[go: up one dir, main page]

JPH01190274A - Space solar power generation system - Google Patents

Space solar power generation system

Info

Publication number
JPH01190274A
JPH01190274A JP63010723A JP1072388A JPH01190274A JP H01190274 A JPH01190274 A JP H01190274A JP 63010723 A JP63010723 A JP 63010723A JP 1072388 A JP1072388 A JP 1072388A JP H01190274 A JPH01190274 A JP H01190274A
Authority
JP
Japan
Prior art keywords
heat
power generation
thermoelectric element
circulating
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63010723A
Other languages
Japanese (ja)
Inventor
Moriaki Tsukamoto
守昭 塚本
Mitsuo Hayashibara
光男 林原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63010723A priority Critical patent/JPH01190274A/en
Publication of JPH01190274A publication Critical patent/JPH01190274A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve generating efficiency, by generating the power under the temperature difference produced to a thermoelement, and by heating a circulating heating medium in a heat removing section at below the upper limit of its working temperature to drive a heat engine for power generation. CONSTITUTION:In a space solar thermal power generation system, a hollow heat receiver 1 having an opening 7 is composed of a cylindrical circulating heating medium passage 3, a heat pipe 4 arranged in its inside, a capsule type heat accumulator 5, a thermoelement 2 lined to the inner wall of the passage 3, and an insulating wall 6. A circulating heating medium 9 is heated and evaporated while it passes through the circulating heating medium passage 3. In this heat receiver 1, the solar beam 8 converged by a converger will be incident from the opening 7. The light is received on the surface of the thermoelement 2 and converted into heat. Temperature difference is thereby caused between the surface of thermoelement 2 and the inner wall of the above passage 3. A part of heat is converted into electricity and the residual heat heats the circulating medium 9 on the inner wall of the passage 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は太陽熱発電システムに係り、特に宇宙空間で用
いるのに好適な宇宙太陽熱発電システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solar thermal power generation system, and particularly to a space solar thermal power generation system suitable for use in outer space.

〔従来の技術〕[Conventional technology]

従来、宇宙太陽熱発電システムについては、ニス・ニー
・イー、No859220(1985年)第1.228
項から第1.245項(SAE、No859220(1
985)Ppl、228−1.245)において論じら
れている。同文献においては、宇宙太陽熱発電システム
の熱機関として、ランキンエンジンが有力とされている
。ランキンエンジン睨動用の循環熱媒体としては、極低
温の宇宙空間で使用することから凝固温度の低いトルエ
ン(′mm湿温度:178K等の有機熱媒体が使われて
いる。
Conventionally, regarding space solar power generation systems, Nis.N.Y., No. 859220 (1985) No. 1.228
Section 1.245 (SAE, No. 859220 (1)
985) Ppl, 228-1.245). In the same document, the Rankine engine is considered to be a promising heat engine for space solar power generation systems. As the circulating heat medium for the Rankine engine, an organic heat medium such as toluene ('mm humidity temperature: 178K), which has a low solidification temperature, is used because it is used in the extremely low temperature of outer space.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

有機熱媒体は凝固温度は低いが、高温では分解して非凝
縮性ガスを発生する。そのため上記従来技術では、循環
熱媒体の最高温度を700〜800に以下としている。
Organic heat carriers have a low solidification temperature, but decompose at high temperatures and generate non-condensable gases. Therefore, in the above-mentioned conventional technology, the maximum temperature of the circulating heat medium is set to 700 to 800 degrees Celsius or less.

そのため、ランキンエンジンの効率が制限され、システ
ムの発電効率を高めることが困難であるという問題があ
った。
Therefore, there was a problem in that the efficiency of the Rankine engine was limited and it was difficult to increase the power generation efficiency of the system.

したがって、本発明の目的は、循環熱媒体に温度上限が
ある場合でも、発電効率の高い宇宙太陽熱発電システム
を提供することにある。
Therefore, an object of the present invention is to provide a space solar power generation system with high power generation efficiency even when the circulating heat medium has a temperature upper limit.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、集光器、受熱器、熱機関等から構成され
る宇宙太陽熱発電システムにおいて、その受熱器の受光
部と除熱部の間に熱電素子を設けることにより達成され
る。
The above object is achieved by providing a thermoelectric element between the light receiving part and the heat removal part of the heat receiver in a space solar thermal power generation system composed of a concentrator, a heat receiver, a heat engine, etc.

また、受光部と熱電素子の間又は熱電素子と除熱部の間
に蓄熱器を設けることが好ましい。
Further, it is preferable to provide a heat storage device between the light receiving section and the thermoelectric element or between the thermoelectric element and the heat removal section.

〔作用〕[Effect]

受熱器に入射した太陽光は受光部で熱に変換され、受光
部の温度を上昇させる。そのため、受光部と除熱部との
間に温度差が生じ、熱電素子を介して熱が流れる。この
熱の一部は熱電素子により電気に変換され、残りの熱は
除熱部で循環熱媒体を加熱する。これにより循環熱媒体
の使用温度上限以上の温度で集熱可能とし、熱電素子に
生じる温度差によって熱電素子で発電するとともに、除
熱部において循環熱媒体をその使用温度上限以下で加熱
して熱機関を駆動し、発電することにより、システムの
発電効率を高くする。
Sunlight that enters the heat receiver is converted into heat at the light receiving section, raising the temperature of the light receiving section. Therefore, a temperature difference occurs between the light receiving section and the heat removal section, and heat flows through the thermoelectric element. A portion of this heat is converted into electricity by the thermoelectric element, and the remaining heat is used to heat the circulating heat medium in the heat removal section. This makes it possible to collect heat at a temperature above the upper limit of the operating temperature of the circulating heat medium, generate electricity with the thermoelectric element due to the temperature difference that occurs in the thermoelectric element, and heat the circulating heat medium at a temperature below the upper limit of its operating temperature in the heat removal section. By driving the engine and generating electricity, the power generation efficiency of the system is increased.

また、受光部と熱電素子の間又は熱電素子と除熱部の間
に蓄熱器を設けることによって、人工衛星が地球などの
影に入って太陽光が一時的に途絶えた場合にも、蓄熱器
からの熱によって熱電素子とランキンサイクルの両方で
発電が行なわれる。
In addition, by providing a heat storage device between the light receiving part and the thermoelectric element or between the thermoelectric element and the heat removal part, even if the satellite enters the shadow of the earth and sunlight is temporarily cut off, the heat storage device can be used. Electricity is generated using both the thermoelectric element and the Rankine cycle.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図、第2図により説明す
る。第1図は本発明の宇宙太陽熱発電システムの受熱器
構造を示す部分断面図である。第1図に示すように開口
部7を有する空洞状の受熱器1は1円筒状の循環熱媒体
通路3、循環熱媒体通路3の内部に配置されたヒートパ
イプ4とカプセル型の蓄熱器5、循環熱媒体通路3の内
壁に内張すされた熱電素子2、及び受熱器1からの放熱
損失を小さくするための断熱壁6より構成されている。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a partial sectional view showing the structure of a heat receiver of the space solar power generation system of the present invention. As shown in FIG. 1, a hollow heat receiver 1 having an opening 7 includes a cylindrical circulating heat medium passage 3, a heat pipe 4 disposed inside the circulating heat medium passage 3, and a capsule-shaped heat storage 5. , a thermoelectric element 2 lined on the inner wall of a circulating heat medium passage 3, and a heat insulating wall 6 for reducing heat radiation loss from the heat receiver 1.

循環熱媒体9は循環熱媒体通路3を通過する間に加熱さ
れ蒸発する。
The circulating heat medium 9 is heated and evaporated while passing through the circulating heat medium path 3.

第2図は第1図に示した受熱器を用いた本発明の宇宙太
陽熱発電システムのシステム構成図である。第2図にお
いて、受熱器1からの蒸気21はランキンエンジン23
.コンデンサー25、ポンプ26、再生熱交換器27を
経て液体22となって受熱器1に戻る。ランキンエンジ
ン23には発電機24が接続され、発電機24で発電さ
れた電力は電力調整機30を介して負荷31に供給され
る。また、熱電素子2で発電された電力は、電力調整機
28を介して負荷29に供給される。
FIG. 2 is a system configuration diagram of the space solar power generation system of the present invention using the heat receiver shown in FIG. 1. In FIG. 2, steam 21 from the heat receiver 1 is transferred to the Rankine engine 23.
.. It returns to the heat receiver 1 as a liquid 22 through a condenser 25, a pump 26, and a regenerative heat exchanger 27. A generator 24 is connected to the Rankine engine 23, and the electric power generated by the generator 24 is supplied to a load 31 via a power regulator 30. Further, the electric power generated by the thermoelectric element 2 is supplied to a load 29 via a power regulator 28.

第1図の本発明の宇宙太陽熱発電システムの受熱器1に
おいて、集光器10(第2図に示す。)によって集光さ
れた太陽光8は開口部7より受熱器1に入射し、熱電素
子2の表面で受光されて熱に変換される。これにより熱
電素子2の表面温度が上昇する。そのため、熱電素子2
の表面(受光部)と循環熱媒体通路3の内壁(除熱部)
との間に温度差が生じ、熱電素子2を介して熱が流れる
In the heat receiver 1 of the space solar thermal power generation system of the present invention shown in FIG. 1, sunlight 8 collected by the concentrator 10 (shown in FIG. 2) enters the heat receiver 1 through the opening 7 and generates thermoelectric power. The light is received on the surface of the element 2 and converted into heat. This increases the surface temperature of the thermoelectric element 2. Therefore, thermoelectric element 2
surface (light receiving part) and the inner wall of the circulating heat medium passage 3 (heat removal part)
A temperature difference occurs between the two, and heat flows through the thermoelectric element 2.

この熱の一部は熱電素子2により電気に変換され、残り
の熱は循環熱媒体通路3の内壁(除熱部)で循環媒体9
を加熱蒸発させる。この蒸気21は第2図に示すように
ランキンエンジン23を駆動し、発電機24によって発
電される。
A part of this heat is converted into electricity by the thermoelectric element 2, and the remaining heat is transferred to the circulating medium 9 by the inner wall (heat removal part) of the circulating heat medium passage 3.
Heat and evaporate. This steam 21 drives a Rankine engine 23 as shown in FIG. 2, and is generated by a generator 24.

第3図に、本実施例の宇宙太陽熱発電システムの発電効
率を実線で、従来のランキンエンジン(ランキンサイク
ル)単独時の発電効率を破線で示す。なお、同図横軸の
集光比は集光器10の開口面積と受光器1の開口部7の
面積の比で定義した。熱電素子2としてTPM−217
を用い、Wi環熟熱媒体9温度を673にとした。また
、熱電素子2の厚みをパラメータとして示した。第3図
より1本発明のシステムの発電効率は、従来のランキン
サイクル単独時の1.1〜1.2倍に向上出来ることが
わかる。熱電素子2としてさらに性能の高いものが使用
出来れば、発電効率をさらに高く出来る。
In FIG. 3, the power generation efficiency of the space solar power generation system of this embodiment is shown by a solid line, and the power generation efficiency when the conventional Rankine engine (Rankine cycle) is used alone is shown by a broken line. Note that the light collection ratio on the horizontal axis in the figure is defined as the ratio of the aperture area of the condenser 10 to the area of the aperture 7 of the light receiver 1. TPM-217 as thermoelectric element 2
Using this, the temperature of the Wi ring aging heat medium 9 was set to 673. Moreover, the thickness of the thermoelectric element 2 is shown as a parameter. From FIG. 3, it can be seen that the power generation efficiency of the system of the present invention can be improved by 1.1 to 1.2 times that of the conventional Rankine cycle alone. If a thermoelectric element 2 with higher performance can be used, the power generation efficiency can be further increased.

したがって、本実施例で示したように、熱電素子に生じ
る温度差によって熱電素子で発電するとともに1.除熱
部において循環熱媒体をその使用温度上限以下で加熱蒸
発させてランキンエンジン、発電機で発電できるので、
従来のランキンサイクル単独時に比較して発電効率を大
幅に向上出来る。
Therefore, as shown in this embodiment, while the thermoelectric element generates electricity due to the temperature difference generated in the thermoelectric element, 1. In the heat removal section, the circulating heat medium is heated and evaporated below the upper limit of its operating temperature, and the Rankine engine and generator can generate electricity.
Power generation efficiency can be significantly improved compared to the conventional Rankine cycle alone.

本発明の他の実施例を示す受熱器断面図を第4図に示す
。本実施例では空洞状の受熱器41の内部にヒートパイ
プ44をリング状に配置し、ヒードパイブ44の中央部
に蓄熱器45を、ヒートパイプ44の凝縮部側49に熱
電素子42を設け、熱電素子42と循環熱媒体通路43
を伝熱ブロック50を介して接続している。
A sectional view of a heat receiver showing another embodiment of the present invention is shown in FIG. In this embodiment, a heat pipe 44 is arranged in a ring shape inside a hollow heat receiver 41, a heat storage device 45 is provided in the center of the heat pipe 44, and a thermoelectric element 42 is provided on the condensing part side 49 of the heat pipe 44. Element 42 and circulating heat medium path 43
are connected via a heat transfer block 50.

太陽光8はヒートパイプ44の蒸発部側48で受光され
、熱はその一部が蓄熱器45に蓄熱され、残りの熱は熱
電素子42、伝熱ブロック5oを介して循環熱媒体通路
43を加熱する。これにより、人工衛星が地球などの影
に入って太陽光8が途絶えた場合には、蓄熱器45から
熱が供給されて、熱電素子42、伝熱ブロック50を介
して循環熱媒体通路43を加熱する。したがって、太陽
光8が一時的に途絶えた場合にも、熱電素子とランキン
サイクルの両方で発電出来るいう効果がある。
The sunlight 8 is received by the evaporator side 48 of the heat pipe 44, a part of the heat is stored in the heat storage device 45, and the remaining heat is sent through the circulating heat medium path 43 via the thermoelectric element 42 and the heat transfer block 5o. Heat. As a result, when the artificial satellite enters the shadow of the earth or the like and sunlight 8 is cut off, heat is supplied from the heat storage device 45 and circulates through the heat transfer medium path 43 via the thermoelectric element 42 and the heat transfer block 50. Heat. Therefore, even if sunlight 8 is temporarily cut off, there is an effect that power can be generated using both the thermoelectric element and the Rankine cycle.

本発明のさらに他の実施例を示す受熱器の断面図を第5
図に示す。本実施例では空洞状の受熱器51の内部にヒ
ートパイプ54をリング状に配置し、ヒートパイプ54
の内部に蓄熱器55を、ヒートパイプ54の蒸発部側5
8に熱電素子52を設け、ヒートパイプ54の凝縮部側
59と循環熱媒体通路53を伝熱ブロック60を介して
接続している。本実施例では、複数のヒートパイプ54
の内部に蓄熱器55を分散して配置しているため、単体
のヒートパイプまたは蓄熱器が破損しても、システム全
体には故障が伝播しないため信頼性を高く出来るという
効果がある。
A sectional view of a heat receiver showing still another embodiment of the present invention is shown in FIG.
As shown in the figure. In this embodiment, a heat pipe 54 is arranged in a ring shape inside a hollow heat receiver 51.
A heat storage device 55 is placed inside the heat pipe 54 on the evaporation section side 5.
8 is provided with a thermoelectric element 52, and the condensing section side 59 of the heat pipe 54 and the circulating heat medium passage 53 are connected via a heat transfer block 60. In this embodiment, a plurality of heat pipes 54
Since the heat accumulators 55 are arranged in a distributed manner inside the system, even if a single heat pipe or heat accumulator is damaged, the failure will not propagate to the entire system, which has the effect of increasing reliability.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、循環熱媒体の使用温度上限以上の温度
で集熱可能となり、熱電素子に生じる温度差によって熱
電素子で発電するとともに、除熱部において循環熱媒体
をその使用温度上限以下で加熱して熱機関を駆動し、発
電することができるので、宇宙太陽熱発電システムの発
電効率を熱機関単独時より高く出来るという効果がある
According to the present invention, it is possible to collect heat at a temperature higher than the upper limit of the operating temperature of the circulating heat medium, generate electricity with the thermoelectric element due to the temperature difference generated in the thermoelectric element, and collect the circulating heat medium at a temperature lower than the upper limit of the operating temperature of the circulating heat medium in the heat removal section. Since it can be heated to drive a heat engine and generate electricity, it has the effect of making the power generation efficiency of the space solar power generation system higher than when using only a heat engine.

また、受光部と熱電素子の間又は熱電素子と除熱部の間
に蓄熱器を設けることによって、人工衛星が地球などの
影に入って太陽光が一時的に途絶えた場合にも、熱電素
子とランキンサイクルの両方で発電出来るいう効果があ
る。
In addition, by providing a heat storage device between the light receiving part and the thermoelectric element or between the thermoelectric element and the heat removal part, even if the artificial satellite enters the shadow of the earth etc. and sunlight is temporarily cut off, the thermoelectric element It has the advantage of being able to generate electricity using both the Rankine cycle and the Rankine cycle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の宇宙太陽熱発電システムの受熱器構造
を示す部分断面図、第2図は第1図に示した受熱器を用
いた本発明の宇宙太陽熱発電システムのシステム構成図
、第3図は本発明の効果を示す説明図、第4図は本発明
の他の実施例を示す受熱器の断面図、第5図は本発明の
さらに他の実施例を示す受熱器の断面図である。 1・・・受熱器、 2・・・熱電素子、 3・・・循環
熱媒体通路、 4・・・ヒートパイプ、 5・・・蓄熱
器。
FIG. 1 is a partial cross-sectional view showing the structure of a heat receiver of the space solar power generation system of the present invention, FIG. 2 is a system configuration diagram of the space solar power generation system of the present invention using the heat receiver shown in FIG. 1, and FIG. 4 is a cross-sectional view of a heat receiver showing another embodiment of the present invention, and FIG. 5 is a cross-sectional view of a heat receiver showing still another embodiment of the present invention. be. DESCRIPTION OF SYMBOLS 1... Heat receiver, 2... Thermoelectric element, 3... Circulating heat medium path, 4... Heat pipe, 5... Heat storage device.

Claims (1)

【特許請求の範囲】 1、集光器、受熱器、熱機関から構成される宇宙太陽熱
発電システムにおいて、その受熱器の受光部と除熱部の
間に熱電素子を設けたことを特徴とする宇宙太陽熱発電
システム。2、特許請求の範囲第1項において、該受光
部と該熱電素子の間に蓄熱器を設けたことを特徴とする
宇宙太陽熱発電システム。 3、特許請求の範囲第1項において、該熱電素子と該除
熱部の間に蓄熱器を設けたことを特徴とする宇宙太陽熱
発電システム。
[Claims] 1. A space solar power generation system comprising a concentrator, a heat receiver, and a heat engine, characterized in that a thermoelectric element is provided between the light receiving part and the heat removal part of the heat receiver. Space solar power generation system. 2. The space solar thermal power generation system according to claim 1, characterized in that a heat storage device is provided between the light receiving section and the thermoelectric element. 3. A space solar power generation system according to claim 1, characterized in that a heat storage device is provided between the thermoelectric element and the heat removal section.
JP63010723A 1988-01-22 1988-01-22 Space solar power generation system Pending JPH01190274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63010723A JPH01190274A (en) 1988-01-22 1988-01-22 Space solar power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63010723A JPH01190274A (en) 1988-01-22 1988-01-22 Space solar power generation system

Publications (1)

Publication Number Publication Date
JPH01190274A true JPH01190274A (en) 1989-07-31

Family

ID=11758205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63010723A Pending JPH01190274A (en) 1988-01-22 1988-01-22 Space solar power generation system

Country Status (1)

Country Link
JP (1) JPH01190274A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147651A3 (en) * 2008-06-06 2010-11-18 Xelos S.R.L. A solar energy generator
GB2486210A (en) * 2010-12-06 2012-06-13 Alstom Technology Ltd Solar receiver comprising an aperture admitting radiation into a cylindrical cavity
WO2012076347A3 (en) * 2010-12-06 2013-05-10 Alstom Technology Ltd. Improved solar receiver
JP2013098494A (en) * 2011-11-04 2013-05-20 Toshiba Corp Thermal power generation system
CN104272035A (en) * 2012-04-26 2015-01-07 斯坦陵布什大学 Tower Solar Receiver
JP2016533955A (en) * 2013-08-19 2016-11-04 ザ・ボーイング・カンパニーThe Boeing Company Method for recovering waste energy from a bleed duct

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147651A3 (en) * 2008-06-06 2010-11-18 Xelos S.R.L. A solar energy generator
GB2486210A (en) * 2010-12-06 2012-06-13 Alstom Technology Ltd Solar receiver comprising an aperture admitting radiation into a cylindrical cavity
WO2012076347A3 (en) * 2010-12-06 2013-05-10 Alstom Technology Ltd. Improved solar receiver
US9869302B2 (en) 2010-12-06 2018-01-16 General Electric Technology Gmbh Solar receiver
JP2013098494A (en) * 2011-11-04 2013-05-20 Toshiba Corp Thermal power generation system
CN104272035A (en) * 2012-04-26 2015-01-07 斯坦陵布什大学 Tower Solar Receiver
JP2016533955A (en) * 2013-08-19 2016-11-04 ザ・ボーイング・カンパニーThe Boeing Company Method for recovering waste energy from a bleed duct

Similar Documents

Publication Publication Date Title
US4251291A (en) Thermoelectric generator with latent heat storage
US6735946B1 (en) Direct illumination free piston stirling engine solar cavity
US9023495B2 (en) Unit thermionic electric converter and thermoelectric converter system
JP5723425B2 (en) Alkali metal thermoelectric converter including heat exchanger
US8283613B2 (en) Heat-pipe electric-power generating device
KR20100011577A (en) Amtec apparatus with heat pipe
JP2007132330A (en) Solar power generation plant
JPH01190274A (en) Space solar power generation system
US4388542A (en) Solar driven liquid metal MHD power generator
JP2001153470A (en) Solar heat power generating system
EP1245796B1 (en) Hybrid combustion power system
JPH11215867A (en) Thermoelectric element structure and thermoelectric generation system
JPH0898569A (en) Power generation apparatus for enhancement of efficiency of thermal power generation
KR101438434B1 (en) Solar thermal power generation system
JP5775121B2 (en) Thermal conversion generator including thermal conversion power generation cell using porous current collector
RU2013715C1 (en) Solar power plant
JP3493995B2 (en) Sodium sulfur battery module
JP3453159B2 (en) Thermoelectric generator
JP3481959B2 (en) Alkali metal thermoelectric generator
US4686836A (en) Thermal energy collector and system including a collector of this kind
JP2011257121A (en) Thermal storage system and hot water supply system equipped with the thermal storage system
JP2706307B2 (en) Alkali metal thermoelectric converter
JPS6036774Y2 (en) Power generation device using engine waste heat
JPH0115783B2 (en)
JP2001178163A (en) Power generation method and power generation device using solar heat