[go: up one dir, main page]

JPH01194883A - Controlling method for induction motor - Google Patents

Controlling method for induction motor

Info

Publication number
JPH01194883A
JPH01194883A JP63016994A JP1699488A JPH01194883A JP H01194883 A JPH01194883 A JP H01194883A JP 63016994 A JP63016994 A JP 63016994A JP 1699488 A JP1699488 A JP 1699488A JP H01194883 A JPH01194883 A JP H01194883A
Authority
JP
Japan
Prior art keywords
induction motor
coordinate system
command
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63016994A
Other languages
Japanese (ja)
Other versions
JP2821127B2 (en
Inventor
Takayuki Matsui
孝行 松井
Toshiaki Okuyama
俊昭 奥山
Yuzuru Kubota
久保田 譲
Noboru Fujimoto
登 藤本
Toshio Saito
敏雄 斉藤
Junichi Takahashi
潤一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63016994A priority Critical patent/JP2821127B2/en
Publication of JPH01194883A publication Critical patent/JPH01194883A/en
Application granted granted Critical
Publication of JP2821127B2 publication Critical patent/JP2821127B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To enable slip frequency to be controlled to always come to a proper value even if a primary resistance is fluctuated, by taking a signal in relation to a secondary resistance fluctuation of a motor from a voltage fluctuation quantity, and by controlling converter output frequency according to said signal. CONSTITUTION:The output of current detectors 3U-3W is fed to a coordinate converter 5 via a three-phase/two-phase converter 4. The outputs of the coordinate converter 5 and current regulators 15, 16 is fed to an arithmetic circuit 18. Output voltage fluctuation component due to the change of a secondary resistance of a motor 2 from the arithmetic unit 18 is applied to an adder 23, and the frequency of the motor 2 from an adder 26 is sent to a coordinate reference generator 13 and a voltage command arithmetic circuit 14. From the voltage command arithmetic circuit 14, the voltage component command of a revolving-field coordinate system is applied to adders 21, 22 and the output is sent to a coordinate converter 17. By the voltage command of a stator coordinate system from the coordinate converter 17, via a PWM controlling circuit 19, a power converter 1 is controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は誘導電動機の制御方法に関し、特に電動機の電
圧とトルクを高精度に制御するための制御方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control method for an induction motor, and more particularly to a control method for controlling the voltage and torque of a motor with high precision.

〔従来の技術〕[Conventional technology]

誘導電動機の電流を励磁成分とトルク成分に分けて、そ
れぞれを独立に制御し、高速応答高精度な速度制御を行
なういわゆるベクトル制御が知られている。このものに
おいては、各電流成分指令に基づいて電動機電流が制御
されるが、電動機内部において各成分が指令値通りに制
御されるかどうかは、すべり周波数の制御精度が関係す
る。すなわち、周波数変換装置から供給される電動機電
流は励磁分とトルク発生分のベクトル合成であるが、こ
れがすべり周波数を媒体として電動機内部で励磁分とト
ルク発生分の各々に分解されると考えられ、そのために
すべり周波数が適正でなければ各成分を指令値通りに制
御することができない。
So-called vector control is known in which the current of an induction motor is divided into an excitation component and a torque component and each is controlled independently to perform speed control with high speed response and high accuracy. In this system, the motor current is controlled based on each current component command, but whether or not each component is controlled within the motor according to the command value depends on the control accuracy of the slip frequency. In other words, the motor current supplied from the frequency converter is a vector composition of the excitation component and the torque generation component, but this is considered to be decomposed into the excitation component and the torque generation component each within the motor using the slip frequency as a medium. Therefore, unless the slip frequency is appropriate, each component cannot be controlled according to the command value.

すベリ周波数が適正でなくなる原因には、電動機の2次
抵抗が温度により変動することなどが挙げられる。この
影響によって負荷変化時にトルクの応答遅れ及び脈動が
生じ、また電動機電圧を指令値通りに制御できないなど
の不具合が生じる。
The cause of the unsuitable frequency is that the secondary resistance of the motor fluctuates depending on the temperature. This effect causes a torque response delay and pulsation when the load changes, and also causes problems such as the inability to control the motor voltage according to the command value.

そこで、従来では、特開昭59−156184号に記載
のように、インバータの出刃電圧を検出して、この電圧
検出信号に基づいて2次抵抗設定値を修正してすべり周
波数を補償する方法が提案されている。
Therefore, conventionally, as described in JP-A-59-156184, there has been a method of detecting the blade voltage of the inverter and correcting the secondary resistance setting value based on this voltage detection signal to compensate for the slip frequency. Proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来技術はインバータの出力電圧を
検出するための検出器が必要であり、ハード構成が複雑
となる問題があった。また、出刃電圧から電動機の2次
抵抗変化を推定するには、出力電圧に含まれる1次抵抗
による電圧降下を差し引き、2次抵抗変化による電圧成
分を求めることが必要であるが、1次抵抗も温度により
変化するため正しく求めることが難しく、すべり周波数
の補償がうまくできない問題があった。
However, the above-mentioned conventional technology requires a detector to detect the output voltage of the inverter, and has a problem in that the hardware configuration is complicated. In addition, in order to estimate the secondary resistance change of the motor from the cutting voltage, it is necessary to subtract the voltage drop due to the primary resistance included in the output voltage and find the voltage component due to the secondary resistance change. Since it changes with temperature, it is difficult to obtain it correctly, and there is a problem in that it is not possible to compensate for the slip frequency properly.

本発明の目的は、出力電圧の検出器をなくし、1次抵抗
が変動してもすベリ周波数を常に適正値に制御すること
ができる制御方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a control method that eliminates the need for an output voltage detector and can always control the frequency to an appropriate value even if the primary resistance varies.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、回転磁界座標系における電動機の励磁電流
指令と励磁電流の検出値との偏差及び、トルク電流指令
とトルク電流の検出値との偏差に基づいて基準値からの
電圧変動量を演算し、この電圧変動量から電動機の2次
抵抗変動に関係の信号を取り出し、この信号に応じて変
換器出力周波数を制御することにより、達成される。
The above purpose is to calculate the amount of voltage fluctuation from the reference value based on the deviation between the excitation current command of the motor and the detected value of the excitation current in the rotating magnetic field coordinate system, and the deviation between the torque current command and the detected value of the torque current. This is achieved by extracting a signal related to the secondary resistance fluctuation of the motor from this voltage fluctuation amount and controlling the converter output frequency according to this signal.

〔作用〕[Effect]

回転磁界座標系における電動機の励磁電流指令と励磁電
流の検出値との偏差及び、トルク電流指令とトルク電流
の検出値との偏差がOとなるように電動機電圧を制御す
るものにおいて、電動機の定数変化によるその電圧の変
動量には、1次抵抗の変動による電圧降下成分と、2次
抵抗の変動による電圧変動成分が含まれている。そこで
1本発明では、出力電圧の電圧指令の変動量に基づいて
、電動機電圧の変動成分を励磁電流とトルク電流がら成
る電動機電流ベクトルに同相な成分(抵抗による電圧降
下)と直交な成分に分解し、この直交な出力電圧成分か
ら2次抵抗変動に関係の信号を取り出し、それがOとな
るように2次抵抗の基準値を修正してすべり周波数を補
償するようにしているので1次抵抗の変動による影響を
受けることがない。
In a device that controls the motor voltage so that the deviation between the excitation current command of the motor and the detected value of the excitation current in the rotating magnetic field coordinate system and the deviation between the torque current command and the detected value of the torque current are O, the constant of the motor is The amount of voltage fluctuation due to the change includes a voltage drop component due to a change in the primary resistance and a voltage fluctuation component due to a change in the secondary resistance. Therefore, in the present invention, based on the amount of variation in the voltage command of the output voltage, the variation component of the motor voltage is decomposed into a component that is in phase with the motor current vector consisting of the excitation current and the torque current and a component that is orthogonal to the motor current vector (voltage drop due to resistance). However, the signal related to the secondary resistance fluctuation is extracted from this orthogonal output voltage component, and the reference value of the secondary resistance is corrected so that it becomes O to compensate for the slip frequency, so the primary resistance unaffected by fluctuations in

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図により説明する。誘導
電動機2は電力変換回路lより給電され。
An embodiment of the present invention will be described below with reference to FIG. The induction motor 2 is supplied with power from a power conversion circuit 1.

電動機2に流れる3相交流電流が電流検出器3tJ。The three-phase alternating current flowing through the motor 2 is detected by a current detector 3tJ.

3V、3Wにより検出される。この3相交流電流は3相
−2相変換器4により、2相交流電流に変換され、その
出力が座標変換器5に入力され回転磁界座標系における
励磁電流とトルク電流成分にベクトル分解され、その検
出値はそれぞれの指令信号と加算器6,7で突合せられ
る。電動機2の回転速度は速度検出器8で検出され、そ
の出方はその指令信号と加算器9において突合せられる
と共に、加算器10に入力される。加算器9の出力は速
度制御器11に入力されて電動機2のトルク指令Iq#
を出力し、その出方はすべり演算器12と加算器7に入
力される。すべり演算器12の出力Ws”は加算器10
において回転速度W、と加算され、その出力が加算器2
3に入力される。加算器6の出力は励磁電流指令Id率
と座標変換器5の検出値I6との偏差を出力し、その出
方は電流調節器15に入力され、その偏差が0となるよ
うに回転磁界座標系の電圧成分指令ΔV−を加算器21
に出力する。加算器7の出方はトルク電流指令ニーと座
標変換器5の検出値Iqとの偏差を出力し、その出力は
電流調節器16に入力され、その偏差が0となるように
回転磁界座標系の電圧成分指令Δvq*を加算器22に
出力する。これら電流調節器15.16からの出力及び
座標変換器5の出力は、演算回路18に入力され、電動
機2の2次抵抗の変化による出力電圧変動成分ΔV上を
加算器23に出力する。このΔV上は加算器23におい
て加算器10の出方witと加算され、電動機2の周波
数W 1”を出力し、その出力は座標基準発生器13と
電圧指令演算回路14に入力される。電圧指令演算回路
14は励磁電流指令工、Iとトルク電流指令IqIと周
波数w1*傘に基づいて回転磁界座標系の電圧成分指令
vd拳とvq *を出力し、その出力は加算器21.2
2に入力される。これら加算器21.22の出力は座標
変換器17に入力され、電動機2の周波数w1**に基
づいて固定子座標系の電圧指令v1,4. Vv4y 
V−を出力する。
Detected by 3V, 3W. This three-phase alternating current is converted into a two-phase alternating current by a three-phase to two-phase converter 4, and its output is input to a coordinate converter 5, where it is vector decomposed into excitation current and torque current components in a rotating magnetic field coordinate system. The detected values are matched with respective command signals by adders 6 and 7. The rotational speed of the electric motor 2 is detected by a speed detector 8, and its output is compared with the command signal in an adder 9 and inputted to an adder 10. The output of the adder 9 is input to the speed controller 11, and the torque command Iq# of the electric motor 2 is inputted to the speed controller 11.
is output, and its output is input to the slip calculator 12 and the adder 7. The output Ws” of the slip computing unit 12 is output from the adder 10.
is added to the rotational speed W, and the output is added to the adder 2
3 is input. The output of the adder 6 is the deviation between the excitation current command Id rate and the detected value I6 of the coordinate converter 5, and the output is input to the current regulator 15, and the rotating magnetic field coordinate is adjusted so that the deviation becomes 0. The system voltage component command ΔV- is added to the adder 21
Output to. The output of the adder 7 outputs the deviation between the torque current command knee and the detected value Iq of the coordinate converter 5, and the output is input to the current regulator 16, and the rotating magnetic field coordinate system is adjusted so that the deviation becomes 0. The voltage component command Δvq* is outputted to the adder 22. The outputs from the current regulators 15 and 16 and the output from the coordinate converter 5 are input to the arithmetic circuit 18, and the output voltage fluctuation component ΔV due to the change in the secondary resistance of the motor 2 is output to the adder 23. This ΔV is added to the output wit of the adder 10 in the adder 23 to output the frequency W 1'' of the motor 2, and the output is input to the coordinate reference generator 13 and the voltage command calculation circuit 14. The command calculation circuit 14 outputs voltage component commands vd and vq* of the rotating magnetic field coordinate system based on the excitation current command I, the torque current command IqI, and the frequency w1*, and the output is sent to the adder 21.2.
2 is input. The outputs of these adders 21 and 22 are input to the coordinate converter 17, and based on the frequency w1** of the electric motor 2, voltage commands v1, 4, . Vv4y
Outputs V-.

これらの電圧指令V−,Vv*p V−は、パルス幅変
調(PWM)制御回路19に入力され、搬送波周波数に
基づいてPWM制御された出力V u HV v 。
These voltage commands V-, Vv*p V- are input to a pulse width modulation (PWM) control circuit 19, and output V u HV v is subjected to PWM control based on the carrier wave frequency.

vwが電力変換器1に出力される。また、座標変換器5
,17の座標基準信号は、座標基準発生器13により与
えられる。
vw is output to the power converter 1. In addition, the coordinate converter 5
, 17 are provided by a coordinate reference generator 13.

まず、以上の構成による動作を簡単に説明する。First, the operation of the above configuration will be briefly explained.

この実施例では回転磁界座標系の励磁電流指令Idユと
トルク電流指令Iq”に基づいて電圧指令y44とvq
*が演算されると共に、励磁電流とトルク電流に対して
フィードバック制御系が構成されており、指令値と実際
値の偏差が0となるように各電流調節器の出力により前
記電圧指令v−2vq*を修正し、この修正された電圧
指令71本。
In this embodiment, the voltage commands y44 and vq are determined based on the excitation current command Id and the torque current command Iq in the rotating magnetic field coordinate system.
* is calculated, and a feedback control system is configured for the excitation current and torque current, and the voltage command v-2vq is adjusted by the output of each current regulator so that the deviation between the command value and the actual value becomes 0. * has been corrected, resulting in 71 voltage commands.

yq**が座標変換器17において、固定子座標系の3
相交流電圧指令に変換され、この変換された3相交流電
圧指令に基づいて電力変換器1により電動機2へ供給す
る電圧が制御される。
In the coordinate converter 17, yq** is converted to 3 in the stator coordinate system.
It is converted into a phase AC voltage command, and the voltage supplied to the electric motor 2 is controlled by the power converter 1 based on the converted three-phase AC voltage command.

次に、本発明に関する演算回路18の詳細と動作を第2
図、第3図を用いて述べる。電動機2は通常では電圧指
令演算回路14の出力V−,yq*によって決定される
電圧により運転される。ところが、電動機の温度が運転
に伴い変化するため1次抵抗と2次抵抗が変化し、電動
機に励磁電流指令I−、トルク電流指令Iq本どうりの
電流が流れなくなる。その結果、電流制御系の出力にΔ
V、*。
Next, the details and operation of the arithmetic circuit 18 related to the present invention will be explained in the second section.
This will be explained using FIG. The electric motor 2 is normally operated with a voltage determined by the output V-, yq* of the voltage command calculation circuit 14. However, as the temperature of the motor changes with operation, the primary resistance and secondary resistance change, and currents equal to the excitation current command I- and the torque current command Iq no longer flow through the motor. As a result, the output of the current control system is Δ
V, *.

Δvq*が生じる。この電圧指令ΔV−2Δvq車には
1次抵抗変化による出力電圧変動成分と、2次抵抗変化
による出力電圧変動成分が含まれている。
Δvq* occurs. This voltage command ΔV-2Δvq vehicle includes an output voltage fluctuation component due to a primary resistance change and an output voltage fluctuation component due to a secondary resistance change.

そこで、本発明ではこれらの電圧指令Δy、*。Therefore, in the present invention, these voltage commands Δy, *.

Δvq本に基づいて出力電圧の変動分を、励磁電流■、
とトルク電流■9からなる電流ベクトルに同相な抵抗電
圧降下成分と、この電流ベクトルに直交な出力電圧成分
ΔV上にベクトル分解して2次抵抗変化によるすべり周
波数変化を検出する。
The variation of the output voltage based on Δvq is expressed as the excitation current ■,
The slip frequency change due to the secondary resistance change is detected by vector decomposition into a resistance voltage drop component in phase with the current vector consisting of the current vector and the torque current (9), and an output voltage component ΔV orthogonal to this current vector.

この直交な出力電圧成分は、第2図に示す回転磁界座標
系における電流と電圧のベクトル図から求めることがで
きる。電流ベクトルバに直交な出力電圧成分ΔV上 は
次式で表わすことができる。
This orthogonal output voltage component can be determined from the vector diagram of current and voltage in the rotating magnetic field coordinate system shown in FIG. The output voltage component ΔV perpendicular to the current vector can be expressed by the following equation.

Δv、1=Δv申′cosO =−Δv dh 1sin O+Δvq*9cosO=
(−Δva*−Iq+Δv q$+ I a)/ I 
i−(+)ここに、If:  Ila + Iq 、 
cos= Ia/ It。
Δv, 1=Δv sin′cosO=−Δv dh 1sin O+Δvq*9cosO=
(-Δva*-Iq+Δv q$+ I a)/I
i-(+) where: If: Ila + Iq,
cos=Ia/It.

sjnθ= I q/ r tである。sjnθ=Iq/rt.

また、ΔV 4 ” p ΔVqlは1次抵抗の変動に
よる出力電圧成分と2次抵抗の変動による出力電圧成分
を含んでいる。すなわち、ΔVdl、Δvq*は次式で
表わすことができる。
Further, ΔV 4 "p ΔVql includes an output voltage component due to a variation in the primary resistance and an output voltage component due to a variation in the secondary resistance. That is, ΔVdl and Δvq* can be expressed by the following equation.

ここに、Δv4.Δ■9は2次抵抗の変動による出力電
圧成分である。
Here, Δv4. Δ■9 is an output voltage component due to fluctuations in the secondary resistance.

従って、(1) 、 (2)式よりΔv1は次式のよう
に整理することができる。
Therefore, from equations (1) and (2), Δv1 can be rearranged as shown in the following equation.

Δv上=(−(ArtIa+八vd)Iへ+(Δrl’
工9+Δvq)・IJ/If =(−ΔVa”Iq+Δv q ・I 、+)/ r 
t・(3)(3)式より、ΔV上には1次抵抗の変動に
よる影響がなく、2次抵抗の変動による出力電圧変動成
分だけが求められる。この(3)式が演算回路18の演
算内容である。また、ΔV上と2水抵抗r2の間には、
第3図(a)及び第3図(b)に示す関係がある。第3
図(a)は電動機2が電動状態(Iq >0)の場合、
第3図(b)は回生状態(I q < O)の場合であ
る。第3図(a)において電動機2の2水抵抗r2が基
準値r2牢により増加すると、ΔV上は負極性となり逆
にrz拳より減少するとΔV上は正極性となり極性が反
転する。
Δv up=(-(ArtIa+8vd)I+(Δrl'
9+Δvq)・IJ/If=(−ΔVa”Iq+Δvq・I,+)/r
t·(3) From equation (3), there is no effect on ΔV due to the variation in the primary resistance, and only the output voltage variation component due to the variation in the secondary resistance is determined. This equation (3) is the calculation content of the calculation circuit 18. Also, between ΔV and 2 water resistance r2,
There is a relationship shown in FIGS. 3(a) and 3(b). Third
In Figure (a), when the motor 2 is in an electric state (Iq > 0),
FIG. 3(b) shows the case in the regenerative state (I q < O). In FIG. 3(a), when the water resistance r2 of the motor 2 increases by the reference value r2, the polarity above ΔV becomes negative, and conversely, when it decreases from rz, the polarity above ΔV becomes positive and the polarity is reversed.

一方、第3図(b)に示す回生状態においては、2水抵
抗r2の変化に対するへV上の極性は電動状態と逆にな
る。そこで、すべり周波数はr2の大きさに比例するの
で、電動状態には演算回路18の出力ΔV上が負極性の
場合には電動機2の1次周波数を増加し、Δv上が正極
性の場合には1次周波数を減少するようにΔv1に応じ
て一次角周波数w1傘を修正制御すれば、電動機2のす
べりを適正値に制御することができる。また、回生状態
にはΔV上の極性を反転して同様に修正することができ
る。
On the other hand, in the regenerative state shown in FIG. 3(b), the polarity on V with respect to the change in the water resistance r2 is opposite to that in the electric state. Therefore, since the slip frequency is proportional to the magnitude of r2, in the motorized state, the primary frequency of the motor 2 is increased when the output ΔV of the arithmetic circuit 18 is of negative polarity, and when the output ΔV is of positive polarity, the primary frequency of the motor 2 is increased. If the primary angular frequency w1 is corrected and controlled according to Δv1 so that the primary frequency is decreased, the slip of the electric motor 2 can be controlled to an appropriate value. Further, in the regenerative state, the polarity on ΔV can be reversed to make a similar correction.

第4図は本発明の他の実施例である。第1図に示す第1
実施例と同一物には同じ番号を付しているので説明を省
略する。第1実施例と異なるところは電流調節器1.5
.16からの電圧指令ΔV−とΔvq*及び励磁電流指
令Ia”とトルク電流指令Iq*に基づいて前記実施例
と同様に電動機電圧の変動分を電動機電流ベクトルに同
相な成分と直交な成分に、ベクトル分解して2次抵抗変
化によるすベリ周波数変化を検出するようにした点であ
る。
FIG. 4 shows another embodiment of the invention. 1 shown in Figure 1.
Components that are the same as those in the embodiment are given the same numbers, and therefore their description will be omitted. The difference from the first embodiment is that the current regulator is 1.5.
.. Based on the voltage commands ΔV- and Δvq* from 16, the excitation current command Ia'' and the torque current command Iq*, the variation of the motor voltage is converted into a component in phase with the motor current vector and a component orthogonal to the motor current vector, as in the previous embodiment. The point is that the frequency change due to the secondary resistance change is detected by vector decomposition.

この直交な出力電圧成分Δv土 は次式で表わされる。This orthogonal output voltage component Δv is expressed by the following equation.

Δv1 = (−ΔVa”Iq喚+Δ vqII−L”
)/ I t”・(4)ここに、■1ψ=JT’7下了
マ匹 である。
Δv1 = (-ΔVa"Iq increase+ΔvqII-L"
) / I t”・(4) Here, ■1ψ=JT'7 finished ma animals.

この(4)式が、本実施例の演算回路18の演算内容で
ある。
This equation (4) is the calculation content of the calculation circuit 18 of this embodiment.

本実施例によっても第1実施例と同様の効果を得ること
ができる。
This embodiment also provides the same effects as the first embodiment.

第5図は本発明の他の実施例である。第1実施例と同一
物には同じ番号を付しているので説明を省略する。第1
実施例と異なるところは電流調節器1.5,1.6から
の電圧指令Δv−4ΔVqIに基づいて出力電圧の変動
分を、励磁電流■、とトルク電流工1からなる電流ベク
トルに同相な出方電圧成分と、この電流ベクトルに直交
な出方電圧成分Δvlにベクトル分解し、このΔ■上か
ら電動機2の2次抵抗の変化分Δr2を演算してすベリ
演算回路12の係数ksを修正するようにした点である
。2次抵抗の変化分Δr2は次式の関数Fで表わされる
FIG. 5 shows another embodiment of the invention. Components that are the same as those in the first embodiment are given the same numbers, and therefore their description will be omitted. 1st
The difference from the embodiment is that the variation of the output voltage is changed based on the voltage command Δv-4ΔVqI from the current regulators 1.5 and 1.6 into an output that is in phase with the current vector consisting of the exciting current ■ and the torque current regulator 1. The vector is decomposed into an output voltage component and an output voltage component Δvl orthogonal to this current vector, and the change Δr2 in the secondary resistance of the motor 2 is calculated from this Δ■ to correct the coefficient ks of the sublime calculation circuit 12. This is what I decided to do. The change amount Δr2 in the secondary resistance is expressed by the function F of the following equation.

ここに、φa””M ’ Id”、 r2”は2次抵抗
の基準値、W戸は一次角周波数、Mは電動機2の励磁イ
ンダクタンス、kは比例ゲインである。
Here, φa""M'Id", r2" is the reference value of the secondary resistance, W is the primary angular frequency, M is the excitation inductance of the motor 2, and k is the proportional gain.

また、すべり演算回路12の係数に8は次式で表わされ
る。
Further, the coefficient 8 of the slip calculation circuit 12 is expressed by the following equation.

φ−L。φ-L.

ここに、T−r = M + Q 2 、 Q 2は2
次側の漏れインダクタンスである。(1) 、 (5)
 、 (6)式が本実施例の演算回路18の演算内容で
ある。
Here, T-r = M + Q2, Q2 is 2
This is the leakage inductance on the next side. (1), (5)
, (6) is the calculation content of the calculation circuit 18 of this embodiment.

第6図は本発明の他の実施例である。第1、実施例と同
一物には同じ番号を付しているので説明を省略する。第
1実施例と異なるところは電流調節器15.16からの
電圧指令Δv4*、Δ■q事に基づいて、出力電圧の変
動を、励磁電流■、とトルク電流■、からなる電流ベク
トルに同相な出力電圧成分と、この電流ベクトルに直交
な出力電圧成分ΔV上にベクトル分解し、このΔV上か
ら電動機2の2次抵抗の変化分Δrzを演算してすべり
演算回路12で用いる2次抵抗の大きさを修正するよう
にした点である。本実施例では、2次抵抗の大きさl”
 2$6があらかじめ設定した2次抵抗の基準値rz拳
と前記のΔV、Lから演算したΔr2の和として加算器
23で演算され、この演算されたr2**が電動機2の
2次抵抗と一致するように電動状態(1,>O)ではΔ
V、Lが負極性の時にはrz拳申を増加してすベリ角周
波数を増加し、ΔV上が正極性の時にはr20を減少し
てすべり角周波数を減少するようにすべり角周波数Ws
”が修正され、その結果ΔV上がOとなる。積分器24
は以上のようにしてΔr2が同定された結果を記憶する
と共にΔV↓がOでなくなった場合にはΔr2を修正す
るように動作する。
FIG. 6 shows another embodiment of the invention. First, the same numbers as in the embodiment are given to the same parts, so the explanation will be omitted. The difference from the first embodiment is that, based on the voltage commands Δv4* and Δ■q from the current regulators 15 and 16, the fluctuation of the output voltage is in phase with the current vector consisting of the excitation current ■ and the torque current ■. vector decomposition into an output voltage component and an output voltage component ΔV orthogonal to this current vector, calculate the change Δrz in the secondary resistance of the motor 2 from this ΔV, and calculate the secondary resistance used in the slip calculation circuit 12. The point is that the size has been corrected. In this embodiment, the magnitude of the secondary resistance l”
2$6 is calculated by the adder 23 as the sum of the preset secondary resistance reference value rz and Δr2 calculated from the above ΔV and L, and this calculated r2** is the secondary resistance of the motor 2. In order to match, in the electric state (1, > O) Δ
When V and L have negative polarity, rz is increased to increase the slip angular frequency, and when ΔV is positive, r20 is decreased to decrease the slip angular frequency.
” is corrected, and as a result, ΔV becomes O.Integrator 24
stores the result of identifying Δr2 as described above, and operates to correct Δr2 when ΔV↓ is no longer O.

本実施例によれば、2次抵抗の変動分ΔrZがすべり角
周波数Wslの修正を通じて自動的に演算されるので、
常に精度良く2次抵抗を同定することができる効果があ
る。
According to this embodiment, since the fluctuation amount ΔrZ of the secondary resistance is automatically calculated through correction of the slip angular frequency Wsl,
This has the effect that the secondary resistance can always be identified with high accuracy.

本実施例によれば、電動機2の2次抵抗の大きさを同定
できるので、この大きさから電動機の回転子温度を推定
して所定値を越えた時にインバータ主回路の電流制限値
を下げたり、あるいはしゃ断することにより過熱に対す
る保護を行うことができる効果がある。
According to this embodiment, since the magnitude of the secondary resistance of the motor 2 can be identified, the rotor temperature of the motor can be estimated from this magnitude, and when the temperature exceeds a predetermined value, the current limit value of the inverter main circuit can be lowered. , or by shutting off the power, it is effective to protect against overheating.

第7図は本発明の他の実施例である。第1実施例と同一
物には同じ番号を付しているので説明を省略する。第1
実施例と異なるところは加算器21.22からの電圧指
令v−*、Vq**に基づいて出力電圧を、励磁電流I
aとトルク電流工9からなる電流ベクトルに同相な出力
電圧成分と、この電流ベクトルに直交な出力電圧成分V
よにベクトル分解し、このV工から電動機2の2次抵抗
変化によるすベリ周波数変化を検出するようにした点で
ある。この直交な出力電圧成分V 」よ次式で表わされ
る。
FIG. 7 shows another embodiment of the invention. Components that are the same as those in the first embodiment are given the same numbers, and therefore their description will be omitted. 1st
The difference from the embodiment is that the output voltage is adjusted based on the voltage commands v-* and Vq** from the adders 21 and 22, and the excitation current I
an output voltage component that is in phase with the current vector consisting of a and the torque current generator 9, and an output voltage component V that is orthogonal to this current vector.
The point is that the frequency change due to the secondary resistance change of the electric motor 2 is detected from this V-factor by vector decomposition. This orthogonal output voltage component V is expressed by the following equation.

V工==(va**・Iq+Vq**’ Id)/ I
t −(7)ここに、11=6−r璽己丁である。
V engineering==(va**・Iq+Vq**' Id)/I
t - (7) Here, 11 = 6 - r 璽士ding.

一方、電動機2は通常の状態では、電圧指令演算回路1
4の出力v、*、 vq本によって決定される電圧によ
り運転される。電圧指令演算回路14の演算内容は次式
で表わされる。
On the other hand, in a normal state, the electric motor 2 is operated by the voltage command calculation circuit 1.
It is operated by the voltage determined by the outputs v, *, vq of 4. The calculation content of the voltage command calculation circuit 14 is expressed by the following equation.

・・・(8) ここに、Lsσ は電動機2の1次側と2次側の漏れイ
ンダクタンスの和、Lr=M+Qz、Qzは2次側の漏
れインダクタンス、rlは1次抵抗である。
(8) Here, Lsσ is the sum of the leakage inductance on the primary side and the secondary side of the motor 2, Lr=M+Qz, Qz is the leakage inductance on the secondary side, and rl is the primary resistance.

従って、通常の状態では、電動機2の電流ベクトルに直
交な電動機電圧成分vloは次式で表わされる。
Therefore, under normal conditions, the motor voltage component vlo orthogonal to the current vector of the motor 2 is expressed by the following equation.

v上o=  (Vdl’  Iq+vq” ・ x、t
)  /  I ILr     11 ・・・(9) よって、電動機2の温度変化によるV上の変動量ΔV上
は、 (7) 、 (9)式から次式で表わされる。
v on o = (Vdl'Iq+vq" ・ x, t
) / I ILr 11 (9) Therefore, the amount of variation ΔV in V due to the temperature change of the electric motor 2 is expressed by the following equation from equations (7) and (9).

ΔVl  =VI   VLO =(−(Δri・I+i+Δvll)・工。ΔVl = VI VLO =(-(Δri・I+i+Δvll)・engine.

+ (ΔrtIq+Δvq)  I a)  / I 
t= (−ΔV、・ Iq+Δvq・ Id)/It・
・・(10) (7) 、 (9) 、 (10)式が、本実施例の演
算回路18の演算内容である。これより、Δ■工は1次
抵抗の変動の影響がなく、ΔV上に応じて一次角周波数
を修正することにより、第1実施例と同様の効果を得る
ことができる。
+ (ΔrtIq+Δvq) I a) / I
t= (-ΔV,・Iq+Δvq・Id)/It・
(10) Equations (7), (9), and (10) are the calculation contents of the calculation circuit 18 of this embodiment. From this, the Δ■ process is not affected by fluctuations in the primary resistance, and by correcting the primary angular frequency according to ΔV, the same effect as in the first embodiment can be obtained.

以上、説明を解り易くするためにアナログ回路によるブ
ロックで表わし各実施例を説明したが、マイクロプロセ
ッサを用いたディジタル制御で実施できることはもちろ
んである。
Although each embodiment has been described above using analog circuit blocks to make the explanation easier to understand, it goes without saying that the embodiments can also be implemented by digital control using a microprocessor.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、1次抵抗及びPWMインバータのオン
デレイによる抵抗が変動してもそれらの影響を受けずに
、2次抵抗の基準値の実際値からの設定誤差や2次抵抗
変動による電動機のトルクや電圧の変動を防止できる効
果がある。
According to the present invention, even if the primary resistance and the resistance due to the on-delay of the PWM inverter change, the motor is not affected by the setting error of the reference value of the secondary resistance from the actual value and the fluctuation of the secondary resistance. This has the effect of preventing fluctuations in torque and voltage.

なお、本発明によればインバータの直列接続されたスイ
ッチング素子が同時導通することにより生じる直流短絡
を防止するために両方の素子を共に非導通とする期間を
導通非導通切替時に設けるが、これによるインバータの
内部電圧降下は出方電流の極性に関係し位相関係におい
て電動機の1次抵抗降下と同じである。
According to the present invention, in order to prevent a DC short circuit caused by simultaneous conduction of switching elements connected in series in an inverter, a period in which both elements are non-conductive is provided at the time of switching between conduction and non-conduction. The internal voltage drop of the inverter is related to the polarity of the output current and is the same in phase relationship as the primary resistance drop of the motor.

したがって、本発明によればその1次抵抗降下の影響だ
けでなく上述のインバータ内部電圧降下の影響も同時に
補償できる。
Therefore, according to the present invention, not only the effect of the primary resistance drop but also the effect of the above-mentioned inverter internal voltage drop can be compensated at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す制御構成図、第2図は
本発明の詳細な説明するためのベクトル図、第3図は本
発明の詳細な説明するための特性図、第4図、第5図、
第6図、第7図は本発明の他の実施例を示す制御構成図
である。
FIG. 1 is a control configuration diagram showing an embodiment of the present invention, FIG. 2 is a vector diagram for explaining the present invention in detail, FIG. 3 is a characteristic diagram for explaining the present invention in detail, and FIG. Figure, Figure 5,
FIGS. 6 and 7 are control configuration diagrams showing other embodiments of the present invention.

Claims (1)

【特許請求の範囲】 1、誘導電動機を周波数変換装置を用いて制御する装置
において、回転磁界座標系における誘導電動機の励磁電
流指令と励磁電流検出信号の差及びトルク電流指令とト
ルク電流検出信号の差に応じて回転磁界座標系の電圧指
令を得て、その電圧指令を固定子座標系の交流電圧指令
に変換し、この変換された交流電圧指令に基づいて誘導
電動機へ供給する電圧を制御する手段を備え、前記回転
磁界座標系の電圧指令に基づいて前記周波数変換装置の
出力周波数を修正するようにしたことを特徴とする誘導
電動機の制御方法。 2、誘導電動機を周波数変換装置を用いて制御する装置
において、回転磁界座標系における誘導電動機の励磁電
流指令と励磁電流検出信号の差及びトルク電流指令とト
ルク電流検出信号の差に応じて回転磁界座標系の電圧指
令を得て、それを固定子座標系の交流電圧指令に変換し
、これに基づいて前記誘導電動機へ供給する電圧を制御
する手段を備え、前記回転磁界座標系の電圧指令と前記
励磁電流及びトルク電流に基づいて、電動機電流ベクト
ルに対して直交な電動機電圧ベクトルの成分を演算し、
それに基づいて前記周波数変換装置の出力周波数を修正
するようにしたことを特徴とする誘導電動機の制御方法
。 3、誘導電動機を周波数変換装置を用いて制御する装置
において、回転磁界座標系における誘導電動機の励磁電
流指令と励磁電流検出信号の差及びトルク電流指令とト
ルク電流検出信号の差に応じて回転磁界座標系の電圧指
令を得て、それを固定子座標系の交流電圧指令に変換し
、これに基づいて前記誘導電動機へ供給する電圧を制御
する手段を備え、前記回転磁界座標系のq軸電圧指令と
前記励磁電流(d軸電流)を乗算し、また同座標系のd
軸電圧指令と前記トルク電流(q軸電流)を乗算し、そ
れらの差に基づいて前記周波数変換装置の出力周波数を
修正するようにしたことを特徴とする誘導電動機の制御
方法。 4、誘導電動機を周波数変換装置を用いて制御する装置
において、回転磁界座標系における誘導電動機の励磁電
流指令と励磁電流検出信号の差及びトルク電流指令とト
ルク電流検出信号の差に応じて回転磁界座標系の電圧指
令を得て、それを固定子座標系の交流電圧指令に変換し
、これに基づいて前記誘導電動機へ供給する電圧を制御
する手段を備え、前記回転磁界座標系の電圧指令と前記
励磁電流及びトルク電流に基づいて、電動機電流ベクト
ルに対して直交な電動機電圧ベクトルの成分を演算し、
それに基づいて前記誘導電動機の2次抵抗あるいは2次
時定数を演算し、この演算値に基づいて前記誘導電動機
のすベり周波数を制御するようにしたことを特徴とする
誘導電動機の制御方法。 5、誘導電動機を周波数変換装置を用いて制御する装置
において、回転磁界座標系における誘導電動機の励磁電
流指令と励磁電流検出信号の差及びトルク電流指令とト
ルク電流検出信号の差に応じて回転磁界座標系の電圧指
令を得て、それを固定子座標系の交流電圧指令に変換し
、これに基づいて前記誘導電動機へ供給する電圧を制御
する手段を備え、前記回転磁界座標系のq軸電圧指令と
前記励磁電流(d軸電流)を乗算し、また同座標系のd
軸電圧指令と前記トルク電流(q軸電流)を乗算し、そ
れらの差に基づいて前記誘導電動機の2次抵抗あるいは
2次時定数を演算し、この演算値に基づいて前記誘導電
動機のすベり周波数を制御するようにしたことを特徴と
する誘導電動機の制御方法。 6、前記特許請求の範囲第4項または第5項において演
算された2次抵抗あるいは2次時定数の変化に基づいて
2次巻線の温度を推定し、この温度推定値に基づいて前
記誘導電動機の過熱を防止するようにしたことを特徴と
する誘導電動機の保護方法。
[Scope of Claims] 1. In a device that controls an induction motor using a frequency conversion device, the difference between the excitation current command and the excitation current detection signal of the induction motor and the difference between the torque current command and the torque current detection signal in the rotating magnetic field coordinate system. Obtain a voltage command in the rotating magnetic field coordinate system according to the difference, convert that voltage command to an AC voltage command in the stator coordinate system, and control the voltage supplied to the induction motor based on this converted AC voltage command. A method for controlling an induction motor, comprising means for modifying the output frequency of the frequency conversion device based on the voltage command of the rotating magnetic field coordinate system. 2. In a device that controls an induction motor using a frequency conversion device, the rotating magnetic field is adjusted according to the difference between the excitation current command and the excitation current detection signal and the difference between the torque current command and the torque current detection signal of the induction motor in the rotating magnetic field coordinate system. means for obtaining a voltage command in a coordinate system, converting it into an alternating current voltage command in a stator coordinate system, and controlling the voltage supplied to the induction motor based on the voltage command in the rotating magnetic field coordinate system; Based on the excitation current and torque current, calculate a component of a motor voltage vector orthogonal to the motor current vector,
A method for controlling an induction motor, characterized in that the output frequency of the frequency converter is corrected based on the frequency converter. 3. In a device that controls an induction motor using a frequency conversion device, the rotating magnetic field is adjusted according to the difference between the excitation current command and the excitation current detection signal and the difference between the torque current command and the torque current detection signal of the induction motor in the rotating magnetic field coordinate system. means for obtaining a voltage command in a coordinate system, converting it into an alternating current voltage command in a stator coordinate system, and controlling the voltage supplied to the induction motor based on this, the q-axis voltage in the rotating magnetic field coordinate system; The command is multiplied by the excitation current (d-axis current), and d of the same coordinate system is
A method for controlling an induction motor, characterized in that the shaft voltage command and the torque current (q-axis current) are multiplied, and the output frequency of the frequency converter is corrected based on the difference between them. 4. In a device that controls an induction motor using a frequency conversion device, the rotating magnetic field is adjusted according to the difference between the excitation current command and the excitation current detection signal and the difference between the torque current command and the torque current detection signal of the induction motor in the rotating magnetic field coordinate system. means for obtaining a voltage command in a coordinate system, converting it into an alternating current voltage command in a stator coordinate system, and controlling the voltage supplied to the induction motor based on the voltage command in the rotating magnetic field coordinate system; Based on the excitation current and torque current, calculate a component of a motor voltage vector orthogonal to the motor current vector,
A method for controlling an induction motor, characterized in that a secondary resistance or a secondary time constant of the induction motor is calculated based on the calculated value, and a slip frequency of the induction motor is controlled based on the calculated value. 5. In a device that controls an induction motor using a frequency conversion device, the rotating magnetic field is adjusted according to the difference between the exciting current command and the exciting current detection signal of the induction motor and the difference between the torque current command and the torque current detection signal in the rotating magnetic field coordinate system. means for obtaining a voltage command in a coordinate system, converting it into an alternating current voltage command in a stator coordinate system, and controlling the voltage supplied to the induction motor based on this, the q-axis voltage in the rotating magnetic field coordinate system; The command is multiplied by the excitation current (d-axis current), and d of the same coordinate system is
The shaft voltage command is multiplied by the torque current (q-axis current), the secondary resistance or secondary time constant of the induction motor is calculated based on the difference between them, and the entire induction motor is calculated based on this calculated value. A method for controlling an induction motor, characterized in that the frequency is controlled by 6. The temperature of the secondary winding is estimated based on the change in the secondary resistance or the secondary time constant calculated in claim 4 or 5, and the temperature of the induction winding is estimated based on this temperature estimate. A method for protecting an induction motor, characterized in that the motor is prevented from overheating.
JP63016994A 1988-01-29 1988-01-29 Control method of induction motor Expired - Lifetime JP2821127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63016994A JP2821127B2 (en) 1988-01-29 1988-01-29 Control method of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63016994A JP2821127B2 (en) 1988-01-29 1988-01-29 Control method of induction motor

Publications (2)

Publication Number Publication Date
JPH01194883A true JPH01194883A (en) 1989-08-04
JP2821127B2 JP2821127B2 (en) 1998-11-05

Family

ID=11931572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63016994A Expired - Lifetime JP2821127B2 (en) 1988-01-29 1988-01-29 Control method of induction motor

Country Status (1)

Country Link
JP (1) JP2821127B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140030811A (en) * 2012-09-04 2014-03-12 엘에스산전 주식회사 Apparatus for estimating parameters in induction machine
JP2014096977A (en) * 2012-11-09 2014-05-22 Lsis Co Ltd Apparatus for estimating parameter in induction motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156184A (en) * 1983-02-23 1984-09-05 Hitachi Ltd Controlling method of induction motor
JPS63268489A (en) * 1987-04-25 1988-11-07 Fuji Electric Co Ltd Variable speed drive device for induction motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156184A (en) * 1983-02-23 1984-09-05 Hitachi Ltd Controlling method of induction motor
JPS63268489A (en) * 1987-04-25 1988-11-07 Fuji Electric Co Ltd Variable speed drive device for induction motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140030811A (en) * 2012-09-04 2014-03-12 엘에스산전 주식회사 Apparatus for estimating parameters in induction machine
JP2014054172A (en) * 2012-09-04 2014-03-20 Lsis Co Ltd Apparatus for estimating parameter in induction motor
CN103684181A (en) * 2012-09-04 2014-03-26 Ls产电株式会社 Apparatus for estimating parameter in induction motor
US9219440B2 (en) 2012-09-04 2015-12-22 Lsis Co., Ltd. Apparatus for estimating parameter in induction motor
JP2014096977A (en) * 2012-11-09 2014-05-22 Lsis Co Ltd Apparatus for estimating parameter in induction motor
US9209734B2 (en) 2012-11-09 2015-12-08 Lsis Co., Ltd. Apparatus for estimating parameter in induction motor

Also Published As

Publication number Publication date
JP2821127B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
US6809492B2 (en) Speed control device for AC electric motor
EP1422821B1 (en) Method of inverter control and apparatus of the same
US4800327A (en) Three-phase induction motor control method
US20080169783A1 (en) Induction motor controller
WO2016139998A1 (en) Power conversion device and method for controlling same
JP5418961B2 (en) Induction motor control device
JPH02254987A (en) Method and apparatus for control of induction motor
US7385371B2 (en) Vector controller for induction motor
JP2585376B2 (en) Control method of induction motor
JP6641445B2 (en) Power converter control method and power converter
JPH01194883A (en) Controlling method for induction motor
JP2579119B2 (en) Vector controller for induction motor
JP6847191B2 (en) Power converter control method and power converter
JP3166525B2 (en) Induction motor vector control device
JPH09191699A (en) Control method of induction motor
JP7243537B2 (en) Induction motor controller
JPH10248300A (en) Power converter
JP3489259B2 (en) Permanent magnet type motor control method and control device
JPH06335278A (en) Tuning of vector control inverter for induction motor
JP2003102177A (en) Control method of power converter
JP3323900B2 (en) Control device for linear motor electric vehicle
JP3770286B2 (en) Vector control method for induction motor
JPS61106091A (en) Slip frequency calculator of induction motor and rotation controller of induction motor using the same
JPH03135389A (en) Method and device for controlling voltage type inverter
JPS6355313B2 (en)