐食性を調べた。
In order to achieve the purpose of "second speed," the present inventors focused on improving the corrosion resistance of the Zn-Pe alloy plating film itself of plated steel materials, and in the case of electroplating, various plating conditions and corrosion resistance. We attempted a wide range of basic studies on the relationship between the degree of alloying and the effects of overlapping plating layers with different compositions, as well as the relationship between the degree of alloying and corrosion resistance in the case of hot-dip plating. Furthermore, samples were prepared in which the various plated copper materials were subjected to chromate treatment as a lower layer coating, and then a paint was further applied as an upper layer coating, dried, and cured to form an organic polymer coating, and the corrosion resistance was investigated.

その結果、クロメート処理および有機被覆によって耐食
性は総じて向上するが、未塗装の場合の耐食性序列かク
ロメート処理と有機被覆によって逆転するといった興味
深い現象を見出した。すなわち、有機被覆を行った塗装
材において抜群の耐食性を示す試料にはそのめっき皮膜
構造に共通の特徴があり、めっき皮膜最表層に純Znま
たはη相(亜鉛−鉄固溶相)から成るめっき層が存在し
ていた。しかし、この構造のめっき皮膜は、未塗装の場
合には早期に白錆が発生し、素地鋼材の腐食に至るとい
う耐食性に劣るものであった。
As a result, we found an interesting phenomenon in that although corrosion resistance generally improved with chromate treatment and organic coating, the corrosion resistance order in the unpainted case was reversed by chromate treatment and organic coating. In other words, the samples that exhibit outstanding corrosion resistance among painted materials with organic coatings have a common feature in their plating film structure, and the outermost layer of the plating film has a plating consisting of pure Zn or η phase (zinc-iron solid solution phase). There were layers. However, the plating film of this structure has poor corrosion resistance, as white rust occurs early when unpainted, leading to corrosion of the base steel material.

この最表層に純Znまたはη相からなる層を有するZn
−reめっき皮膜がクロメート処理および有機被覆後に
示す顕著な高耐食性は、このめっき皮膜が未塗装では耐
食性が劣ることを考慮すると、めっき皮膜自体とり四メ
ート/有機被覆層のいずれか一方による効果ではなく、
両者の相乗作用によって生じたものと考えられよう。
Zn having a layer consisting of pure Zn or η phase on the outermost layer
The remarkable high corrosion resistance that the -re plating film exhibits after chromate treatment and organic coating is not due to the effects of either the chromate layer or the organic coating layer, considering that the corrosion resistance of this plating film is poor when unpainted. Without,
It is thought that this was caused by a synergistic effect between the two.

この基礎的検討で得られた知見に基づきさらに検討した
結果、本発明を完成させた。
As a result of further studies based on the knowledge obtained from this basic study, the present invention was completed.

ここに、本発明の要旨は、鋼材の表面に第1層としてZ
n −Fe固溶体であるη相以外のZn−Fe合金相か
ら成るめっき層を10〜150g/mとその上の第2層
として亜鉛もしくは前記η相から成るめっき層を0.2
〜20g/ g付着させた2層めっき鋼材のめっき表面
上に、Cr付着量として10〜300 mg/ mのク
ロメート下層被膜と、膜厚0.3 P以上の有機高分子
上層被膜とを有することを特徴とする、高耐食性有機被
覆Zn −Fe合金めっき鋼材にある。
Here, the gist of the present invention is to provide Z as a first layer on the surface of the steel material.
A plating layer consisting of a Zn-Fe alloy phase other than the η phase which is an n -Fe solid solution is 10 to 150 g/m, and a second layer thereon is a plating layer consisting of zinc or the η phase of 0.2 g/m.
A chromate lower layer coating with a Cr deposition amount of 10 to 300 mg/m and an organic polymer upper layer coating with a film thickness of 0.3 P or more on the plating surface of the two-layer plated steel material with ~20 g/g deposited. A highly corrosion-resistant organic coated Zn-Fe alloy plated steel material characterized by:

前記の第1層のめっき層は、素地鋼材との界面の最下層
に電気化学的に最も責な合金相が存在し、上になるほど
電気化学的に卑になる順序で複数のZn −Fe合金相
が層状に重なった複層構造のZn −Fe合金めっき皮
膜から構成すると、特に優れた耐食性を得ることができ
る。このような複層構造のZn−Fe合金めっき皮膜は
、前述のように合金化熔融亜鉛めっき法で得られるが、
電気めっき法でも浴組成を適当に変動させて2回以上の
めっきを行うことによりこのような複層めっき構造の皮
膜を得ることができる。
The first plating layer has a plurality of Zn-Fe alloys in which the electrochemically most responsible alloy phase exists in the lowermost layer at the interface with the base steel, and the higher the layer, the more electrochemically base the alloy phase becomes. Particularly excellent corrosion resistance can be obtained by constructing the Zn-Fe alloy plating film with a multilayer structure in which phases are stacked in layers. A Zn-Fe alloy plating film with such a multilayer structure can be obtained by the alloying melt-dip galvanizing method as described above.
A film having such a multilayer plating structure can also be obtained by electroplating by performing plating two or more times while appropriately varying the bath composition.

〔作用〕[Effect]

本発明のめっき鋼材における被覆の断面構造を第1図に
略式で示す。第1図に示すように、素地鋼材上には、め
っき皮膜の第1Nとしてη相(Zn−Fe固溶体)以外
のZn−Fe合金相、すなわち金属間化合物からなるZ
n −Fe合金めっき皮膜と、この第1層の上の第2N
として純亜鉛めっき皮膜またはη相のZn−Fe合金め
っき皮膜とが設けられている。
The cross-sectional structure of the coating in the plated steel material of the present invention is schematically shown in FIG. As shown in Fig. 1, the first N of the plating film contains a Zn-Fe alloy phase other than the η phase (Zn-Fe solid solution), that is, Z consisting of an intermetallic compound.
n -Fe alloy plating film and a second N layer on this first layer.
A pure zinc plating film or an η-phase Zn-Fe alloy plating film is provided as the plating film.

このめっき皮膜の構成について更に詳細に検討した結果
、純Znあるいはη相から成る第2層(最表層)めっぎ
の付着量が0.2〜20g/ mと薄い範囲内にある場
合に高耐食性が確保されることが明らかとなった。0.
28層m未満では、クロメート皮膜の生成が不均一とな
り、皮膜の薄い部分が腐食の開始点となることにより耐
食性が劣化してしまう。
As a result of a more detailed study of the structure of this plating film, we found that high corrosion resistance is achieved when the coating weight of the second layer (outermost layer) of pure Zn or η phase is within a thin range of 0.2 to 20 g/m. It has become clear that this will be ensured. 0.
If the layer thickness is less than 28 m, the formation of the chromate film will be non-uniform, and the thin part of the film will become the starting point for corrosion, resulting in deterioration of corrosion resistance.

一方、20g/ n(超では、塗装後の塗膜損傷部にお
ける耐食性が劣化する。第2層のめっき付着量は特に0
.5〜10g/ mの範囲が好適である。
On the other hand, if it exceeds 20g/n, the corrosion resistance will deteriorate in the damaged parts of the paint film after painting.
.. A range of 5 to 10 g/m is suitable.

この最表層の第2和めつきに対する下層(第1層)めっ
きのイ」着量については、比較的厚い10〜150g/
mの範囲で高耐食性が得られる。これが10g/m未満
では、白錆の発生後、赤錆の発生に至るまでの時間が非
常に短く、素地鋼材に対する防食性が充分でないことが
わかった。一方、150g/n?超では耐食性が飽和し
てしまうにもかかわらず、溶接性の劣化、重量増等の問
題が生じるため、実用めっき鋼材としては不適であると
判断した。第2層めっきの付着量は特に30〜90g/
 mが好適である。
The amount of plating of the lower layer (first layer) relative to the second plating of the outermost layer is 10 to 150 g/1, which is relatively thick.
High corrosion resistance can be obtained within the range of m. It has been found that when this is less than 10 g/m, the time from the occurrence of white rust to the occurrence of red rust is very short, and the corrosion resistance against the base steel material is insufficient. On the other hand, 150g/n? Even though the corrosion resistance is saturated when using ultra-thin steel, problems such as deterioration of weldability and increase in weight occur, so it was judged that it is unsuitable for use as a practical plated steel material. The amount of second layer plating is 30 to 90g/
m is preferred.

第1層の下層めっきは、電気めっき法と溶融めっき法の
いずれで形成することもできる。第2図に関して既述し
たように、Zn −Fe合金めっき皮膜の構造はめっき
法により異なるが、本発明による[下層めっき十最表層
めっぎ+クロメート+有機被覆」の構成要素として特に
好適な皮膜構造ばなく、めっき法の違いにより耐食性に
特に大きな差異が出てこないことが判明した。したがっ
て、電気めっき法で下層のめっき皮膜を形成しても、十
分な耐食性を確保することができる。しかし、耐食性は
主にめっきイ」着量に影響されるので、その意味で比較
的厚めつきが容易に可能となる溶融めっき法による合金
化亜鉛めっきにより下層めっき皮膜を形成することが好
ましい。また、溶融めっき法によるZn −Fe合金め
っき皮膜の場合、前述したように鋼材素地との界面側が
電気化学的に最も責で、上に向かって順に卑になる層状
構造の断面構造をとるが、後で述べるようにこの構造が
耐食性の一層の向上に寄与するものと考えられる。
The lower layer plating of the first layer can be formed by either electroplating or hot-dip plating. As already mentioned with reference to FIG. 2, the structure of the Zn-Fe alloy plating film differs depending on the plating method, but it is particularly suitable as a component of [lower layer plating, outermost layer plating + chromate + organic coating] according to the present invention. It was found that there were no significant differences in corrosion resistance due to differences in the coating structure and plating method. Therefore, even if the lower plating film is formed by electroplating, sufficient corrosion resistance can be ensured. However, since corrosion resistance is mainly affected by the amount of plating applied, it is preferable to form the lower plating film by alloyed zinc plating by hot-dip plating, which allows relatively thick plating to be easily achieved. In addition, in the case of a Zn-Fe alloy plating film formed by hot-dip plating, as mentioned above, the interface side with the steel substrate is the most electrochemically sensitive, and the cross-sectional structure is a layered structure that becomes progressively less noble toward the top. As will be described later, this structure is thought to contribute to further improvement in corrosion resistance.

電気めっき法により下層めっきを施す場合、めっき皮膜
が実質的にη相以外のZn−Fe合金相から構成される
ようにめっき浴組成を選択し、下層めっき皮膜形成後に
、−上述した最表層めっき皮膜を別に形成する。
When applying the lower layer plating by electroplating, the plating bath composition is selected so that the plating film is substantially composed of a Zn-Fe alloy phase other than the η phase, and after the formation of the lower layer plating film, - the above-mentioned outermost layer plating is applied. A film is formed separately.

合金化溶融亜鉛めっき法により下層めっき皮膜を形成す
る場合には、通常の合金化処理に際してその加熱条件を
適当に選択して、めっき皮膜の最表層が純Znもしくば
η相Zn−Fe合金となるようにすることにより、本発
明の下層めっきと最表層めっきの2層構造を持っためっ
き皮膜を一度に形成することができる。或いは、加熱条
件を、めっき皮膜全体がη相以外のZn−Fe合金相か
ら構成されるように選択して下層めっき皮膜を形成し、
合金化処理後に熔融亜鉛めっきもしくは電気亜鉛めっき
を施して最表層めっき皮膜を形成することにより本発明
の2層のめっき皮膜構造を得ることもできる。
When forming the lower plating film by alloying hot-dip galvanizing, the heating conditions for the normal alloying treatment are appropriately selected to ensure that the outermost layer of the plating film is pure Zn or η-phase Zn-Fe alloy. By doing so, a plating film having a two-layer structure of the lower layer plating and the outermost layer plating of the present invention can be formed at once. Alternatively, the heating conditions are selected such that the entire plating film is composed of a Zn-Fe alloy phase other than the η phase to form the lower plating film,
The two-layer plating film structure of the present invention can also be obtained by performing melt galvanizing or electrogalvanizing after the alloying treatment to form the outermost plating film.

本発明によれば、上述した2層めっきの上に、下層被膜
としてクロメート皮膜と、その上の上層被膜として有機
高分子被膜が形成される。
According to the present invention, a chromate film is formed as a lower layer film and an organic polymer film is formed as an upper layer film on the above-described two-layer plating.

クロメート皮膜は通常のクロメート処理液を用いて常法
により形成することができ、組成については特に限定さ
れない。塗布型および反応型のいずれのクロメート液も
使用できる。また、電解クロメートを用いてもよい。た
だし、十分な耐食性を確保するには、Cr換算で10m
g/n(以上のクロメ−1・皮膜付着量を要する。この
付着量が30On+g/♂超ではかえって塗装後耐食性
の劣化が生じる。望ましい付着量ばCrとして40〜2
00mg/ n(である。
The chromate film can be formed by a conventional method using a conventional chromate treatment solution, and the composition is not particularly limited. Both coated and reactive chromate solutions can be used. Alternatively, electrolytic chromate may be used. However, in order to ensure sufficient corrosion resistance, it is necessary to
g/n (amount of chromium-1 film deposited is required. If this deposit amount exceeds 30On+g/n, the corrosion resistance after painting will deteriorate.The desired deposit amount is 40~2 as Cr).
00mg/n(.

クロメート処理を施されためっき鋼板は、次いで適当な
塗料(例、エナメル、フェス、ブライマー等)で上塗り
され、有機高分子上層被膜が形成される。この塗料には
、常温乾燥型、焼付乾燥型、放射線硬化型等の各種の塗
料を使用することができるが、焼イ」硬化型塗料が特に
好ましい。これは、焼付硬化型塗料はもともと耐食性か
優れている上、下層のクロメート皮膜の表層に微量に存
在している6価クロムにより焼付中に塗料中の樹脂が酸
化され、塗膜と下層クロメート皮膜との密着性が向上し
、耐食性が一層よくなるからである。焼付硬化型塗料の
代表例としては、エポキシ樹脂塗料、フエ人キシ樹脂塗
料、ポリアミド樹脂塗料、アクリル樹脂塗料等が挙げら
れる。
The plated steel sheet subjected to the chromate treatment is then overcoated with a suitable paint (eg, enamel, face, braimer, etc.) to form an organic polymer upper coating. Various types of paint can be used as this paint, such as room temperature drying type, baking drying type, radiation curing type, etc., but baking drying type paint is particularly preferred. This is because bake-curable paints have excellent corrosion resistance, and the resin in the paint is oxidized during baking due to the small amount of hexavalent chromium present on the surface of the lower chromate film, causing the paint film and lower chromate film to oxidize. This is because the adhesion with the metal is improved and the corrosion resistance is further improved. Typical examples of bake-curable paints include epoxy resin paints, synthetic resin paints, polyamide resin paints, acrylic resin paints, and the like.

この塗料は、乾燥後に膜厚0,3μIn以上の有機高分
子皮膜が得られるように塗装する。膜厚が0.3、u1
11未満では、有機被膜を形成することによる耐食性向
上効果が不十分である。性能上のIt!J厚の上限はな
いが、50pJlj程度を超えるとこの塗膜による耐食
性が主となり、本発明における2層めっきの効果か不明
確となる。有機高分子上層被膜の膜厚は、好ましくは0
.7〜30μfilである。
This paint is applied so that an organic polymer film having a film thickness of 0.3 μIn or more is obtained after drying. Film thickness is 0.3, u1
If it is less than 11, the effect of improving corrosion resistance by forming an organic film is insufficient. It's performance! There is no upper limit for the J thickness, but if it exceeds about 50 pJlj, the corrosion resistance due to this coating will become the main factor, and the effect of the two-layer plating in the present invention will become unclear. The thickness of the organic polymer upper layer film is preferably 0.
.. It is 7 to 30 μfil.

本発明により、予想外ともいえる高耐食性が発現する理
由は次のように考えられる。
The reason why the present invention exhibits unexpectedly high corrosion resistance is thought to be as follows.

第3図(1)および(II)に模式的に示すように、2
層めっき中の最表層の第2層めっきは、素地fM+Jに
対する防食作用(b)を主に担う第1層のZn−Fe合
金めっき層より電気化学的に卑であるので、この第1層
に対してカソード防食(alを行う。この犠牲陽極とし
て機能する表層めっきの熔解は、クロメートの下層被膜
と有機上層被膜によるめっき表層の保8m! (C)の
ため最少比に抑制される。また、最表層の第2層めっき
が、これとの電位差の大きい素地鋼材上に直接めっきさ
れているのではなく、比較的電位差の小さい下層のZn
−Fe合金めっきの上に形成されているごとも、最表層
めっきの溶解に対する抑制因子となろう。このように最
表層めっきが極めて効率よくカソード防食作用を発揮す
ることが高耐食性発現の主要因であると考えられる。な
お、第3図(1)は下層めっき皮膜が単一合金相もしく
は電気めっきのように混在した複数の合金相からなる場
合を示し、同図(■)は、後述のように下層めっき皮膜
が層状を成す複数の合金相からなる場合を示す。また、
これらの図では、めっき第2Nの最表層めっきを純Zn
めっきで代表させているが、これがη相のZn −Fe
合金めっきであっても事情は同様である。
As schematically shown in FIGS. 3(1) and (II), 2
The second layer plating, which is the outermost layer in the layer plating, is electrochemically less base than the first layer Zn-Fe alloy plating layer, which mainly has the anticorrosive effect (b) on the substrate fM+J. On the other hand, cathodic protection (Al) is performed.The melting of the surface plating that functions as a sacrificial anode is suppressed to the minimum ratio because the plating surface layer is maintained by the chromate lower layer film and the organic upper layer film (C).In addition, The second layer plating on the outermost layer is not directly plated on the base steel material, which has a large potential difference, but on the Zn layer in the lower layer, which has a relatively small potential difference.
The fact that it is formed on the -Fe alloy plating will also be a factor that suppresses the dissolution of the outermost layer plating. It is thought that the fact that the outermost layer plating exhibits cathodic corrosion protection extremely efficiently is the main reason for the high corrosion resistance. In addition, Fig. 3 (1) shows the case where the lower layer plating film consists of a single alloy phase or a plurality of mixed alloy phases like electroplating, and the same figure (■) shows the case where the lower layer plating film consists of a single alloy phase or a plurality of mixed alloy phases as in electroplating. This shows the case of a plurality of layered alloy phases. Also,
In these figures, the outermost layer of the second N plating is pure Zn.
This is represented by plating, but this is Zn-Fe in the η phase.
The same situation applies to alloy plating.

下層合金めっきを合金化亜鉛めっき法により形成すると
、第3図(TI)に模式的に示すように、複数のZn−
Fe合金相(1)〜(III)が層状に配列し、素地鋼
材との界面に位置する相(III)がFe含有量が最も
高く電気化学的に最も責であり、上側の相(1)になる
につれてZn含有量か増して電気化学的に卑になるよう
に順次変化する。ただし、下層めっきの最上層を成すZ
n−Fe合金相(I)はη相以外のものであるので、η
相のZn−Fe合金めっきもしくは純Znめっきからな
る第2相表層めっきよりは電気化学的に貴である。下層
めっきをこのように構成することは、台金相間のカソー
ド防食作用をも喚起し、すなわち、より表層に近い電気
化学的に卑な合金めっき層は直下の合金めっき層に防食
作用を及ぼずため、耐食性の一層の向上に寄与するもの
と考えられる。このような複層構造のZn −Fe合金
めっき皮膜は、後出の実施例の陽4および5に示すよう
に、適当に浴組成を変動させて2回以上の電気めっきを
施すことにより電気めっき法により形成することもでき
る。
When the lower layer alloy plating is formed by the alloyed zinc plating method, as schematically shown in FIG. 3 (TI), a plurality of Zn-
The Fe alloy phases (1) to (III) are arranged in layers, and the phase (III) located at the interface with the base steel has the highest Fe content and is the most electrochemically responsible, and the upper phase (1) As the temperature increases, the Zn content increases and becomes electrochemically less noble. However, Z, which forms the top layer of the lower layer plating,
Since the n-Fe alloy phase (I) is other than the η phase, η
It is electrochemically nobler than the second phase surface layer plating consisting of Zn--Fe alloy plating or pure Zn plating. Configuring the lower layer plating in this way also induces a cathodic corrosion protection effect between the base metal phases, that is, the electrochemically base alloy plating layer closer to the surface layer exerts a corrosion protection effect on the alloy plating layer immediately below. Therefore, it is thought that this contributes to further improvement of corrosion resistance. Such a Zn-Fe alloy plating film having a multilayer structure can be electroplated by performing electroplating two or more times by appropriately varying the bath composition, as shown in 4 and 5 of Examples below. It can also be formed by a method.

次に、実施例によって本発明をさらに具体的に説明する
Next, the present invention will be explained in more detail with reference to Examples.

〔実施例〕〔Example〕

表面を常法により清浄化した厚さ0.7謳の冷延鋼板に
、第1表に示す条件下での電気めっきにより下層のZn
 −Fe合金めっき皮膜(No、4および5では2層皮
膜)と上層の純Znもしくはη相Zn−Fe合金めっき
皮膜とを形成し、次いでその上にCr0z:20g/ 
I−,1(3PO4: 2g/βを含有するクロメート
液を使ってクロメート皮膜を形成した。ざらに、このク
ロメート皮膜の上に、高分子量フェノキシ樹脂塗料(商
品名Bakelite PKHH、ユニオン・カーバイ
ト社製)を所定の乾燥膜厚になるように塗布し、板温度
250°Cて60秒間焼付を行って塗膜を硬化させるこ
とにより、有機被覆Zn −Fe合金めっき鋼板を調製
し、その耐食性を試験した。
A cold-rolled steel sheet with a thickness of 0.7 mm whose surface has been cleaned by a conventional method is coated with Zn in the lower layer by electroplating under the conditions shown in Table 1.
-A Fe alloy plating film (two-layer film for No. 4 and 5) and an upper layer of pure Zn or η phase Zn-Fe alloy plating film are formed, and then Cr0z: 20g/
A chromate film was formed using a chromate solution containing I-,1 (3PO4: 2g/β).A high molecular weight phenoxy resin paint (trade name: Bakelite PKHH, manufactured by Union Carbide Co., Ltd.) was applied on top of the chromate film. An organic coated Zn-Fe alloy plated steel sheet was prepared by applying Zn-Fe alloy coated steel sheet to a predetermined dry film thickness and baking it at a board temperature of 250°C for 60 seconds to harden the film. Tested.

耐食性試験に供した試験片は、未加工の平板試験片と直
径50111111の円筒絞り加工を行った試験片の2
種類である。円筒絞りのダイス肩は、その表面粗さが常
に一定となるように、各回ごとにトリクロロエタンによ
る洗浄と120番エメリー紙による研磨を行った。これ
らの試験片について、塩水噴霧(5χNaC1,35°
C)  2時間−乾燥(50°C)2時間−相対湿度9
5%以上の湿潤雰囲気放置(50℃)4時間を1サイク
ルとする乾湿繰り返し促進耐食性試験により、試験片の
赤錆発生状況を観察して、耐食性を評価した。試験結果
を、2層めっきの条件およびイ」着量ならびに下層クロ
メートのCr付着量と上層有機皮膜の膜厚と共に、下記
の第1表にまとめて示す。耐食性の評価基準は次の通り
であ◎:200サイクル経過後も赤錆発生が認められな
いもの、 ○;150サイクル前後で赤錆発生が始まるもの、△:
100ザイクルまでに赤錆発生が見られるもの、 ×:50サイクルまでに赤錆発生が見られるもの。
The test pieces used for the corrosion resistance test were an unprocessed flat plate test piece and a cylindrical drawing test piece with a diameter of 50111111 mm.
It is a kind. The die shoulder of the cylindrical drawing was cleaned with trichloroethane and polished with No. 120 emery paper each time so that its surface roughness remained constant. These specimens were treated with salt spray (5χNaC1, 35°
C) 2 hours - drying (50°C) 2 hours - relative humidity 9
Corrosion resistance was evaluated by observing the occurrence of red rust on the test pieces through an accelerated corrosion resistance test in which the test pieces were left in a humid atmosphere of 5% or more (50°C) for 4 hours for 4 hours. The test results are summarized in Table 1 below, together with the conditions for two-layer plating and the amount of Cr deposited, the amount of Cr deposited in the lower layer chromate, and the film thickness of the upper organic film. The evaluation criteria for corrosion resistance are as follows: ◎: No red rust is observed even after 200 cycles, ○: Red rust begins to occur around 150 cycles, △:
Red rust was observed within 100 cycles. ×: Red rust was observed within 50 cycles.

(以下、余白) 第1表 (次ベーンに続く) 第1表(続き) 〔発明の効果〕 第1表から明らかなように、本発明の有機被覆Zn −
Fe合金めっき鋼材は、厳しい促進耐食性試験において
高耐食性を示す。これに対し、実施例歯6〜12に示し
たように、2層めっきの組織とその付着量、クロメート
付着量、有機被膜厚の一つ以上がが本発明で規定する条
件をはずれると、耐食性が劣る。
(Hereinafter, blank space) Table 1 (Continued from next vane) Table 1 (Continued) [Effects of the invention] As is clear from Table 1, the organic coated Zn − of the present invention
Fe alloy plated steel exhibits high corrosion resistance in severe accelerated corrosion resistance tests. On the other hand, as shown in Example Teeth 6 to 12, if one or more of the structure of the two-layer plating, its adhesion amount, chromate adhesion amount, and organic coating thickness deviate from the conditions specified in the present invention, the corrosion resistance deteriorates. is inferior.

このように、本発明は、下層にZn −Fe合金めっき
を用いることにより、めっき最表層から素地鋼板に至る
までなだらかな電位勾配が生じ、常により表層のめっき
がより内層のめっきに対して穏当な犠牲防食作用を及ば
ずため、めっき皮膜の溶解が抑制され、防食作用が持続
する。しかも、最表層のめっきの上に設けた下層クロメ
ート皮膜と上層の有機高分子被膜により、この最表層が
効果的に保護されるため、高腐食性環境下においても優
れた耐食性が発現されるのである。この2層めっきによ
る高耐食性は、上にクロメート皮膜と有機被膜を設けた
ことによって初めて可能となるのであり、未塗装では耐
食性に著しく劣ることから、本発明の皮膜構成による相
乗作用が認められるのである。
In this way, by using Zn-Fe alloy plating for the lower layer, a gentle potential gradient is generated from the outermost plating layer to the base steel sheet, and the plating on the surface layer is always more moderate than the plating on the inner layer. Since it does not exert sacrificial corrosion protection, the dissolution of the plating film is suppressed and the corrosion protection continues. Moreover, the lower chromate film and the upper organic polymer film provided on the outermost plating effectively protect this outermost layer, resulting in excellent corrosion resistance even in highly corrosive environments. be. The high corrosion resistance achieved by this two-layer plating can only be achieved by providing a chromate film and an organic film on top, and since the corrosion resistance is significantly inferior when unpainted, the synergistic effect of the film structure of the present invention is recognized. be.

このように、本発明の有機被覆めっき鋼材は、自動車に
おける袋構造部、合わせ部、あるいは車体下部等、また
海洋構造物や橋梁等、腐食性の激しい環境に長期間にわ
たって十分に耐えることのできる優れた耐食性を有して
いる。
As described above, the organic coated plated steel material of the present invention can sufficiently withstand over a long period of time in highly corrosive environments such as bag structures, joint parts, and lower body parts of automobiles, as well as marine structures and bridges. It has excellent corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にかかるめっき皮膜構造の模式図、 第2図(alおよび(blは、それぞれ従来の電気合金
めっき法および溶融めっき法の概念説明図、および 第3図(])および(TI)は、本発明において利用す
る腐食機構の概略説明図である。
FIG. 1 is a schematic diagram of the plating film structure according to the present invention, FIG. (TI) is a schematic explanatory diagram of the corrosion mechanism utilized in the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)鋼材の表面に第1層として亜鉛−鉄固溶体である
η相以外の亜鉛−鉄合金相から成るめっき層を10〜1
50g/m^2とその上の第2層として亜鉛もしくは前
記η相から成るめっき層を0.2〜20g/m^2付着
させた2層めっき鋼材のめっき表面上に、Cr付着量と
して10〜300mg/m^2のクロメート下層被膜と
、膜厚0、3μm以上の有機高分子上層被膜とを有する
ことを特徴とする、高耐食性有機被覆亜鉛−鉄合金めっ
き鋼材。
(1) As a first layer, 10 to 1 plating layer consisting of a zinc-iron alloy phase other than the η phase, which is a zinc-iron solid solution, is applied to the surface of the steel material.
The amount of Cr deposited is 10 on the plating surface of a two-layer plated steel material, on which a plating layer consisting of zinc or the above-mentioned η phase is deposited as a second layer of 50 g/m^2 and 0.2 to 20 g/m^2. A highly corrosion-resistant organic coated zinc-iron alloy plated steel material, characterized by having a chromate lower layer coating of ~300 mg/m^2 and an organic polymer upper layer coating of 0.3 μm or more in thickness.
(2)前記第1層のめっき層が、層状を成した複数の合
金相からなり、その中で電気化学的に最も貴な合金相が
鋼材表面を直接被覆し、表層側に向かってより卑な合金
相が順次配列した複層構造をとることをさらに特徴とす
る、請求項(1)記載の高耐食性有機被覆亜鉛−鉄合金
めっき鋼材。
(2) The first plating layer is composed of a plurality of layered alloy phases, in which the electrochemically noblest alloy phase directly coats the steel surface, and becomes less noble toward the surface layer. The highly corrosion-resistant organic coated zinc-iron alloy plated steel material according to claim 1, further characterized in that it has a multilayer structure in which alloy phases are sequentially arranged.
JP2345588A 1988-02-03 1988-02-03 High corrosion resistance organic coated zinc-iron alloy plated steel material Pending JPH01198340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2345588A JPH01198340A (en) 1988-02-03 1988-02-03 High corrosion resistance organic coated zinc-iron alloy plated steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2345588A JPH01198340A (en) 1988-02-03 1988-02-03 High corrosion resistance organic coated zinc-iron alloy plated steel material

Publications (1)

Publication Number Publication Date
JPH01198340A true JPH01198340A (en) 1989-08-09

Family

ID=12110978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2345588A Pending JPH01198340A (en) 1988-02-03 1988-02-03 High corrosion resistance organic coated zinc-iron alloy plated steel material

Country Status (1)

Country Link
JP (1) JPH01198340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392342A (en) * 1989-09-05 1991-04-17 Sumitomo Metal Ind Ltd Organic composite steel plate with excellent corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392342A (en) * 1989-09-05 1991-04-17 Sumitomo Metal Ind Ltd Organic composite steel plate with excellent corrosion resistance

Similar Documents

Publication Publication Date Title
JP5661698B2 (en) Hot-dip Zn-Al alloy-plated steel sheet
US4314893A (en) Production of multiple zinc-containing coatings
US4216272A (en) Multiple zinc-containing coatings
JPS586995A (en) Zinc-nickel alloy plated steel plate of superior adhesive strength after working
JP2754126B2 (en) Hot-dip Zn-Al plated steel sheet with excellent appearance, blackening resistance over time and corrosion resistance
JPS6057518B2 (en) Surface-treated steel with excellent corrosion resistance and water-resistant adhesion
JPH01198340A (en) High corrosion resistance organic coated zinc-iron alloy plated steel material
JPH0494928A (en) High corrosion resistance damping steel plate
JPH0525679A (en) Highly corrosion-resistant surface-treated steel sheet with excellent impact resistance and adhesion
JPS6343479B2 (en)
JP2704816B2 (en) Hot-dip Zn-Al plated steel sheet with excellent appearance, blackening resistance over time and corrosion resistance
JP5661699B2 (en) Manufacturing method of resin-coated steel sheet
JP2787365B2 (en) Organic thin film coated Cr-containing zinc-based multi-layer rust-proof steel sheet having excellent long-term adhesion of organic thin film and cationic electrodeposition coating property, and method for producing the same
JP5101250B2 (en) Resin coated steel sheet
JPS6338596A (en) Zinc-iron alloy plated steel having high corrosion resistance
JP2754125B2 (en) Hot-dip Zn-Al plated steel sheet with excellent appearance, blackening resistance over time and corrosion resistance
JPS62192597A (en) Plated steel sheet having superior powdering resistance
JP2004091879A (en) Zinc-based metal-coated steel with excellent corrosion resistance at the end face and scratches
JPS6240398A (en) High corrosion resistance double layer plated steel plate
JPS58204193A (en) Surface treated steel plate
EP0248059A1 (en) Ni-Zn ELECTROPLATED PRODUCT RESISTANT TO PAINT DELAMINATION
JPS5923894A (en) Plated steel plate with excellent corrosion resistance and its manufacturing method
JPH0536516B2 (en)
JPS5891191A (en) Alloyed zinc plated steel plate with superior suitability to coating
JPS58224740A (en) Weldable painted steel plate