[go: up one dir, main page]

JPH01192728A - Production of high-purity potassium fluorotantalate - Google Patents

Production of high-purity potassium fluorotantalate

Info

Publication number
JPH01192728A
JPH01192728A JP1363088A JP1363088A JPH01192728A JP H01192728 A JPH01192728 A JP H01192728A JP 1363088 A JP1363088 A JP 1363088A JP 1363088 A JP1363088 A JP 1363088A JP H01192728 A JPH01192728 A JP H01192728A
Authority
JP
Japan
Prior art keywords
solution
exchange resin
impurities
component
passed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1363088A
Other languages
Japanese (ja)
Inventor
Momozo Endo
遠藤 百三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Kagaku Kenkyujo Co Ltd
Original Assignee
Fuji Kagaku Kenkyujo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Kagaku Kenkyujo Co Ltd filed Critical Fuji Kagaku Kenkyujo Co Ltd
Priority to JP1363088A priority Critical patent/JPH01192728A/en
Publication of JPH01192728A publication Critical patent/JPH01192728A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing tantalum, with or without oxygen or hydrogen, and containing two or more other elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce the title compound hardly containing any impurities, by successive ly carrying out six steps including steps of removing various metallic ions from a solution of a Tacontaining raw material in HF-HCl with a cation exchange resin and adsorbing the Ta component on an anion exchange resin. CONSTITUTION:A solution of a Ta-containing raw material in HF and HCl is passed through a cation exchange resin to remove various impurities, such as Fe, Mn and Ni (first step). The resultant solution is then passed through an anion exchange resin to adsorb the Ta component thereon (second step). The impurities adsorbed together with the Ta component are subsequently washed in several steps (third step). The anion exchange resin adsorbing the Ta component is then eluted with a mixed solution of NH4NO3 and NH4F to separate the top.fraction thereof (fourth step). NH3 is subse quently passed through the residual Ta eluate to regulate pH to 6.8 and precipitate tantalum oxyfluoride (fifth step). The resultant precipitates are then filtered, washed and dissolved with HF to provide a solution. NH3 is subsequently passed therethrough to coprecipitate part of the Ta. The obtained precipitates are then filtered and the resultant filtrate is reacted with acidic KNO3 to afford crystals of K2TaF7, which are filtered, washed and dried to afford the final product (sixth step).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子材料特に高密度LSI用の電極配線、キ
ャパシタ等に使用するメンタルメタル用材料に係る高純
度フルオロタンタル酸カリウムの製造方法に関し、特に
W 、 Mo等高融点金属が殆んど完全に除去されると
ともに超LSIに悪影響を及tよすU等の放射性元素が
PPb以下のレベルまで低下せしめられて工業的スケー
ルで実施可能なフルオロタンタル酸カリウムの製造方法
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing high-purity potassium fluorotantalate, which is used as a mental metal material used in electronic materials, particularly electrode wiring for high-density LSIs, capacitors, etc. In particular, high melting point metals such as W and Mo are almost completely removed, and radioactive elements such as U, which have a negative impact on VLSI, are reduced to a level below PPb, making it possible to implement on an industrial scale. The present invention relates to a method for producing potassium fluorotantalate.

〔従来の技術〕[Conventional technology]

MOSメモリーの高缶展化に伴って、該メモリーの耐融
材料としてタンタルの!要件は益々大となりている。こ
れまで、W 、 Mo及びこれらのシリサイド等も実用
化されてはいるが、タンタルは配線羽科に好適である許
9でな(IC関係のキャパシターとして、従来のSiO
□等と比較して5〜6倍の肪を第t−有するため素子の
微小化と特性向上に大きく寄与しうるものである。
As MOS memory becomes more flexible, tantalum is being used as a melt-resistant material for MOS memory. Requirements are becoming increasingly large. Until now, W, Mo, and their silicides have been put into practical use, but tantalum is not suitable for wiring (conventional SiO as an IC-related capacitor).
Since it has 5 to 6 times as much fat as □ etc., it can greatly contribute to the miniaturization and improvement of the characteristics of the device.

しかして、従来工業的スケールにおけるTaの高純度化
は、殆んど溶媒抽出法に依存しているが、この方法で製
造されるTa化合物の純度には限界があり、例えばEB
による精製を行ったものであっても不純物によるり−ク
電流が常に存在する等上記の電子材料としては禾だ十分
なものではなかった。
Conventionally, high purity Ta on an industrial scale has mostly relied on solvent extraction methods, but there are limits to the purity of Ta compounds produced by this method, such as EB
However, even if the material is purified by the above-mentioned method, leakage current due to impurities is always present, so that it is not sufficient as the above-mentioned electronic material.

かかる事情から、含有される不純物の化学的除去につい
てさらに検討を喪すべき多くの問題があり、就中、高融
照会−や放射性元素の完全な化学的除去に関する対策の
出現が強く要望されていたものである。
Under these circumstances, there are many issues that require further consideration regarding the chemical removal of contained impurities, and in particular, there is a strong demand for countermeasures for the complete chemical removal of high flux and radioactive elements. It is something that

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

本発明は斜上の実状に麺みてなされたもので、各株不細
物を殆んど完全に除去して高純度のTa化合物を得る目
的を十分に達成するとともに、使用する原料の純度レベ
ルに変動があった場合でも、最終製品が安定し九純匿で
確保できるような工業的スケールにおけるfR造法全提
供することをその目的とするものである。
The present invention has been developed with the aim of obtaining high-purity Ta compounds by almost completely removing impurities from each strain, and the purity level of the raw materials used is The objective is to provide a complete fR manufacturing method on an industrial scale that can ensure that the final product is stable and pure even when there are fluctuations in the process.

〔問題点を解決する友めの手段〕[Friendly means of solving problems]

本発明は、上記の問題点を解決するために、順序を経て
実施する下記の6工程によって構成されている。
In order to solve the above problems, the present invention is comprised of the following six steps that are performed in sequence.

(1)まず、第1工程は、Taを含む原料のHF−HC
1溶液を陽イオン交換樹脂に通じて、HFによシコンプ
レックスを生成しにくいU−ム、F・、 Co 。
(1) First, the first step is to convert the raw material containing Ta into HF-HC.
1 solution is passed through a cation exchange resin to obtain U-M, F., Co, which is less likely to generate complexes due to HF.

Zu + Cr # 尼+ P b等の金属イオンの大
部分を除去するものである。
This removes most of the metal ions such as Zu + Cr # Ni + P b.

01)また、第2工程では、l金属、U等の大部分を除
去後のTa )IF−HCt浴gを陰イオン交換樹脂に
通じて該樹脂に溶液中のTat@着せしめるものである
。さらに、第3工程は、隘イオン樹脂にTaとともに吸
着された不純物t−数次段階で洗浄する工程である。
01) In the second step, the Ta)IF-HCt bath from which most of the metals, U, etc. have been removed is passed through an anion exchange resin to coat the resin with Tat in solution. Furthermore, the third step is a step of cleaning impurities adsorbed on the ionic resin along with Ta in a t-order stage.

洗#液は、まず、電子材料として最も紋館的となるUi
主として除去するためHF (0,1〜0.5N)とI
C2(0,1〜IN)の混合液が使用される。この混合
敵の上記範囲の組成によれは、UのKD(吸着係数)が
0〜15の範囲で最適組成の洗浄液を遺足し吸着された
Uの大部分を流去せしめることができる。
First of all, the cleaning solution is Ui, which is the most typical electronic material.
Mainly to remove HF (0.1~0.5N) and I
A mixture of C2 (0,1 to IN) is used. Depending on the composition of this mixture within the above range, most of the adsorbed U can be washed away by adding a cleaning liquid with an optimal composition in which the KD (adsorption coefficient) of U is in the range of 0 to 15.

次に、Tmと性質が類似し、かつ、含有型の比較的多い
Nbの流出は、3N HClと1.IN)IFとの混合
液が使用される。しかも、この混合液によれば、Nbの
ほか、TI 、Zr、Hf 、U、Co 、Cr、AL
、St等も同時に除去できる。さらに、0.5N HN
O3と1.0NHFとの混合液によって、比較的溶去が
困難とされているSnも除去され、また、Zr *Ni
 5AJLsIL’Os Bi sW、Hf等も治山さ
れる。
Next, the outflow of Nb, which has properties similar to Tm and contains a relatively large amount, is caused by 3N HCl and 1. A mixture with IN)IF is used. Moreover, according to this mixed solution, in addition to Nb, TI, Zr, Hf, U, Co, Cr, and AL
, St, etc. can be removed at the same time. Furthermore, 0.5N HN
The mixed solution of O3 and 1.0NHF also removes Sn, which is relatively difficult to elute, and also removes Zr*Ni.
5AJLsIL'Os Bi sW, Hf, etc. will also be maintained.

また、主としてF@1r:#r出させるために、比較的
低111度の0.1〜0.3 N IC2が使用される
。この洗浄は、低−度HC1によりコンプレックスを作
らない金属の溶出に都合がよい。Feのt′よかCo 
、 Zn 、 Cd。
Moreover, a relatively low 111 degrees of 0.1 to 0.3 N IC2 is used mainly to generate F@1r:#r. This washing is convenient for elution of metals that do not form complexes with low-grade HCl. Fe's t'yokaCo
, Zn, Cd.

Aj、Cr等も同時に浴出する。Aj, Cr, etc. are also removed from the bath at the same time.

さらに、EDTAによる各金属類の溶出がある。これは
、流出液の声が3近くなるまでH2Oで陰イオン交換樹
脂を洗浄したのち、同−声のEDTAの0.05M溶液
を使用して当該−でEDTAとのキレート化合物を生成
するF・、 Hg 、 Pb 、 Ni等釡属を溶出せ
しめるものである。但し、必要のない場合、この洗浄を
省略しても目的となるTaO高純度化には実質的な影智
が生じないことが多い。
Furthermore, various metals are eluted by EDTA. This is done by washing the anion exchange resin with H2O until the effluent volume is close to 3, and then using a 0.05M solution of EDTA with the same volume to form a chelate compound with EDTA. , Hg, Pb, Ni, etc. However, if this cleaning is not necessary, omitting this cleaning will often have no substantial effect on the desired high purity of TaO.

以上のとおシネ細物となる各撞金楓知の浴出除去のため
に数次の洗浄手段があるが、Ta原料中に含有される不
純物の1類と童とによってこれらを適宜変更、省略する
等の手段がとられうることはいうまでもない。
As mentioned above, there are several cleaning methods to remove the ash from the fine particles, but these may be changed or omitted as appropriate depending on the type 1 impurities contained in the Ta raw material. It goes without saying that other measures may be taken.

次に、このような洗浄を経た隘イオン交換樹脂にNH4
No、及びNH4Fの混合″/f!Lを通したのち溶離
液のトップ・フラクションを除去する第4工程と、該ト
ップ・フラクションを除去した残余の溶離液にNH3’
i吹込みpi”l’t6.8に11整してタンタルオキ
シフルオライド全沈殿させ、同時に不純物を溶離液中に
残存させる第5工程とについて説明する。
Next, NH4 is added to the ion exchange resin that has undergone such washing.
A fourth step of removing the top fraction of the eluent after passing through a mixture of NH3' and NH4F and NH3'
The fifth step in which tantalum oxyfluoride is totally precipitated by adjusting the blowing pi''l't to 6.8 and simultaneously leaving impurities in the eluent will be explained.

まず、第4工程では、イオン交換樹脂では除去が必ずし
も完全に行われない微量の高融点不純物が含まれるトッ
プ・フジクシ、ンを分離し、また、第5工程では、残り
の溶離液を中和してTaのオキシフルオライドをうるも
のであるが、これに使用する溶離液に対して例えは3M
のNH4NO3とIMのNH4Fとの混合液が−3〜3
.5になるように使用される。この場合NH2Cl等を
使用する方法もあるが、Ctは微量であっても、その除
去が比較市困難であるから電子材料用には好ましくない
ので避けるほうがよい。この工程で重要な手段は溶離液
のトップ・フラクションが分離されることである。
First, in the fourth step, the top fujikusen, which contains minute amounts of high-melting point impurities that cannot be completely removed with ion exchange resin, is separated, and in the fifth step, the remaining eluent is neutralized. The oxyfluoride of Ta is obtained by using 3M
The mixture of NH4NO3 and IM NH4F is -3 to 3
.. It is used to make 5. In this case, there is a method of using NH2Cl or the like, but since it is difficult to remove Ct even in a trace amount, it is not preferable for electronic materials, so it is better to avoid it. An important measure in this step is that the top fraction of the eluent is separated.

#離液の1〜丁のトップ・フラクションが分離されるこ
とVcより、特にW 、 Mo等の1金鵜が除去される
こととなりTaO高M度化が進み、鞘装効果を格段に高
めることとなる。
# Since the top fraction of syneresis is separated from Vc, the first metals such as W and Mo are removed, and TaO increases in M content, greatly increasing the sheathing effect. becomes.

次の第5工程は、上述のトップ・フラクションを除去し
た残余の溶離液からタンタル金オキシフルオライドのか
たちで沈殿せしめようとするもので、これがため、トッ
プ・フラクション全除去した残余の溶離液にNH3を通
じ、−6,8に一部する。
The next fifth step is to precipitate tantalum gold oxyfluoride in the form of tantalum gold oxyfluoride from the eluent remaining after the top fraction has been removed. Partition to -6,8 via NH3.

この−の厳密な調整によって一部不純物がオキシフルオ
ライド沈殿に混入することを防止する顕著な効果を奏し
うる。
This strict adjustment of - can have a remarkable effect of preventing some impurities from being mixed into the oxyfluoride precipitate.

さらに、次の第6工程では、第5工程で生成し〕克 たメンタルオキシフルオライドのfy−JE物をP’S
洗浄後未乾燥のま′!高純度のHFで浴解し該浴液にN
H,を通じてT1の一部と共沈によシネ細物も同時に沈
殿(吸y#)せしめて高純度化を増進したのち濾過しそ
のF液に酸性KNO、を反応喝せてに2TaF。
Furthermore, in the next 6th step, the fy-JE product of mental oxyfluoride produced in the 5th step is added to P'S.
Leave it undried after washing! N
A part of T1 and cine fines are simultaneously precipitated through coprecipitation (absorption y#) through H, to increase the purity, and then filtered, and the F solution is reacted with acidic KNO to 2TaF.

の結晶を得る。さらにこれを濾過、洗浄、乾燥してな終
製品とするものである。
Obtain the crystals. This is then filtered, washed, and dried to produce the final product.

なお、オキシフルオライドを分離した溶離液部ち母液中
には未反応のTaが残存するが、同時にSl。
Note that unreacted Ta remains in the eluent and mother liquor from which oxyfluoride was separated, but at the same time, Sl remains.

F等も溶存しているので、これにHNO,を加えて酸性
にしたのちNH,全通じて一9以上とし、T a (O
H)s全生成させると、液中の不純物は該Ta (OH
) sに完全に収着される。このものは/Fi足の組成
に調整されたのち純度の商い第5工根の溶離液として再
利用できるので紅隣的である。ま几、最終の第61程で
使用される高純度のKNO、は、下記の方法で得られる
。部ち、KNOの結晶又はKOHとHNO、と金反応さ
せて得られるKNO3の浴液に、酸性の状態で1〜2%
のTaのHF浴液を加え、KOH浴液で中和し−1を9
以上にするとT a (OH) sが生成する。Ta(
O均。
Since F, etc. are also dissolved, HNO is added to make it acidic, and then NH is added to make it more than 19, and T a (O
When all H)s is produced, impurities in the liquid become the Ta (OH
) completely sorbed to s. This product is advantageous because it can be reused as an eluent for the fifth root after adjusting its composition to the /Fi base due to its purity. The high purity KNO used in the final step 61 can be obtained by the following method. First, add 1 to 2% of KNO3 in an acidic state to a bath solution of KNO3 obtained by reacting KNO crystals or KOH and HNO with gold.
Add HF bath solution of Ta and neutralize with KOH bath solution to reduce -1 to 9
If this is done above, T a (OH) s is generated. Ta(
O average.

を戸去したF液を)(NO3で敵性にしたものを反応に
供する。Ta (OH) sは強力な不純物吸着力を有
するので高純度の藷0 #液が得られる。KNO,溶液
の磯度は15%程度が適当である。
(F solution) (made hostile with NO3) is subjected to the reaction.Ta(OH)s has a strong impurity adsorption ability, so a highly pure 0# solution can be obtained. A suitable degree is about 15%.

第1図は、以上の第1〜第6工程金示す工程図である。FIG. 1 is a process diagram showing the above first to sixth steps.

〔実施例〕〔Example〕

以下、実施例に基ついて本発明を説明する。 Hereinafter, the present invention will be explained based on Examples.

原料として、Mnが7〜i ohm%のはか各種不純物
が含有されるメンタルコンデンサスクラップが使用され
た。このスクシンfは王水処理でMnlを百程度に減少
できる。このスクラップにHFとHClとの混合fLを
作用させるとMnの触媒作用により小振の)(NO6で
激しく反応しTai含む原料のHF−HC1洛液が生成
する。
As a raw material, mental capacitor scrap containing 7 to iohm% of Mn and various impurities was used. The Mnl of this succin f can be reduced to about 100 by aqua regia treatment. When a mixture fL of HF and HCl is applied to this scrap, it reacts violently with NO6 due to the catalytic action of Mn, and a raw material HF-HC1 liquid containing Tai is produced.

夫々501の陽イオン交換樹脂會光填した交換塔2本を
セットで使用して、上記スクシンf50kg分のHF 
−HC1混酸組成を調整した溶液の鞘製が行われた。
Using a set of two exchange towers each filled with 501 cation exchange resin, HF for 50 kg of the above-mentioned Succin f.
-Sheath production of a solution with adjusted mixed acid composition of HC1 was performed.

ついで、夫々1501の陰イオン交換樹脂を充填した交
換塔2本を使用し、その第1塔でTaを吸着し、第2塔
でなす溶液中に残存する微量のTaを捕集する。第1塔
には、メタルとして約25ゆのTaが吸着された。
Next, two exchange towers each filled with 1501 anion exchange resin are used, the first tower adsorbs Ta, and the second tower collects trace amounts of Ta remaining in the solution. Approximately 25 yu of Ta was adsorbed as a metal in the first column.

0.3 N HF −0,5N HC1混台液、1.I
 NHF −3NHC6混合液、1.0NHF−・0.
5 N HNO,混合液、0.2 N HCt溶液、0
.05 M EDTAの各種洗浄液を順次夫々樹脂量の
3〜5倍使用して不純物t−浴離させる。各洗浄液中に
は平均100〜150 ppm前徴のTaが溶出するが
、これらは第2塔で捕集する。
0.3N HF-0.5N HC1 mixed solution, 1. I
NHF-3NHC6 mixture, 1.0NHF-・0.
5 N HNO, mixed solution, 0.2 N HCt solution, 0
.. Impurity t-baths are removed by sequentially using various cleaning solutions of 0.05M EDTA, each in an amount of 3 to 5 times the amount of resin. An average of 100 to 150 ppm of Ta is eluted in each washing solution, and this is collected in the second column.

最終製品のT1の分析結果は下表のとおシである。The T1 analysis results of the final product are shown in the table below.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の構成に基づき、第1工程〜第6工程の7
1次の実施によって高純度フルオロタンタル酸カリウム
をnfJ4する方法であって、特に、第1工程に陽イオ
ン交換樹脂を使用して行う各種金属イオンの除去は中量
生産規模においてTa t−製造する場合最も効率がよ
い手段であシ、従来性われていた陰イオン交換樹脂のみ
によるTa成分の吸着手段では安定した純度の確保に十
分適切でなかった点を補完しうるものとして極めて好ま
しい工程であり、また、第4工程において、浴取液のト
ップ・フラクションを分離することにより、重金属イオ
ンが分離除去されたTaの一層の純度化を進めることと
なシ、さらに、オキシフロオライドを沈殿せしめる第5
工程において、トップ・フラクションを分離した残余の
浴隘液にのけるpti6.8の調整により一部不純物が
オキジグオライド沈*に混入することを防止し得るもの
であり、また、第6工程でオキシフルロライド沈殿のH
F浴液にNH5’i通じて共沈せしめ不純物を可及的除
去する工夫を施している等、生産スケールで稍Hを進め
る一層、高純度化の同上Vこついて数多くの配慮がなさ
れた製造方法であって、結果的に不純物を殆んど官有し
ない高純度のフルオロタンタル酸カリウムが効率よく得
られるものであり、極めて有用な発明である。
The present invention is based on the above structure, and the 7 steps of the first to sixth steps are as follows.
A method for producing high purity potassium fluorotantalate in a first step, in particular, the removal of various metal ions using a cation exchange resin in the first step is a method for producing Ta t- on a medium production scale. It is the most efficient method in this case, and it is an extremely preferable process as it can compensate for the fact that the conventional means of adsorbing Ta components using only anion exchange resin was not sufficiently suitable for ensuring stable purity. In addition, in the fourth step, the top fraction of the bath solution is separated to further purify Ta from which heavy metal ions have been separated and removed, and further, oxyfluoride is precipitated. Fifth
In the process, it is possible to prevent some impurities from being mixed into the oxyfluoride precipitate* by adjusting the PTI of 6.8 to the remaining bath solution after separating the top fraction. H of ride precipitation
A number of considerations have been taken in production to further improve purity on a production scale, such as coprecipitating NH5'i into the F bath solution to remove impurities as much as possible. This method is an extremely useful invention as it results in highly pure potassium fluorotantalate having almost no impurities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る製造方法の工程を示す工程図であ
る。
FIG. 1 is a process diagram showing the steps of the manufacturing method according to the present invention.

Claims (1)

【特許請求の範囲】 1、Taを含む原料のHF−HCl溶液を陽イオン交換
樹脂に通じてFe、Mn、Ni等各種不純物を除去する
第1工程と、 上記不純物を除去した前記溶液を陰イオン交換樹脂に通
じて該溶液中のTa成分を吸着せしめる第2工程と、 該陰イオン樹脂にTa成分とともに吸着されている不純
物を数次段階で洗浄する第3工程と、Ta成分を吸着し
た前記陰イオン交換樹脂をNH_4NO_3及びNH_
4Fの混合液で溶離し、該溶離液のトップ・フラクショ
ンを分離する第4工程と、 上記トップ・フラクションを除去した残りのTa溶離液
にNH_3を通じてpHを6.8に調整しタンタルオキ
シフルオライドを沈殿せしめるとともに不純物を該溶離
液中に残存せしめる第5工程と、上記タンタルオキシフ
ルオラドの沈殿を濾過、洗浄しHFで溶解せしめてなる
溶液にNH_3を通じてTaの一部共沈せしめたるのち
濾過し、濾液に酸性KNO_3を反応させてK_2Ta
F_7の結晶を得てこれを濾過、洗浄、乾燥して最終製
品とする第6工程と、から構成されることを特徴とする
高純度フルオロタンタル酸カリウムの製造方法。 2、第6工程においてタンタルオキシフルオライドを濾
過した母液にHNO_3を加えNH_3ガスを通じてp
H9以上としTa(OH)_5を生成させて不純物を吸
着せしめ溶離液を所定の組成に調整して再び第6工程で
使用する請求項1記載の高純度フルオロタンタル酸カリ
ウムの製造方法。 3、第6工程において使用するKNO_3が、KNO_
3にフッ化タンタル酸溶液を少量添加後KOHでアルカ
リ性とするとき生成するTa(OH)_5により含有不
純物を吸着除去してなる請求項1記載の高純度フルオロ
タンタル酸カリウムの製造方法。
[Claims] 1. A first step in which a raw HF-HCl solution containing Ta is passed through a cation exchange resin to remove various impurities such as Fe, Mn, Ni, etc.; a second step in which the Ta component in the solution is adsorbed through an ion exchange resin; a third step in which impurities adsorbed on the anion resin together with the Ta component are washed in several stages; The anion exchange resin was mixed with NH_4NO_3 and NH_
A fourth step of eluating with a mixture of 4F and separating the top fraction of the eluent, and adjusting the pH to 6.8 by passing NH_3 into the remaining Ta eluent after removing the top fraction, and adding tantalum oxyfluoride. a fifth step of precipitating the tantalum oxyfluoride and leaving impurities in the eluent; and a fifth step of filtering and washing the tantalum oxyfluoride precipitate, dissolving it with HF, passing NH_3 into the solution, partially co-precipitating Ta, and then filtration. Then, the filtrate was reacted with acidic KNO_3 to form K_2Ta.
A method for producing high-purity potassium fluorotantalate, comprising a sixth step of obtaining crystals of F_7, filtering, washing, and drying the crystals to obtain a final product. 2. In the 6th step, HNO_3 is added to the mother liquor from which tantalum oxyfluoride has been filtered, and NH_3 gas is passed through it.
2. The method for producing high-purity potassium fluorotantalate according to claim 1, wherein Ta(OH)_5 is produced at H9 or higher to adsorb impurities, and the eluent is adjusted to a predetermined composition and used again in the sixth step. 3. KNO_3 used in the sixth step is KNO_3.
2. The method for producing high-purity potassium fluorotantalate according to claim 1, wherein impurities are adsorbed and removed by Ta(OH)_5 produced when the solution of fluorotantalate is added in a small amount to 3 and then made alkaline with KOH.
JP1363088A 1988-01-26 1988-01-26 Production of high-purity potassium fluorotantalate Pending JPH01192728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1363088A JPH01192728A (en) 1988-01-26 1988-01-26 Production of high-purity potassium fluorotantalate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1363088A JPH01192728A (en) 1988-01-26 1988-01-26 Production of high-purity potassium fluorotantalate

Publications (1)

Publication Number Publication Date
JPH01192728A true JPH01192728A (en) 1989-08-02

Family

ID=11838556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1363088A Pending JPH01192728A (en) 1988-01-26 1988-01-26 Production of high-purity potassium fluorotantalate

Country Status (1)

Country Link
JP (1) JPH01192728A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047813A1 (en) * 1999-12-28 2001-07-05 Mitsui Mining & Smelting Co., Ltd. Method for producing fluorinated potassium tantalate crystal and fluorinated potassium tantalate crystal
WO2002083568A1 (en) * 2001-04-06 2002-10-24 Mitsui Mining & Smelting Co.,Ltd. Method for producing high purity potassium fluorotantalate crystal or high purity potassium fluoroniobate crystal and recrystallization vessel for use in the method for production, and potassium fluorotantalate crystal or high purity potassium fluoroniobate crystal produced by the method for production
KR100425795B1 (en) * 2001-06-02 2004-04-03 태원필 Synthesis of nanosized potassium tantalum oxide(KTaO3) sol-particle
RU2623522C1 (en) * 2016-04-21 2017-06-27 Общество с ограниченной ответственностью "Научно-производственная компания "Русредмет" (ООО "НПК "Русредмет") Method of obtaining potassium fluorothanalate from tantalum-containing solutions

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047813A1 (en) * 1999-12-28 2001-07-05 Mitsui Mining & Smelting Co., Ltd. Method for producing fluorinated potassium tantalate crystal and fluorinated potassium tantalate crystal
US6764669B2 (en) 1999-12-28 2004-07-20 Mitsui Mining & Smelting Co., Ltd. Method for producing fluorinated potassium tantalate crystal
WO2002083568A1 (en) * 2001-04-06 2002-10-24 Mitsui Mining & Smelting Co.,Ltd. Method for producing high purity potassium fluorotantalate crystal or high purity potassium fluoroniobate crystal and recrystallization vessel for use in the method for production, and potassium fluorotantalate crystal or high purity potassium fluoroniobate crystal produced by the method for production
US6860941B2 (en) 2001-04-06 2005-03-01 Mitsui Mining & Smelting Co., Ltd. Method for manufacturing high-purity potassium fluoroniobate crystal, recrystallization bath used in manufacturing method thereof and high-purity potassium fluorotantalate crystal or high-purity potassium fluoroniobate crystal obtained by manufacturing method thereof
KR100425795B1 (en) * 2001-06-02 2004-04-03 태원필 Synthesis of nanosized potassium tantalum oxide(KTaO3) sol-particle
RU2623522C1 (en) * 2016-04-21 2017-06-27 Общество с ограниченной ответственностью "Научно-производственная компания "Русредмет" (ООО "НПК "Русредмет") Method of obtaining potassium fluorothanalate from tantalum-containing solutions

Similar Documents

Publication Publication Date Title
CN108516588B (en) Method for preparing tungsten product from crude sodium tungstate solution
US3558268A (en) Process for recovering rhenium values from ion exchange materials
JP5636142B2 (en) Method for producing high purity ammonium paratungstate
US2876065A (en) Process for producing pure ammonium perrhenate and other rhenium compounds
JP2019173063A (en) Recovery method of nickel and cobalt from solution
JPS585251B2 (en) How to separate nickel and cobalt
JPH01192728A (en) Production of high-purity potassium fluorotantalate
JPH10245640A (en) Method for separating and recovering uranium and impurity by using chelate resin
US2770520A (en) Recovery of uranium from phosphoric acid and phosphate solutions by ion exchange
US3914374A (en) Removal of residual copper from nickel solutions
CN109881010B (en) Treatment method of cobalt carbonate mother liquor in the preparation process of cobalt powder precursor cobalt carbonate
CN115072789B (en) Preparation method of high-purity ammonium rhenate
US2945743A (en) Process for purifying impure rhenium-bearing solutions by ion exchange
JPH02141507A (en) Manufacture of high purity molybdenum powder
JPH08232026A (en) Method for refining scandium
JP3206432B2 (en) Low alpha low oxygen metal scandium and method for producing the same
JP7486021B2 (en) Method for producing cadmium hydroxide
CN110484744B (en) Method for recovering precious metal from waste chip capacitor
US3682589A (en) Sorbate extraction of metallic values from aqueous leach solutions
JPS63235435A (en) Manufacture of metallic tantalum
CN113737029A (en) Method for extracting rare earth oxide from rare earth ore
JPH04198017A (en) Purification of scandium oxide
JPH0116778B2 (en)
CN111014723B (en) Preparation method of high-purity nano tungsten powder for semiconductor memory
CN118954508B (en) Activated carbon and its impurity removal method and application in preparing electronic grade sulfate