[go: up one dir, main page]

JPH01194370A - Optical power generation device - Google Patents

Optical power generation device

Info

Publication number
JPH01194370A
JPH01194370A JP63017257A JP1725788A JPH01194370A JP H01194370 A JPH01194370 A JP H01194370A JP 63017257 A JP63017257 A JP 63017257A JP 1725788 A JP1725788 A JP 1725788A JP H01194370 A JPH01194370 A JP H01194370A
Authority
JP
Japan
Prior art keywords
layer
type
power generation
type amorphous
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63017257A
Other languages
Japanese (ja)
Inventor
Kenji Maekawa
前川 謙二
Toshiaki Nishizawa
西沢 俊明
Kiwamu Iwai
岩井 究
Atsuo Ishikawa
石川 敦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP63017257A priority Critical patent/JPH01194370A/en
Publication of JPH01194370A publication Critical patent/JPH01194370A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To reduce a loss and to improve characteristics of a cell by disposing a P-type fine crystal Si layer of a dope factor 0.3-1.0% and of a thickness of 2-6nm on the surface of an N/P boundary between neighboring PIN junction elements. CONSTITUTION:A transparent conductive film 5 is formed on a glass substrate 4, and thereon are formed a P-type amorphous SiC layer 1-a, an I-type amorphous Si layer 1-b and an N-type amorphous Si layer 1-c to constitute a first power generation area. A P-type fine crystal Si layer 6 to which boron is doped at a dope ratio of 0.3-1.0% to a thickness of 2-6nm is formed thereon. Furthermore, a P-type amorphous SiC layer 2-a, an I-type amorphous layer 2-b and an N-type amorphous Si layer 2-c constituting a second power generation area are formed thereon. Lastly, an Al rear-side electrode 3 is formed. A novel improved constitution of such an N/P interface between power generation areas makes it possible to reduce a loss, and to improve cell characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非晶質または微結晶の半導体層を含む光発電装
置に関し、特に積層型半導体太陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photovoltaic device including an amorphous or microcrystalline semiconductor layer, and particularly to a stacked semiconductor solar cell.

〔従来の技術〕[Conventional technology]

従来の光発電装置である、たとえば2層積層構造の非晶
質シリコン太陽電池は、第1発電領域と52発電領域が
、電気的に直列に接合されている。
In a conventional photovoltaic device, for example, an amorphous silicon solar cell having a two-layer stacked structure, a first power generation region and a 52nd power generation region are electrically connected in series.

そのため、高い変換効率を得るためには、第1発電領域
のn型ドープ層と第2発電領域のn型ドープ層との接触
をオーミック接触とする必要がある。
Therefore, in order to obtain high conversion efficiency, it is necessary to make ohmic contact between the n-type doped layer of the first power generation region and the n-type doped layer of the second power generation region.

しかし、近年特にp型非晶質SiC層の高品位化が進み
、オーミック接触を得ることが困難になった。
However, in recent years, the quality of p-type amorphous SiC layers in particular has progressed, and it has become difficult to obtain ohmic contact.

そのため、−船釣には、n/p界面を画するn型ドープ
層およびn型ドープ層として、n型微結晶Siおよび高
濃度にドープしたp型非晶質SiCが用いられている。
Therefore, in boat fishing, n-type microcrystalline Si and heavily doped p-type amorphous SiC are used as the n-type doped layer and the n-type doped layer that define the n/p interface.

n型ドープ層のドープ率を増加させることにより、n/
p界面はオーミック接触となるが、n型ドープ層の狭バ
ンドギヤツプ化や第2発電領域のi層への不純物のオー
トドープ等が生じ、セル特性の改善はなされない。
By increasing the doping rate of the n-type doped layer, n/
Although the p-interface becomes an ohmic contact, a narrow band gap of the n-type doped layer and auto-doping of impurities into the i-layer of the second power generation region occur, so that the cell characteristics are not improved.

更に、特開昭60−9178号公報においては、n型ド
ープ層とn型ドープ層の少なくとも1つを微結晶半導体
層とすることにより、n/p界面における再結合電流を
増加させ、損失を少なくする手法が提案されている。し
かし、本発明者等が行なったサーベイ試験によれば、こ
の手法は極めて効果が乏しい。すなわち、(1)n型ド
ープ層を微結晶化しても、n/p界面においては、光起
電力、光電流を生じており、損失はほとんど低減できず
、非晶質膜を用いた場合と同様であった。
Furthermore, in Japanese Patent Application Laid-Open No. 60-9178, by using a microcrystalline semiconductor layer as at least one of the n-type doped layer and the n-type doped layer, the recombination current at the n/p interface is increased and the loss is reduced. A method to reduce this has been proposed. However, according to survey tests conducted by the present inventors, this method is extremely ineffective. In other words, (1) Even if the n-type doped layer is made microcrystalline, photovoltaic force and photocurrent are generated at the n/p interface, and loss can hardly be reduced; It was the same.

(2)p型ドープ層を微結晶化すれば、若干の改善はあ
るものの、n/p界面において、依然として光起電力、
光電流を生じており、十分な損失低減は達成されない。
(2) Although there is some improvement if the p-type doped layer is microcrystallized, the photovoltaic force still remains at the n/p interface.
A photocurrent is generated, and sufficient loss reduction is not achieved.

(3)p型ドープ層のドープ率を増加するに従って、n
/p接合特性は改善されるが、この場合は、第2発電領
域の1層への不純物オートドープが生じ、セル特性を悪
化させる。
(3) As the doping rate of the p-type doped layer increases, n
/p junction characteristics are improved, but in this case, autodoping of impurities into one layer of the second power generation region occurs, deteriorating cell characteristics.

このように従来の光発電装置では、たとえば0.5%以
上の高濃度ドープ率を有するp型非晶質SiC層を第2
発電領域のp層として用いた場合には、この層の光学ギ
ャップ低下による入射光量の低下、あるいは、p層から
1層へのボロンのオートドーピング等のために、特性劣
化を生じてしまう。高濃度にドープされたp型微結晶S
i を用いた場合にも同様の結果を生じる。
In this way, in conventional photovoltaic devices, a p-type amorphous SiC layer with a high doping rate of 0.5% or more is used as a second layer.
When used as a p-layer in a power generation region, characteristic deterioration occurs due to a decrease in the amount of incident light due to a decrease in the optical gap of this layer, or due to autodoping of boron from the p-layer to the first layer. Highly doped p-type microcrystal S
A similar result occurs when using i.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そこで本発明は発電領域間のn/p界面を新規な改良さ
れた構造とすることによって、損失が少なく、セル特性
を向上させた光発電装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a photovoltaic device with reduced loss and improved cell characteristics by providing a new and improved structure for the n/p interface between power generation regions.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上記の目的は、本発明に従えば、透明導電層上に、非晶
質または微結晶の半導体層から成るpin接合素子が順
次に複数個積層した構造を含む光発電装置において、隣
り合うpin接合素子間のn/p界面にドープ率0.3
〜1.0%、厚さ2〜5%mのp型微結晶Si層が介在
していることを特徴とする光発電装置によって達成され
る。
According to the present invention, in a photovoltaic device including a structure in which a plurality of pin junction elements each made of an amorphous or microcrystalline semiconductor layer are sequentially laminated on a transparent conductive layer, adjacent pin junctions Doping rate 0.3 at n/p interface between elements
This is achieved by a photovoltaic device characterized in that a p-type microcrystalline Si layer of ~1.0% and a thickness of 2 to 5% m is interposed.

〔作 用〕[For production]

本発明は隣り合う2つの発電領域間のn/p界面に、高
濃度にドープした極めて薄い微結晶Si層を介在させる
ことによりn/p界面をオーミック接触とし且つ後続発
電領域への入射光量の低減を防止し、また、後続の発電
領域のi型層に接するp型層を通常のドープ率のp型層
(たとえば非晶質SiC層)とすることができてp型層
中のドーパントの1型層へのオートドープを防止してこ
のl型層が属する発電領域の特性向上を可能としている
The present invention makes ohmic contact at the n/p interface by interposing a highly doped, extremely thin microcrystalline Si layer at the n/p interface between two adjacent power generation regions, and reduces the amount of light incident on the subsequent power generation region. In addition, the p-type layer in contact with the i-type layer in the subsequent power generation region can be a p-type layer (for example, an amorphous SiC layer) with a normal doping rate, and the dopant content in the p-type layer can be reduced. By preventing autodoping into the type 1 layer, it is possible to improve the characteristics of the power generation region to which this type layer belongs.

本発明において、n/p界面に介在するp型微結晶S1
層はドープ率を0.3〜1.0%とする。これは、0.
3%未満では、n/p界面に整流性が生じてオーミック
接触でなくなるために、また、1.0%を超えると、後
続のp型層(たとえばp型非晶質SiC層)やl型層(
たとえば1型非晶質S1層)へのオートドープが生じる
ために、それぞれ光発電特性が低下する。また、p型微
結晶S1層の厚さは、2〜5n+++とする。20m未
満では、n/p界面に整流性が生じてオーミック接触で
なくなるため、また6%mを超えると、光の吸収損失が
大きくなるために、それぞれ光発電特性が劣化する。
In the present invention, p-type microcrystal S1 interposed at the n/p interface
The layer has a doping rate of 0.3-1.0%. This is 0.
If it is less than 3%, rectification occurs at the n/p interface and ohmic contact is lost, and if it exceeds 1.0%, the subsequent p-type layer (for example, p-type amorphous SiC layer) or l-type layer(
For example, autodoping into the type 1 amorphous S1 layer) occurs, resulting in a decrease in photovoltaic properties. Further, the thickness of the p-type microcrystalline S1 layer is 2 to 5n+++. If it is less than 20 m, rectification occurs at the n/p interface and ohmic contact is lost, and if it exceeds 6% m, light absorption loss increases, resulting in deterioration of the photovoltaic characteristics.

〔実施例1〕 本発明に従った光発電装置として、第1図に示すpin
接合素子を2層積層した構造の半導体太陽電池を製造し
た。
[Example 1] As a photovoltaic device according to the present invention, the pin shown in FIG.
A semiconductor solar cell having a structure in which two layers of bonding elements are stacked was manufactured.

ガラス基板4上に透明導電膜5を形成し、更にその上に
、プラズマCVD法によって、p型部晶質5iC(炭化
シリコン)層1−a、i型非晶質Si(シリコン)層1
−b1およびn型非晶質Si層l−cをこの順序でそれ
ぞれ15%m、 80%m、および2Qnmの厚さに形
成して第1発電領域を構成した。その上に、0.5%の
ドープ率(B2L/ 5IH4ガス流量比)でボロンド
ープしたp型微結晶S1層6を5%mの厚さに形成した
。更にその上に、第2発電領域を構成するp型非晶質S
iC層2−a、l型非晶質S1層2−blおよびn型非
晶質S1層2−Cを各々10%m、 500%m 、お
よび3Qnmの厚さに形成した。電子ビーム蒸着法によ
って最後にAβ裏面電極3を300%mの厚さに形成し
た。
A transparent conductive film 5 is formed on a glass substrate 4, and a p-type crystalline 5iC (silicon carbide) layer 1-a and an i-type amorphous Si (silicon) layer 1 are formed on the transparent conductive film 5 by plasma CVD.
-b1 and n-type amorphous Si layer lc were formed in this order to have thicknesses of 15% m, 80% m, and 2 Q nm, respectively, to constitute a first power generation region. Thereon, a p-type microcrystalline S1 layer 6 doped with boron at a doping rate of 0.5% (B2L/5IH4 gas flow rate ratio) was formed to a thickness of 5% m. Furthermore, on top of that, p-type amorphous S constituting the second power generation region
The iC layer 2-a, the l-type amorphous S1 layer 2-bl, and the n-type amorphous S1 layer 2-C were formed to have a thickness of 10% m, 500% m, and 3 Q nm, respectively. Finally, an Aβ back electrode 3 was formed to a thickness of 300% m by electron beam evaporation.

第1および第2発電領域のいずれについても、p型非晶
質SiC層(1−aおよび2−a)の形成に用いた混合
ガスの組成は、体積比で、CH4/5I84 = 7 
/ 3およびB2H6/C1l、+SiH4=0.15
%であった。l型非晶質Si層(1−bおよび2−b)
については5I84/ H2= 1 / 10 (体積
比)、n型非晶質Si層(1−Cおよび2−C)につい
ては、P)+3/ Sl)+4= 1 / 100 、
Sl)+4/ H2= 1 / 20、(各々体積比)
であった。他のプラズマCVD条件は、基板温度200
℃、内圧1.0〜1.5Torr、 7 fパワー20
W(ただしn型非晶質Si層は20〜100W)である
。rfパワー100Wにてn型非晶質Si層を形成した
場合、この層は非晶質から微結晶化していたが、後に説
明するように本発明の効果に変わりはなかった。p型微
結晶Si層5は、混合ガス組成(体積比)を821(6
/5I84= 0.5%、 SiH4/H2= 1 /
100とし、γfパワー100Wとして形成した。
For both the first and second power generation regions, the composition of the mixed gas used to form the p-type amorphous SiC layers (1-a and 2-a) is CH4/5I84 = 7 in terms of volume ratio.
/3 and B2H6/C1l, +SiH4=0.15
%Met. l-type amorphous Si layer (1-b and 2-b)
For 5I84/H2=1/10 (volume ratio), for n-type amorphous Si layer (1-C and 2-C), P)+3/Sl)+4=1/100,
Sl)+4/H2=1/20, (volume ratio of each)
Met. Other plasma CVD conditions include a substrate temperature of 200 m
°C, internal pressure 1.0 to 1.5 Torr, 7 f power 20
W (however, 20 to 100 W for the n-type amorphous Si layer). When an n-type amorphous Si layer was formed with an RF power of 100 W, the layer changed from amorphous to microcrystalline, but the effect of the present invention did not change as will be explained later. The p-type microcrystalline Si layer 5 has a mixed gas composition (volume ratio) of 821 (6
/5I84=0.5%, SiH4/H2=1/
100, and the γf power was 100W.

〔実施例2〕 実施例1と同様に第1図の半導体太陽電池を製造した。[Example 2] The semiconductor solar cell shown in FIG. 1 was manufactured in the same manner as in Example 1.

ただし、第1発電領域のn型層(1−c)をn型微結晶
Si層とした。
However, the n-type layer (1-c) in the first power generation region was an n-type microcrystalline Si layer.

第1図において、第2発電領域のp型ドープ層のn/p
界面付近のみを極く薄く高濃度ドープ層6とし、第2発
電領域の1層側は、通常の低濃度ドープ層2−aとする
ことにより、n/p界面のオーミック接合を得るととも
に、第2発電領域の1層へのドーパントのオートドープ
の抑制等を同時に達成することができた。
In FIG. 1, n/p of the p-type doped layer in the second power generation region
By forming an extremely thin highly doped layer 6 only near the interface and forming a normal lightly doped layer 2-a on the first layer side of the second power generation region, an ohmic junction at the n/p interface is obtained, and the It was possible to simultaneously suppress autodoping of dopant into one layer of two power generation regions.

本発明によれば、高濃度ドープ層6は、極く薄く形成し
ているために、同層による光の吸収は無視し得る程小さ
くなっており、第2発電領域に入射する光量が低減しな
い。また第2発電領域の1層2−bを形成する際には、
表面に露出しているのが低濃度ビーフ0層2−aである
ために、1層2−bへの不純物のオートドープが抑制さ
れ、第2発電領域の光電特性が悪くなることがない。
According to the present invention, since the heavily doped layer 6 is formed extremely thin, the absorption of light by the layer is negligibly small, and the amount of light incident on the second power generation region is not reduced. . Furthermore, when forming the first layer 2-b of the second power generation region,
Since it is the low concentration beef 0 layer 2-a that is exposed on the surface, autodoping of impurities into the 1 layer 2-b is suppressed, and the photoelectric characteristics of the second power generation region are not deteriorated.

各層の形成手法は、プラズマCVD法のみならず、光C
VD法、マイクロ波CVD法などを用いてもよい。
The method of forming each layer is not only the plasma CVD method but also the photo-C
A VD method, a microwave CVD method, or the like may be used.

なお、本発明は、ガラス基板の代りにステンレス基板、
セラミック基板、ポリマフィルム基板などを基板として
用いてもよい。
Note that the present invention uses a stainless steel substrate instead of a glass substrate.
A ceramic substrate, a polymer film substrate, etc. may be used as the substrate.

実施例の光発電特性として開放電圧、短絡電流、曲線因
子、および変換効率をそれぞれ通常の測定法で測定した
。その結果を比較例と共に第1表に示す。測定に使用し
た半導体太陽電池は、素子面積が1,0Crlである。
As the photovoltaic characteristics of the example, open circuit voltage, short circuit current, fill factor, and conversion efficiency were each measured using conventional measurement methods. The results are shown in Table 1 along with comparative examples. The semiconductor solar cell used in the measurement has an element area of 1.0 Crl.

第1表 表中、n、p、a、μCとはそれぞれn型、p型、非晶
質、微結晶の意味である。
In Table 1, n, p, a, and μC mean n-type, p-type, amorphous, and microcrystalline, respectively.

比較例1は第1発電領域のn型非晶質Si層(n−a−
3i)の上に第2発電領域のp型部晶質SiC層(p 
−a−3iC)を厚さ15%mに直接形成したものであ
り、比較例2は第1発電領域のn型微結晶Si層(n−
μc −3i)の上に第2発電領域の高濃度ドープ(ド
ープ率=0.5%)p型微結晶S1層(p−AIC−3
i)を厚さ15%mに直接形成したものである。比較例
2は高濃度ドープによって比較例1よりも開放電圧は向
上するが、それ以外の特性値はむしろ低下し、特に曲線
因子は著しく悪化するという不均衡を生じているため、
結局全体的なセル特性はむしろ悪化している。
Comparative Example 1 is an n-type amorphous Si layer (n-a-
3i) on which a p-type crystalline SiC layer (p
-a-3iC) is directly formed to a thickness of 15%m, and Comparative Example 2 is an n-type microcrystalline Si layer (n-a-3iC) in the first power generation region.
p-type microcrystalline S1 layer (p-AIC-3
i) was directly formed to a thickness of 15% m. In Comparative Example 2, the open circuit voltage is improved compared to Comparative Example 1 due to high concentration doping, but other characteristic values are rather decreased, and in particular, the fill factor is significantly deteriorated, resulting in an imbalance.
In the end, the overall cell characteristics are actually getting worse.

本発明の光発電装置は、高濃度ドープのない場合(比較
例1)よりも全ての特性値が著しく向上しており、高濃
度ドープした場合(比較例2)のような不均衡が生ずる
こともなく、全体的なセル特性が著しく向上している。
In the photovoltaic device of the present invention, all characteristic values are significantly improved compared to the case without high concentration doping (Comparative Example 1), and there is no imbalance as in the case of high concentration doping (Comparative Example 2). However, the overall cell characteristics are significantly improved.

〔発明の効果〕〔Effect of the invention〕

以上より、本発明を採用することによって、開放電圧、
短絡電流、曲線因子、および変換効率等のセル特性が著
しく向上した光発電装置を得ることができる。
From the above, by adopting the present invention, the open circuit voltage,
A photovoltaic device with significantly improved cell characteristics such as short circuit current, fill factor, and conversion efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に従った光発電装置の一例を示す部分断
面図である。 1−a、’l−a・・・p型層(p型ドープ層)、1−
b、2−b・・・l型層(i型ドープ層)、1−c、2
−c・ n型層(n型ドープ層)、3・・・AI裏面電
極、 4・・・ガラス基板、5・・・透明導電膜、  
6・・・p型微結晶Si層。
FIG. 1 is a partial cross-sectional view showing an example of a photovoltaic device according to the present invention. 1-a, 'l-a... p-type layer (p-type doped layer), 1-
b, 2-b...l type layer (i type doped layer), 1-c, 2
-c/n-type layer (n-type doped layer), 3... AI back electrode, 4... glass substrate, 5... transparent conductive film,
6...p-type microcrystalline Si layer.

Claims (1)

【特許請求の範囲】[Claims]  透明導電層上に、非晶質または微結晶の半導体層から
成るpin接合素子が順次に複数個積層した構造を含む
光発電装置において、隣り合うpin接合素子間のn/
p界面にドープ率0.3〜1.0%、厚さ2〜6nmの
p型微結晶Si層が介在していることを特徴とする光発
電装置。
In a photovoltaic device including a structure in which a plurality of pin junction elements made of amorphous or microcrystalline semiconductor layers are sequentially stacked on a transparent conductive layer, the n/
A photovoltaic device characterized in that a p-type microcrystalline Si layer with a doping rate of 0.3 to 1.0% and a thickness of 2 to 6 nm is interposed at the p-interface.
JP63017257A 1988-01-29 1988-01-29 Optical power generation device Pending JPH01194370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63017257A JPH01194370A (en) 1988-01-29 1988-01-29 Optical power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63017257A JPH01194370A (en) 1988-01-29 1988-01-29 Optical power generation device

Publications (1)

Publication Number Publication Date
JPH01194370A true JPH01194370A (en) 1989-08-04

Family

ID=11938909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63017257A Pending JPH01194370A (en) 1988-01-29 1988-01-29 Optical power generation device

Country Status (1)

Country Link
JP (1) JPH01194370A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693957A (en) * 1994-06-14 1997-12-02 Sanyo Electric Co., Ltd. Photovoltaic element and method of manufacturing the same
US5705828A (en) * 1991-08-10 1998-01-06 Sanyo Electric Co., Ltd. Photovoltaic device
JP2006310694A (en) * 2005-05-02 2006-11-09 Kaneka Corp Integrated multi-junction thin film photoelectric conversion device
JP2014135343A (en) * 2013-01-09 2014-07-24 Sharp Corp Photoelectric conversion element, and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705828A (en) * 1991-08-10 1998-01-06 Sanyo Electric Co., Ltd. Photovoltaic device
US5693957A (en) * 1994-06-14 1997-12-02 Sanyo Electric Co., Ltd. Photovoltaic element and method of manufacturing the same
JP2006310694A (en) * 2005-05-02 2006-11-09 Kaneka Corp Integrated multi-junction thin film photoelectric conversion device
JP2014135343A (en) * 2013-01-09 2014-07-24 Sharp Corp Photoelectric conversion element, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5213628A (en) Photovoltaic device
JP2740284B2 (en) Photovoltaic element
US7030413B2 (en) Photovoltaic device with intrinsic amorphous film at junction, having varied optical band gap through thickness thereof
JPH05243596A (en) Manufacture of laminated type solar cell
JPS6249672A (en) Amorphous photovoltaic device
US4781765A (en) Photovoltaic device
JPH0795603B2 (en) Photovoltaic device
JPS62234379A (en) Semiconductor device
JPH01194370A (en) Optical power generation device
US7075052B2 (en) Photoelectric conversion device
JP4110718B2 (en) Manufacturing method of multi-junction thin film solar cell
JPH11274527A (en) Photovoltaic device
JP2002016271A (en) Thin-film photoelectric conversion element
CN117321776A (en) multi-junction solar cells
JPS5936836B2 (en) Amorphous thin film solar cell
JPS61135167A (en) Thin-film solar cell
JP3197673B2 (en) Photovoltaic device
JP2632740B2 (en) Amorphous semiconductor solar cell
JP2744680B2 (en) Manufacturing method of thin film solar cell
JP2958491B2 (en) Method for manufacturing photoelectric conversion device
JP2634812B2 (en) Semiconductor device
JP3197674B2 (en) Photovoltaic device
JP4124309B2 (en) Photovoltaic device manufacturing method
JPH0282655A (en) Manufacture of photovolatic device
JPH05326992A (en) Semiconductor device