[go: up one dir, main page]

JPH01196596A - Connection part of control rod driving mechanism housing and reactor pressure vessel - Google Patents

Connection part of control rod driving mechanism housing and reactor pressure vessel

Info

Publication number
JPH01196596A
JPH01196596A JP63021192A JP2119288A JPH01196596A JP H01196596 A JPH01196596 A JP H01196596A JP 63021192 A JP63021192 A JP 63021192A JP 2119288 A JP2119288 A JP 2119288A JP H01196596 A JPH01196596 A JP H01196596A
Authority
JP
Japan
Prior art keywords
pressure vessel
housing
control rod
stub tube
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63021192A
Other languages
Japanese (ja)
Inventor
Masayuki Asano
浅野 政之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63021192A priority Critical patent/JPH01196596A/en
Publication of JPH01196596A publication Critical patent/JPH01196596A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To lower the generation of a stress corrosion crack, by welding the peripheral surface of a CRD (control rod driving mechanism) housing to a cylindrical seat while allowing force to act on the welded part of the CRD housing and the upper end of a stub tube. CONSTITUTION:A stub tube 2 is brought into contact with the through-hole 9 provided to the inner surface of the bottom plate of a pressure vessel and the welded parts 4, 5 of the inner and outer peripheries of the lower end of the stub tube 2 are subjected to fillet welding. A cylindrical seat 8 is brought into contact with the outer surface of the bottom plate of the pressure vessel 1 at the position of the through-hole 9 and the ridge 8a thereof is subjected to fillet welding on both sides thereof. A CRD housing 3 is inserted through the stub tube 2, the through-hole 9 and the cylindrical seat 8 and welded to the upper end of the stub tube 2. The under surface of the cylindrical seat 8 is welded to the CRD housing 3 while the upward force acting on the welded part of the CRD housing 3 and the upper end of the stub tube 2 and the force having equal magnitude in the opposite direction are allowed to act on the CRD housing at the operation time of a nuclear reactor. By this method, the stress corrosion crack-resistant reliability of the welded part is markedly enhanced.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は沸騰水型原子炉の制御棒駆動機構ハウジング(
以下CRDハウジングと呼ぶ)と原子炉圧力容器(以下
圧力容器と呼ぶ)との接合部に係る。
Detailed Description of the Invention [Object of the Invention (Industrial Application Field) The present invention provides a control rod drive mechanism housing for a boiling water nuclear reactor (
This relates to the joint between the CRD housing (hereinafter referred to as the CRD housing) and the reactor pressure vessel (hereinafter referred to as the pressure vessel).

(従来の技術) 沸騰水型原子炉の出力は、圧力容器内の所定の位置に成
る間隔で規則的に配置された燃料集合体の間に、中性子
吸収体を含んだ制御棒を挿抜して調整する。制御棒は制
御棒案内管内を軸方向に上下動されるものであり、押し
上げられて前記制御棒案内管から突出した部分は燃料集
合体間に挿入されて、中性子を吸収し核分裂反応を制御
するものである。制御棒の上下動はCHDによってなさ
れ、このCRDは圧力容器底面を貫通する筒状のCHD
ハウジング内に収容されている。CHDハウジングは前
記制御棒案内管を支持するとともに、制御棒駆動機構(
以下CHDと呼ぶ)を収納するものであり、圧力容器底
面にスタブチューブを介して溶接接合されている。
(Prior art) The output of a boiling water reactor is generated by inserting and removing control rods containing neutron absorbers between fuel assemblies that are regularly arranged at predetermined intervals within a pressure vessel. adjust. The control rod is moved up and down in the axial direction within the control rod guide tube, and the portion that is pushed up and protrudes from the control rod guide tube is inserted between the fuel assemblies, absorbs neutrons, and controls the nuclear fission reaction. It is something. The vertical movement of the control rod is performed by a CHD, and this CRD is a cylindrical CHD that penetrates the bottom of the pressure vessel.
contained within the housing. The CHD housing supports the control rod guide tube and also supports the control rod drive mechanism (
It houses the CHD (hereinafter referred to as CHD) and is welded to the bottom of the pressure vessel via a stub tube.

第8図は従来のCHDハウジングと圧力容器との接合部
を示している。この図において、圧力容器1の底板内面
にはスタブチューブ2の下端がその内周部、外周部にお
いて溶接されいる。また、スタブチューブ2にはCHD
ハウジング3が挿入され、スタブチューブ2の上端は前
記CHDハウジング3と溶接されている。なお、図中4
.5.6それぞれ溶接部を示している。
FIG. 8 shows a joint between a conventional CHD housing and a pressure vessel. In this figure, the lower end of a stub tube 2 is welded to the inner surface of the bottom plate of a pressure vessel 1 at its inner and outer circumferences. In addition, the stub tube 2 has a CHD
A housing 3 is inserted, and the upper end of the stub tube 2 is welded to the CHD housing 3. In addition, 4 in the figure
.. 5.6 each shows a welded part.

上記の接合部の構成において、CRDハウジング3は高
温強度と耐食性の点から、オーステナイト系ステンレス
鋼(SUS304  TP、5US316TPまたはそ
れ等の改良材)によって作られている。また、圧力容器
1は低合金鋼によって構成されているが、その内面には
耐食性を考慮してステンレス鋼薄板のライニング7が施
されている。なお、圧力容器1の内底面においてはスタ
ブチューブ2との溶接、接合をよくするため、前記ライ
ニング上にインコネル182のバターリングを施しであ
る。
In the above joint structure, the CRD housing 3 is made of austenitic stainless steel (SUS304 TP, 5US316TP, or an improved material thereof) from the viewpoint of high temperature strength and corrosion resistance. The pressure vessel 1 is made of low-alloy steel, and its inner surface is lined with a thin stainless steel plate 7 for corrosion resistance. In order to improve welding and joining with the stub tube 2 on the inner bottom surface of the pressure vessel 1, buttering of Inconel 182 is applied to the lining.

また、スタブチューブ2は熱膨張率がオーステナイト系
ステンレス鋼と低合金鋼との中間にあり、CRDハウジ
ング3と圧力容器1との熱応力緩和に有効で、しかも溶
接熱処理によってその特性が殆ど変化しない材料、例え
ばインコネル600等のニッケル基合金によって作られ
ている。
In addition, the stub tube 2 has a coefficient of thermal expansion between that of austenitic stainless steel and low alloy steel, and is effective in alleviating thermal stress between the CRD housing 3 and the pressure vessel 1, and its properties hardly change due to welding heat treatment. It is made of a material such as a nickel-based alloy such as Inconel 600.

なお、CHDハウジング3とスタブチューブ2、スタブ
チューブ2と圧力容器1との溶接部4(スタブチューブ
内周部)、5(スタブチューブ外周部)、6(スタブチ
ューブ上端)はそれぞれインコネル82、インコネル1
82によって構成されている。
The welded parts 4 (inner periphery of the stub tube), 5 (outer periphery of the stub tube), and 6 (upper end of the stub tube) between the CHD housing 3 and the stub tube 2, and between the stub tube 2 and the pressure vessel 1 are made of Inconel 82 and Inconel, respectively. 1
82.

(発明が解決しようとする課題) 上記構成の接合部を具えた沸騰水型原子炉において、そ
の運転時には圧力容器内の冷却材は288℃、80気圧
の高温高圧水となっている。この時、CRDハウジング
3とスタブチューブ2との溶接部6には、制御棒案内管
、制御棒、CHD(何れも図示しない)、CHDハウジ
ング3の自重が作用する。それに加え、圧力容器1の底
板を貫通して容器外に突出したCRDハウジング3を、
圧力容器1外に押し出そうとする高温高圧水の力も作用
する。
(Problems to be Solved by the Invention) In a boiling water nuclear reactor equipped with a joint having the above configuration, during operation, the coolant in the pressure vessel is high-temperature, high-pressure water at 288° C. and 80 atm. At this time, the weight of the control rod guide tube, the control rod, the CHD (none of which is shown), and the CHD housing 3 acts on the welded portion 6 between the CRD housing 3 and the stub tube 2 . In addition, the CRD housing 3 that penetrates the bottom plate of the pressure vessel 1 and protrudes outside the vessel,
The force of the high-temperature, high-pressure water that tries to push it out of the pressure vessel 1 also acts.

勿論、溶接部6は前記の各作用力に抵抗し得るように設
計されているが、高温高圧水の腐食環境下にあるため応
力腐食割れ(以下SCCと呼ぶ)を生じるおそれがある
。現在、溶接部6の耐SCC信頼性については全てが解
明されているわけではなく、解明のため多くの研究がな
されている。
Of course, the welded portion 6 is designed to be able to resist each of the above-mentioned forces, but since it is in a corrosive environment of high-temperature, high-pressure water, there is a risk of stress corrosion cracking (hereinafter referred to as SCC) occurring. At present, not everything has been elucidated regarding the SCC resistance reliability of the welded portion 6, and many studies are being conducted to elucidate it.

もし、溶接部6にSCCが発生しこれが溶接部を貫通す
るようなことになれば、炉水が圧力容器1から漏出する
こととなり重大な事故の原因となる。
If SCC occurs in the weld 6 and penetrates the weld, reactor water will leak from the pressure vessel 1, causing a serious accident.

原子炉の健全性維持は社会的に重要なことである。従っ
て、前記溶接部のSCC発生防止は極めて重要である。
Maintaining the health of nuclear reactors is socially important. Therefore, it is extremely important to prevent SCC from occurring in the welded portion.

本発明は上記の事情に基づきなされたもので、CRDハ
ウジングとスタブチューブの材料は従来のそれと同一に
したまま、前記溶接部の耐SCC信頼性を向上させたC
RDハウジングと圧力容器との接合部を提供することを
目的としている。
The present invention has been made based on the above-mentioned circumstances, and the present invention improves the SCC resistance reliability of the welded part while keeping the materials of the CRD housing and stub tube the same as those of the conventional ones.
The purpose is to provide a joint between the RD housing and the pressure vessel.

[発明の構成] (課題を解決するための手段) 本発明のCRDハウジングと圧力容器との接合部は、原
子炉圧力容器底板を貫通する制御棒駆動機構ハウジング
と、前記底板内面に前記制御棒駆動機構ハウジングを包
囲して設けられ下端において前記底板内面とまた上端に
おいて前記制御棒駆動機構周面と溶接接合されたスタブ
チューブとを有するものにおいて、前記制御棒駆動機構
ハウジングの前記原子炉圧力容器外に垂下した部分に前
記底板外面に溶接接合した円筒座を係合させ、前記制御
棒駆動機構ハウジングと前記スタブチューブとを軸方向
に拘束した時、原子炉運転時に前記制御棒駆動機構ハウ
ジングとスタブチューブ上端との溶接部に作用する上向
きの力と反対向きで大きさの等しい力を作用させながら
、前記円筒座下面に前記制御棒駆動機構ハウジング局面
を溶接接合したことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The joint portion between the CRD housing and the pressure vessel of the present invention includes a control rod drive mechanism housing that penetrates the bottom plate of the reactor pressure vessel, and a control rod drive mechanism housing that penetrates the bottom plate of the reactor pressure vessel, and the control rod on the inner surface of the bottom plate. The reactor pressure vessel of the control rod drive mechanism housing includes a stub tube that is provided surrounding the drive mechanism housing and is welded to the inner surface of the bottom plate at the lower end and to the peripheral surface of the control rod drive mechanism at the upper end. When a cylindrical seat welded to the outer surface of the bottom plate is engaged with the part that hangs outward, and the control rod drive mechanism housing and the stub tube are restrained in the axial direction, the control rod drive mechanism housing and the stub tube are connected to each other during reactor operation. The control rod drive mechanism housing surface is welded to the lower surface of the cylindrical seat while applying a force opposite to and equal in magnitude to the upward force applied to the welded portion with the upper end of the stub tube.

(作用) 上記構成の本発明CRDハウジングと圧力容器との接合
部においては、原子炉運転時にCRDハウジングとスタ
ブチューブ上端との溶接部に作用する上向きの力と反対
向きで大きさの等しい力を作用させながら、CHDハウ
ジング局面と円筒座とを溶接接合しであるから、原子炉
運転時の前記上向きの力は消失される。従って、圧力容
器内にある前記溶接部のSCC発生の負荷条件は除去さ
れ、SCC発生のおそれは大幅に低下させられ、炉水の
漏洩その他人事故につながるトラブルを生じるおそれは
ない。
(Function) At the joint between the CRD housing of the present invention and the pressure vessel having the above configuration, a force of the same magnitude and in a direction opposite to the upward force that acts on the weld between the CRD housing and the upper end of the stub tube during reactor operation is applied. Since the CHD housing surface and the cylindrical seat are welded together while acting, the above-mentioned upward force during reactor operation is eliminated. Therefore, the load conditions that would cause SCC to occur in the welded portion in the pressure vessel are removed, the risk of SCC occurring is greatly reduced, and there is no risk of reactor water leakage or other troubles that could lead to accidents for personnel.

(実施例) 第8図と同一部分には同一符号を付した第1図は本発明
一実施例の縦断面図である。この図において、スタブチ
ューブ3の圧力容器1外に突出した部分には、それと同
一の材料からなる円筒座8が係合されている。この円筒
座8の圧力容器1底板外面に対向する面は底板外面の曲
率に合せた凹曲面とされ、その巾方向中央には突条8a
が設けられている。而して、前記円筒座8は突条8aの
内外の両側で溶接部10.11により圧力容器1の底板
外面に溶接接合されている。また、CHDハウジング3
は円筒座8の下端と溶接部12により溶接接合されてい
る。
(Embodiment) FIG. 1, in which the same parts as in FIG. 8 are denoted by the same reference numerals, is a longitudinal cross-sectional view of one embodiment of the present invention. In this figure, a cylindrical seat 8 made of the same material is engaged with the portion of the stub tube 3 that protrudes outside the pressure vessel 1. The surface of this cylindrical seat 8 facing the outer surface of the bottom plate of the pressure vessel 1 is a concave curved surface matching the curvature of the outer surface of the bottom plate.
is provided. The cylindrical seat 8 is welded to the outer surface of the bottom plate of the pressure vessel 1 by welding portions 10.11 on both the inner and outer sides of the protrusion 8a. Also, CHD housing 3
is welded to the lower end of the cylindrical seat 8 at a welded portion 12.

上記構成の接合部は以下第2図〜第4図につき説明する
手順で構成される。すなわち、まず第2図に示すように
スタブチューブ2を圧力容器1の底板内面の透孔9の位
置に当接し、スタブチューブ2下端の内外周の溶接部4
.5を隅肉溶接により構成する1次に第3図に示すよう
に円筒座8を圧力容器1の底板外面の透孔9の位置に当
接し、同じく隅肉溶接によりスタブチューブ2内外周(
突条8aの両側)の溶接部10.11を構成する。さら
に第4図に示すようにCHDハウジング3をスタブチュ
ーブ2、透孔9、円筒座8に挿通し、CRDハウジング
3の位置を正確に定めた後。
The joint portion having the above structure is constructed in accordance with the procedure described below with reference to FIGS. 2 to 4. That is, as shown in FIG. 2, first, the stub tube 2 is brought into contact with the position of the through hole 9 on the inner surface of the bottom plate of the pressure vessel 1, and the welded portion 4 on the inner and outer periphery of the lower end of the stub tube 2 is inserted.
.. As shown in FIG. 3, the cylindrical seat 8 is brought into contact with the through hole 9 on the outer surface of the bottom plate of the pressure vessel 1.
This constitutes a welded portion 10.11 on both sides of the protrusion 8a. Further, as shown in FIG. 4, the CHD housing 3 is inserted into the stub tube 2, the through hole 9, and the cylindrical seat 8, and the position of the CRD housing 3 is determined accurately.

CHDハウジング3とスタブチューブ2の上端とを溶接
接合する。最後にCHDハウジング3に下向きの力Pを
作用させたまま、円筒座8の下面とCHDハウジングと
の溶接部12を構成する。なお、図中Rは溶接棒を示し
ている。
The CHD housing 3 and the upper end of the stub tube 2 are welded together. Finally, while applying the downward force P to the CHD housing 3, a welding portion 12 is formed between the lower surface of the cylindrical seat 8 and the CHD housing. Note that R in the figure indicates a welding rod.

上記ようにして本発明接合部を構成するに際して作用さ
せる力Pは次のようにして求められる。
The force P to be applied when constructing the joint of the present invention as described above is determined as follows.

まず、第5図に示すように、CRDハウジング3のスタ
ブチューブ2の入口から円筒座8の出口までの間にある
長さをfl、CHDハウジング3の横断面積をAとする
。また、スタブチューブ2の上端から円筒座8の下端ま
での距離をh、スタブチューブ2の軸方向最短部の寸法
をhい円筒座8の軸方向最長部の寸法をh3、前記最短
部と最長部間の距離をh2とする。
First, as shown in FIG. 5, the length between the inlet of the stub tube 2 and the outlet of the cylindrical seat 8 of the CRD housing 3 is fl, and the cross-sectional area of the CHD housing 3 is A. Also, the distance from the upper end of the stub tube 2 to the lower end of the cylindrical seat 8 is h, the dimension of the shortest part of the stub tube 2 in the axial direction is h, the dimension of the longest part of the cylindrical seat 8 in the axial direction is h3, and the distance between the shortest part and the longest part of the stub tube 2 is h3. Let the distance between the parts be h2.

原子炉が運転状態となった時、無拘束であれば、前記長
さρの部分および長さhの部分は、次式で与えられるd
12.dhの熱膨張を示す。
When the reactor is in operation, if there is no restraint, the portion of length ρ and the portion of length h are given by the following formula d
12. Shows the thermal expansion of dh.

dQ=αC・ΔT−Q    町・1・・町・・・・・
(1)dh=(C5(hi+h2)十αa−h2)・ 
ΔT ・・・・・・・・・・・・・・・・・・(2)ここに、
ΔTは原子炉の停止状態と運転状態の温度差を示す。ま
た、αC1αS、αaはそれぞれCRDハウジング3の
材料、スタブチューブ2の材料、原子炉圧力容器1の材
料それぞれの熱膨張率を示している。
dQ=αC・ΔT−Q Town・1・・Town・・・・
(1) dh=(C5(hi+h2)+αa-h2)・
ΔT ・・・・・・・・・・・・・・・・・・(2) Here,
ΔT indicates the temperature difference between the reactor's shutdown state and operating state. Further, αC1αS and αa respectively indicate the coefficient of thermal expansion of the material of the CRD housing 3, the material of the stub tube 2, and the material of the reactor pressure vessel 1.

しかしながら、実際にはCRDハウジング3は溶接部6
と同12とにより軸方向に拘束されており、スタブチュ
ーブ2の剛性がCHDハウジング3のそれよりも大きい
ため、CRDハウジング3が伸縮できる量はdhにほぼ
等しい。結局、CRDハウジング3の長さQの部分には
次式で与えられる圧縮力Pが作用する。
However, in reality, the CRD housing 3 is
and 12, and the rigidity of the stub tube 2 is greater than that of the CHD housing 3, so the amount by which the CRD housing 3 can expand and contract is approximately equal to dh. As a result, a compressive force P given by the following equation acts on a portion of the length Q of the CRD housing 3.

P=AXEX (d Q−d h)/ (fl+α Q
)・・・・・・・・・・・・・・・・・・(3)ここに
、EはCHDハウジング材料のヤング係数である。この
力Pは溶接部6に上向きに作用する。
P=AXEX (d Q-d h)/ (fl+α Q
)................................................................... (3) where E is the Young's modulus of the CHD housing material. This force P acts upward on the weld 6.

従って、CHDハウジング3とスタブチューブ2とを溶
接接合した後、CRDハウジング3に前記式(3)によ
り得られる力Pを作用させたまま、CHDハウジング3
を円筒座8の下端に溶接接合(溶接部12)しておけば
、原子炉運転時に溶接部6に作用する力をOとすること
ができる。また、圧力や制御棒、CRDハウジング3、
案内管等の自重に基づく下向きの力は、圧力容器1の外
側にある溶接部12により支持されることとなる。
Therefore, after welding and joining the CHD housing 3 and the stub tube 2, the CHD housing 3 is
By welding (welding part 12) to the lower end of cylindrical seat 8, the force acting on welding part 6 during reactor operation can be reduced to O. In addition, pressure, control rods, CRD housing 3,
The downward force based on the weight of the guide tube and the like is supported by the welded portion 12 on the outside of the pressure vessel 1.

その結果、SCC発生が重大な事故の原因となり得る圧
力容器1内の溶接部6のSCC発生条件の一つである負
荷条件を取り除くことができ、SCCの発生のおそれを
著しく減じることができる。
As a result, the load condition, which is one of the conditions for the occurrence of SCC in the welded portion 6 in the pressure vessel 1, where the occurrence of SCC can cause a serious accident, can be removed, and the risk of occurrence of SCC can be significantly reduced.

従って、CHDハウジングと圧力容器との接合部の信頼
性を向上させることができる。
Therefore, the reliability of the joint between the CHD housing and the pressure vessel can be improved.

第1図と同一部分には同一符号を付した第7図は本発明
の他の実施例を示す。この実施例は本発明を既設の原子
炉に適用した−ものであって1円筒座は第6図に示すよ
うに軸を含む平面において分割片13a、13aに分割
した2分割構成2分割円筒座13とされそいる。この2
分割円筒座13の分割片13aを、圧力容器1外に垂下
したCHDハウジング3に係合、させて分割片間を溶接
した後圧力容器1底板に溶接接合(溶接部11)し、C
RDハウジングに前記の力Pを作用させながら、CRD
ハウジング3と2分割円筒座13下面とを溶接接合(溶
接部12)する。このようにすれば既設の原子炉の圧力
容器底板に、CHDハウジング3を貫通させた円筒座を
溶接接合することができる。なお、この実施例において
も前記説明した実施例と同様の作用、効果が得られるこ
とは云うまでもないところである。
FIG. 7, in which the same parts as in FIG. 1 are given the same reference numerals, shows another embodiment of the present invention. In this embodiment, the present invention is applied to an existing nuclear reactor, and one cylindrical seat is divided into two pieces 13a, 13a in a plane including the axis as shown in FIG. It is said to be 13. This 2
The divided piece 13a of the divided cylindrical seat 13 is engaged with the CHD housing 3 hanging outside the pressure vessel 1, and after welding between the divided pieces, it is welded to the bottom plate of the pressure vessel 1 (welded part 11).
While applying the force P to the RD housing, the CRD
The housing 3 and the lower surface of the two-part cylindrical seat 13 are welded together (welded portion 12). In this way, the cylindrical seat, through which the CHD housing 3 passes, can be welded to the bottom plate of the pressure vessel of an existing nuclear reactor. It goes without saying that this embodiment also provides the same functions and effects as those of the embodiment described above.

[発明の効果] 上記から明らかなように本発明の制御棒駆動機構ハウジ
ングと原子炉圧力容器との接合部においては、制御棒駆
動機構ハウジングに作用する下向きの力は、全て前記圧
力容器外にある前記ハウジングと前記圧力容器底板に接
合した円筒座との溶接部とに作用することとなり、前記
圧力容器内にある前記とスタブチューブとの溶接部の荷
重は著しく緩和される。従って、圧力容器内の溶接部に
原子炉運転時に力が作用することはなく、しかも上記の
ようにSCC発生条件の1つである各種自重等による負
荷条件が除去されることとなり、この溶接部の耐SCC
信頼性は著しく向上し、重大な事故発生の原因を除去し
得るので原子炉の健全性維持上非常に有益である。
[Effects of the Invention] As is clear from the above, at the joint between the control rod drive mechanism housing and the reactor pressure vessel of the present invention, all the downward force acting on the control rod drive mechanism housing is directed outside the pressure vessel. This acts on the welded portion between the housing and the cylindrical seat joined to the bottom plate of the pressure vessel, and the load on the welded portion between the housing and the stub tube inside the pressure vessel is significantly reduced. Therefore, no force is applied to the welds inside the pressure vessel during reactor operation, and as mentioned above, load conditions such as various dead weights, which are one of the conditions for SCC occurrence, are eliminated, and the welds SCC resistance of
Reliability is significantly improved, and the cause of serious accidents can be eliminated, which is extremely beneficial for maintaining the integrity of the nuclear reactor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例の縦断面図、第2図〜第4図は
前記実施例の構成順序を順に示す縦断面図、第5図は前
記実施例の作用を説明するために必要な各部寸法を記入
した縦断面図、第6図は本発明の他の実施例要部の斜視
図、第7図は前記他の実施例の縦断面図、第8図は従来
の接合部の縦断面図である。
FIG. 1 is a longitudinal sectional view of one embodiment of the present invention, FIGS. 2 to 4 are longitudinal sectional views showing the order of construction of the embodiment, and FIG. 5 is necessary for explaining the operation of the embodiment. 6 is a perspective view of the main parts of another embodiment of the present invention, FIG. 7 is a longitudinal sectional view of the other embodiment, and FIG. 8 is a diagram of a conventional joint. FIG.

Claims (1)

【特許請求の範囲】[Claims] 原子炉圧力容器底板を貫通する制御棒駆動機構ハウジン
グと、前記底板内面に前記制御棒駆動機構ハウジングを
包囲して設けられ下端において前記底板内面とまた上端
において前記制御棒駆動機構周面と溶接接合されたスタ
ブチューブとを有するものにおいて、前記制御棒駆動機
構ハウジングの前記原子炉圧力容器外に垂下した部分に
前記底板外面に溶接接合した円筒座を係合させ、前記制
御棒駆動機構ハウジングと前記スタブチューブとを軸方
向に拘束した時、原子炉運転時に前記制御棒駆動機構ハ
ウジングとスタブチューブ上端との溶接部に作用する上
向きの力と反対向きで大きさの等しい力を作用させなが
ら、前記円筒座下面に前記制御棒駆動機構ハウジング周
面を溶接接合したことを特徴とする制御棒駆動機構ハウ
ジングと原子炉圧力容器の接合部。
a control rod drive mechanism housing that penetrates the bottom plate of the reactor pressure vessel; and a control rod drive mechanism housing provided on the inner surface of the bottom plate surrounding the control rod drive mechanism housing, and welded to the inner surface of the bottom plate at a lower end and to the peripheral surface of the control rod drive mechanism at an upper end. A cylindrical seat welded to the outer surface of the bottom plate is engaged with a portion of the control rod drive mechanism housing that hangs outside the reactor pressure vessel, and the control rod drive mechanism housing and the When the stub tube is restrained in the axial direction, while applying a force equal in magnitude and opposite to the upward force that acts on the weld between the control rod drive mechanism housing and the upper end of the stub tube during reactor operation, A joint portion between a control rod drive mechanism housing and a reactor pressure vessel, characterized in that a peripheral surface of the control rod drive mechanism housing is welded to a lower surface of the cylindrical seat.
JP63021192A 1988-02-02 1988-02-02 Connection part of control rod driving mechanism housing and reactor pressure vessel Pending JPH01196596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63021192A JPH01196596A (en) 1988-02-02 1988-02-02 Connection part of control rod driving mechanism housing and reactor pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63021192A JPH01196596A (en) 1988-02-02 1988-02-02 Connection part of control rod driving mechanism housing and reactor pressure vessel

Publications (1)

Publication Number Publication Date
JPH01196596A true JPH01196596A (en) 1989-08-08

Family

ID=12048094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63021192A Pending JPH01196596A (en) 1988-02-02 1988-02-02 Connection part of control rod driving mechanism housing and reactor pressure vessel

Country Status (1)

Country Link
JP (1) JPH01196596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145271A (en) * 2010-01-18 2011-07-28 Mitsubishi Heavy Ind Ltd Nozzle stub mounting structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145271A (en) * 2010-01-18 2011-07-28 Mitsubishi Heavy Ind Ltd Nozzle stub mounting structure
US8867688B2 (en) 2010-01-18 2014-10-21 Mitsubishi Heavy Industries, Ltd. Nozzle mounting structure

Similar Documents

Publication Publication Date Title
Mannan et al. Selection of materials for prototype fast breeder reactor
EP1909292A1 (en) Nuclear reactor fuel assemblies
JPH06201872A (en) Fuel element and method for improving heat transfer therein
CA1147871A (en) Device for supporting and protecting nuclear boilers
JPH01196596A (en) Connection part of control rod driving mechanism housing and reactor pressure vessel
CN108140435B (en) Component of a sodium-cooled fast-type nuclear reactor whose shell is equipped with isolation plates of increased stiffness
JPH0321878B2 (en)
JPH0660950B2 (en) Emergency heat exchanger for cooling primary fluid of nuclear reactor and assembling method thereof
JPH02221895A (en) Connection structure between control rod driving housing and nuclear reactor pressure container
EP4141889A1 (en) Fuel rod of a water-cooled water-moderated nuclear reactor
JPH02107996A (en) Welded structure of nuclear reactor pressure vessel and control rod housing
JP3448222B2 (en) Shroud for nuclear reactor
Armijo et al. Materials selection and expected performance in near term LMFBR steam generators
US20130114780A1 (en) Nuclear core component
Renda et al. Mechanical analysis of a model of the breeding blanket of NET in faulted conditions
JP2000158130A (en) Neutron irradiation welding structure of core components
JPS62233692A (en) Support structure of thermal shield plate for thermal shock prevention
Mohta et al. Structural integrity assessment of calandria of standard 220 MWe PHWR for in-vessel corium retention without SAMG action
Gupta et al. Assessment of weld joint efficiency for rolled and welded joint for Intermediate Heat Exchanger in Sodium cooled Fast Reactor
JPH046494A (en) Joining method for reactor pressure vessel and control rod drive housing
McClung et al. Fabrication and inspection development for Clinch River Breeder Reactor Plant steam generators
Little et al. Design, manufacturing, and test status of the CRBRP hockey stick steam generators
Spring et al. A high reliability straight tube LMFBR steam generator design
JPH10332862A (en) Reactor pressure vessel and core support structure
Carli et al. Welding development for thin-walled solar receiver panels