[go: up one dir, main page]

JPH01195366A - Method and device for determining dna base sequence - Google Patents

Method and device for determining dna base sequence

Info

Publication number
JPH01195366A
JPH01195366A JP63021045A JP2104588A JPH01195366A JP H01195366 A JPH01195366 A JP H01195366A JP 63021045 A JP63021045 A JP 63021045A JP 2104588 A JP2104588 A JP 2104588A JP H01195366 A JPH01195366 A JP H01195366A
Authority
JP
Japan
Prior art keywords
electrode
dna
ion
base sequence
dna fragments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63021045A
Other languages
Japanese (ja)
Inventor
Toshibumi Kita
俊文 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63021045A priority Critical patent/JPH01195366A/en
Publication of JPH01195366A publication Critical patent/JPH01195366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To eliminate the need for an intricate optical system by coupling a metal ion to DNA fragments cut to plural fragments, then effecting electrophoresis and detecting the fragments by an ion selective electrode, thereby determining the DNA base sequence. CONSTITUTION:The DNA fragments are injected as a sample into slots 8 for migration. The terminal primers of the respective fragments are previously labeled by the metal ion. Four kinds; adenine, guanine, thymine and cytosine, of the terminal bases of the sample constitute one set and 4 sets of the slots 8 are used for one set of the sample. The DNA fragments are electrically migrated and separated successively in a direction X when a migration pressure is impressed between electrode cells 4 and 6. The ion selective electrode 9 consisting of an electrode holding plate 1 made of glass and an electrode cylinder 3 is installed in a sepn. direction. The tip of the electrode in the electrode cylinder 3 comes into contact with a gel 2. The signal from the electrode enters a signal processing part 5 and the base sequence is determined in an analysis part 7.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、 DN人の塩基配列決定方法に関する。[Detailed description of the invention] (b) Industrial application field The present invention relates to a method for determining the base sequence of DN humans.

(ロ)従来技術 従来は、標識色素にエフラベルされたDNAなどの核酸
断片を電気泳動させ、標識色素を光学的に検出すること
によって核酸の塩基配列を決定していた(特開昭60−
242368号、特開昭60−220860号)。
(b) Prior art Conventionally, the base sequence of a nucleic acid was determined by electrophoresing a nucleic acid fragment such as DNA labeled with a labeling dye and optically detecting the labeling dye (Japanese Unexamined Patent Application Publication No. 1989-1999-1).
No. 242368, JP-A-60-220860).

これまでの色素ラベル法によるDNAの塩基配列を決定
する方法では、標識色素として螢光物質を用いた螢光色
素法が行なわnている(例えば、 「NatureJ誌
、第321巻、第12号、第674へ679ページ(1
986年〕1日本生物物理学会第24回年会予稿集3F
i 1130 (1986年)参照)。
Conventional methods for determining DNA base sequences using dye labeling methods employ fluorescent dye methods that use fluorescent substances as labeling dyes (for example, "Nature J, Vol. 321, No. 12, 674 to page 679 (1
986] 1 Proceedings of the 24th Annual Meeting of the Biophysical Society of Japan 3F
i 1130 (1986)).

塩基配列決定の最終段階はポリアク+7 vアミド・ゲ
/I/vf−用いた電気泳動によるIIi元ラベうされ
九DNA断片の分離と読取りである。分離さn7tj 
DNA断片パターンの読み取り方法としては。
The final step in determining the base sequence is separation and reading of the IIi DNA fragment by electrophoresis using Polyac+7 vamide gel/I/vf-. separated n7tj
How to read DNA fragment patterns.

展開されたDNA断片パターンを静止状態で読み取るオ
フライン方式と、 DNA断片を泳動させつつ読み取る
オンライン方式とが考えらnる。上記引用文献に記載さ
nている方法はいずnもオンライン方式の方法であ!+
 、 DNA断片ケ泳動させつつDNA断片からの信号
tコンビーータに読み取っている。
Two methods are considered: an offline method in which the developed DNA fragment pattern is read in a stationary state, and an online method in which the DNA fragments are read while they are being electrophoresed. All of the methods described in the above cited documents are online methods! +
, While the DNA fragments are being migrated, signals from the DNA fragments are read by a t-combeater.

オフライン方式とオンライン方式のいずnの場合も、螢
光色素法ではポリアクリルアミド・ゲルによる励起光の
レーリー散乱や水によるラマン散乱(ストークスa)が
僅かな螢光光の邪魔tしてバックグラウンドを高める。
In both offline and online methods, in the fluorescent dye method, Rayleigh scattering of excitation light by polyacrylamide gel and Raman scattering (Stokes a) by water interfere with the slight fluorescent light and create a background. Increase.

そのため。Therefore.

励起光を連続して照射する定常螢光法はラジオアイソト
ープ法に比べて感度がIS2桁劣6といわnており、誤
り率が1チ以上に達している(上記FNatureJ誌
の引用文献参照)。
The constant fluorescence method, in which excitation light is continuously irradiated, is said to have a sensitivity that is 2 orders of magnitude lower than the radioisotope method, and an error rate of more than 1 order of magnitude (see the cited reference in FNatureJ above). .

そこで、螢光色素法では定常螢光法に代って時間分解螢
光法が提案されている(特開昭61−2077号公報参
照)。時間分解螢光法では励起光をパ/I/ヌ的に照射
し、励起光が消光し几後のみの螢光を検出することによ
ってバックグラウンドケ減少させている(例えば[螢光
測定−生物科学への応用」(学会出版センター、 19
83年刊)99−%−160ページなどを参照)。
Therefore, in the fluorescent dye method, a time-resolved fluorescence method has been proposed in place of the steady fluorescence method (see Japanese Patent Laid-Open No. 61-2077). In the time-resolved fluorescence method, the excitation light is irradiated in a P/I/N pattern, and the background is reduced by detecting the fluorescence only after the excitation light is extinguished (for example, [Fluorescence measurement - biological “Applications to Science” (Gakkai Publishing Center, 19
(published in 1983), see page 99-%-160).

(ハ)発明が解決しようとする課題 時間分解螢光法では、輩九の発光時間が非常に短かいの
で・励起九バpヌの立下り時間上ナノ秒以下にするスイ
ッチングが必要である。このような高速のスイッチング
は機械的なシャッタでは実現することができず、モード
ロククレーザを用いなければならない。そのため、装置
が高価になる。また、高速での信号処理が難しく2時間
分解螢光法は現在のところ提案のみに留まっている。
(c) Problems to be Solved by the Invention In the time-resolved fluorescence method, since the light emission time of the light emitting diode is very short, it is necessary to switch the fall time of the excitation light to less than a nanosecond. Such high-speed switching cannot be achieved with a mechanical shutter and requires the use of a mode lock laser. Therefore, the device becomes expensive. In addition, high-speed signal processing is difficult, and the two-hour resolution fluorescence method is currently only a proposal.

また′・電気泳動装置で使用されるポリアクリlレアミ
ド・ゲμの支持体はガラス製又はポリエチレン製である
が、それらの支持体には弱いながらも螢光を発するもの
がある。そのため、仮に時間分解螢光法を採用したとし
ても、七nだけではDNA断片を充分に高感度に検出で
きるという保証はない。
Furthermore, the polyacrylamide gel supports used in electrophoresis devices are made of glass or polyethylene, and some of these supports emit fluorescence, albeit weakly. Therefore, even if a time-resolved fluorescence method is employed, there is no guarantee that DNA fragments can be detected with sufficiently high sensitivity using only 7n.

本発明は、標識色素を用いずに塩基配列を決定する方法
を提供することを目的とする。
An object of the present invention is to provide a method for determining a base sequence without using a labeling dye.

に)課題を解決するための手段 本発明は、塩基配列全決定したいDNA断片を複数のD
NA断片に切断し、該切断DNA断片に金属イオンを結
合させた後、電気泳動させイオン選択性電極で検出する
ことt特徴とする。
2) Means for Solving the Problems The present invention provides a means for solving the problems by dividing a DNA fragment whose base sequence is to be completely determined into a plurality of DNA fragments.
The method is characterized in that after cutting the DNA fragments into DNA fragments and binding metal ions to the cut DNA fragments, electrophoresis is performed and detection is performed using an ion-selective electrode.

ここで使用するDNA断片に結合嘔せる金属イオンとし
ては、Na、Kが挙けられる。
Examples of metal ions that bind to the DNA fragment used here include Na and K.

結合させる金属イオンの種類に応じてイオン選択性電極
の種類は選択嘔れる。
The type of ion-selective electrode is selected depending on the type of metal ion to be bound.

また0本発明の方法1に実施する装置は、金属イオンを
結合させた切断DNA断片を注入する注入スロットと、
注入された切断DNA断片を泳動させる泳動板と、泳動
板の泳動方向に配設され九イオン選択性電極部と、イオ
ン選択性電極部からの信号に基づき塩基配列を決定する
解析部からなる。
Furthermore, the apparatus for carrying out method 1 of the present invention includes an injection slot for injecting cut DNA fragments to which metal ions are bound;
It consists of a migration plate for electrophoresing the injected cut DNA fragments, a nine-ion selective electrode section disposed in the migration direction of the migration plate, and an analysis section for determining the base sequence based on the signal from the ion-selective electrode section.

(ホ)作用 本発明は、核酸断片會金属イオンで標識し。(e) Effect The present invention uses nucleic acid fragments labeled with metal ions.

イオン選択性電極で検出するので複雑な光学系が不要で
ある。
Since detection is performed using an ion-selective electrode, a complicated optical system is not required.

(へ)実施例 第1図に本発明の方法を実施するための装置を示す。(f) Example FIG. 1 shows an apparatus for carrying out the method of the invention.

2はポリアクリルアミドにてなる泳動用スラブゲルであ
り、ガラス板の間に保持されている。
2 is a slab gel for electrophoresis made of polyacrylamide, which is held between glass plates.

スラプゲ、A/2の一端は電極槽4中の電解液に浸され
、他端は電極41!16中の電解液に浸されている。ス
ラブゲル2の一端には試料を注入する定めの泳動用スロ
ット8が複数個形成妊nている。
One end of the slurp gear A/2 is immersed in the electrolyte in the electrode tank 4, and the other end is immersed in the electrolyte in the electrode 41!16. At one end of the slab gel 2, a plurality of electrophoresis slots 8 are formed into which a sample is injected.

電極槽4中の電解液と電極槽6中の電解液の間には泳動
用電源10によって泳動電圧が印加される“。
A migration voltage is applied between the electrolytic solution in the electrode tank 4 and the electrolytic solution in the electrode tank 6 by the migration power source 10.

泳動用ヌロツ十8のそn−t’nにはサンガー法(F 
、 S anger他; Proc、Natl、Aca
d、Sci 、USA。
The Sanger method (F
, Sanger et al; Proc, Natl, Aca
d, Sci, USA.

Vol、74. f)p5463へ5467 (197
7年)参照)などによって得られた末端塩基側のDNA
断片が試料として注入さnる。各DNA断片は予め末端
プライマーが金属イオン(少なくとも2m、例えばNa
、K)でラベルさnている。試料は末端塩基がA(アデ
ニン)、G(グアニン)、T(テミンン及びC(シトシ
ンンの4種類で1組の試料となりしたがって4個の泳動
用スロット8が1組の試料に使用される。
Vol, 74. f) 5467 to p5463 (197
DNA on the terminal base side obtained by
The fragment is injected as a sample. Each DNA fragment is pre-primed with a metal ion (at least 2 m, e.g. Na
, K). One set of samples consists of four types of terminal bases: A (adenine), G (guanine), T (teminine), and C (cytosine), and therefore, the four electrophoresis slots 8 are used for one set of samples.

泳動用電源10によりて電極槽4と電極槽6の間に泳動
電圧を印加すると、泳動用スロット8に注入さnたDN
A断片試料はX方向(図で垂直方向)に電気泳動し分離
されていく。
When a migration voltage is applied between the electrode tank 4 and the electrode tank 6 by the migration power supply 10, the DN injected into the migration slot 8
The A fragment sample is separated by electrophoresis in the X direction (vertical direction in the figure).

分離方向にはイオン選択性電極部9が設置さnている。An ion selective electrode section 9 is installed in the separation direction.

イオン選択性電極部9はガラス製の電極保持板1と電極
筒3からなる。電極筒3は指示電極(Na選択性電極、
に選択性電極)と参照電極が対となって収容されており
、電極筒3の本数は泳動用スロットの数に対応する。
The ion-selective electrode section 9 consists of an electrode holding plate 1 and an electrode tube 3 made of glass. The electrode tube 3 is an indicator electrode (Na selective electrode,
A selective electrode) and a reference electrode are housed in pairs, and the number of electrode tubes 3 corresponds to the number of migration slots.

電極筒3内の電極の先端はゲル2に接触する。The tip of the electrode inside the electrode tube 3 contacts the gel 2.

電極からの信号は信号処理部5に取り入れて解析部7へ
送り塩基配列2決定する。
The signal from the electrode is taken into the signal processing section 5 and sent to the analysis section 7 where the base sequence 2 is determined.

なおたんばくの影響全党けないで検出できる膜全使用す
るイオン選択性′61極を使用する場合は金属イオンケ
結合させないで検出させることもできる。
In addition, when using an ion-selective electrode that uses a membrane that allows detection without exposing all the effects of exposure to air, it is also possible to detect metal ions without binding them.

(ト)効果 本発明によnば、螢光検出全利用しないので複雑な光学
系が不要である。また、励起光の照射位置を考慮しなく
て良いのでオンライン検出に有効である。
(g) Effects According to the present invention, a complicated optical system is not required because fluorescence detection is not fully utilized. Furthermore, it is effective for online detection since it is not necessary to consider the irradiation position of the excitation light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図が本発明方法%l−実施するための装置である。 2・・・泳動用スラブゲル  3・・・電極筒7・・・
解析部 特許出願人 株式会社 島 津 製 作 所ノ、′。
FIG. 1 shows an apparatus for carrying out the method of the present invention. 2... Slab gel for electrophoresis 3... Electrode tube 7...
Analysis Department Patent Applicant: Shimazu Corporation.

Claims (1)

【特許請求の範囲】 1、塩基配列を決定したいDNA断片を複数のDNA断
片に切断し、該切断DNA断片に金属イオンを結合させ
た後、電気泳動させ、イオン選択性電極で検出すること
を特徴とするDNA塩基配列決定方法。 2、切断DNA断片を金属イオンで標識することを特徴
とするDNA塩基配列決定方法における標識法。 3、電気泳動させた切断DNA断片をイオン選択性電極
で検出することを特徴とするDNA塩基配列決定方法に
おける検出法。 4、金属イオンを結合させた切断DNA断片を注入する
注入スロットと、注入された切断DNA断片を泳動させ
る泳動板と、泳動板の泳動方向に配設されたイオン選択
性電極部と、イオン選択性電極部からの信号に基づき塩
基配列を決定する解析部とからなるDNA塩基配列決定
装置。
[Claims] 1. A DNA fragment whose base sequence is to be determined is cut into a plurality of DNA fragments, a metal ion is bound to the cut DNA fragments, electrophoresed, and detected with an ion-selective electrode. Characteristic DNA base sequencing method. 2. A labeling method in a DNA base sequencing method characterized by labeling a cut DNA fragment with a metal ion. 3. A detection method in a DNA base sequencing method, which comprises detecting electrophoresed cut DNA fragments using an ion-selective electrode. 4. An injection slot for injecting cut DNA fragments bound with metal ions, a migration plate for migrating the injected cut DNA fragments, an ion-selective electrode section disposed in the migration direction of the migration plate, and an ion selection device. A DNA base sequence determination device comprising an analysis section that determines the base sequence based on signals from a sex electrode section.
JP63021045A 1988-01-29 1988-01-29 Method and device for determining dna base sequence Pending JPH01195366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63021045A JPH01195366A (en) 1988-01-29 1988-01-29 Method and device for determining dna base sequence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63021045A JPH01195366A (en) 1988-01-29 1988-01-29 Method and device for determining dna base sequence

Publications (1)

Publication Number Publication Date
JPH01195366A true JPH01195366A (en) 1989-08-07

Family

ID=12043958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63021045A Pending JPH01195366A (en) 1988-01-29 1988-01-29 Method and device for determining dna base sequence

Country Status (1)

Country Link
JP (1) JPH01195366A (en)

Similar Documents

Publication Publication Date Title
Swerdlow et al. Capillary gel electrophoresis for rapid, high resolution DNA sequencing
JP3975247B2 (en) Molecular imaging
Milofsky et al. Native fluorescence detection of nucleic acids and DNA restriction fragments in capillary electrophoresis
JP2804038B2 (en) Base sequence determination method
US6969452B2 (en) Two-dimensional protein separations using chromatofocusing and multiplexed capillary gel electrophoresis
JP2776208B2 (en) Electrophoresis device
US6833919B2 (en) Multiplexed, absorbance-based capillary electrophoresis system and method
JPH01112147A (en) Method for determining base sequence of nucleic acid
JP2974495B2 (en) Electrophoresis apparatus and electrophoresis method
JPH11108889A (en) Capillary electrophoresis device
JPH01195366A (en) Method and device for determining dna base sequence
JPH1019846A (en) Multicapillary electrophoretic apparatus
US5961801A (en) DNA separation electrophoresis gels and methods for their use
JP2000258392A (en) Electrophoresis device
JP2840586B2 (en) Light detection electrophoresis device
JP3042487B2 (en) Electrophoresis device
Guttman High-performance ultrathin layer agarose gel electrophoresis
JPH05223778A (en) Electrophoresis device
JPH07134101A (en) Dna base sequence determining apparatus
JP3042370B2 (en) Electrophoresis device
JP2792396B2 (en) Base sequencer
JP2000097908A (en) Electrophoresis device
Dovichi Capillary electrophoresis for DNA sequencing
JPS63208763A (en) Base sequence determination device
JPH01174958A (en) Base sequence determining apparatus