JPH01189052A - Optical head of magneto-optical recording device - Google Patents
Optical head of magneto-optical recording deviceInfo
- Publication number
- JPH01189052A JPH01189052A JP63012899A JP1289988A JPH01189052A JP H01189052 A JPH01189052 A JP H01189052A JP 63012899 A JP63012899 A JP 63012899A JP 1289988 A JP1289988 A JP 1289988A JP H01189052 A JPH01189052 A JP H01189052A
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical
- prism
- magneto
- reflected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
Landscapes
- Optical Head (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、光磁気記録装置で用いる光学ヘッドに関し、
更に詳しくは、単軸結晶の複屈折材料からなる偏光プリ
ズムを使用し、光磁気記録媒体からの読出し光を偏光プ
リズムに入射させ、その斜面で全反射させて常光成分と
異常光成分とに分離し両者の差動出力を検出することに
より記録情報を再生する光学ヘッドに関するものである
。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical head used in a magneto-optical recording device.
More specifically, a polarizing prism made of a uniaxial crystal birefringent material is used, and the readout light from the magneto-optical recording medium is made incident on the polarizing prism, where it is totally reflected on its slope and separated into ordinary light components and extraordinary light components. The present invention relates to an optical head that reproduces recorded information by detecting a differential output between the two.
[従来の技術]
光磁気記録された情報の再生は、直線偏光を磁性体に照
射した時にその磁化の方向に対応して反射光または透過
光の偏光面が回転する現象を利用して行われる0反射の
場合がカー効果、透過の場合がファラデー効果であり、
カー効果が多く使われている。[Prior art] Information recorded on magneto-optical materials is reproduced by utilizing the phenomenon that when a magnetic material is irradiated with linearly polarized light, the plane of polarization of reflected or transmitted light rotates in accordance with the direction of magnetization. The case of zero reflection is the Kerr effect, and the case of transmission is the Faraday effect.
Kerr effect is often used.
従来の光磁気記録装置における光学ヘッドの一例を第4
図に示す、半導体レーザ10からの光はコリメートレン
ズ12で集光され、検光子14で直線偏光が取り出され
る。この直線偏光は第1のハーフプリズム16を通り対
物レンズ18で集光され°て光磁気ディスク20を照射
する。このような直線偏光が光磁気ディスク20を照射
すると、反射光はカー効果によりその偏光面の回転が生
じる。例えば照射スポットの部分が下向きに磁化してい
る場合に入射光の偏光面22に対して−8、だけ回転し
たとすると、照射スポットの部分が上向きに磁化してい
る場合には逆向きに十〇、だけ偏光面が回転する。An example of an optical head in a conventional magneto-optical recording device is shown in the fourth example.
As shown in the figure, light from a semiconductor laser 10 is focused by a collimating lens 12, and linearly polarized light is extracted by an analyzer 14. This linearly polarized light passes through the first half prism 16, is focused by the objective lens 18, and illuminates the magneto-optical disk 20. When such linearly polarized light irradiates the magneto-optical disk 20, the plane of polarization of the reflected light is rotated due to the Kerr effect. For example, if the irradiation spot is magnetized downward and rotated by -8 with respect to the polarization plane 22 of the incident light, if the irradiation spot is magnetized upward it is rotated by -8. The plane of polarization rotates by 〇.
従ってこの反射光の偏光度を検出することによってカー
回転角に応じた変調信号を読み取ることができる。Therefore, by detecting the degree of polarization of this reflected light, a modulation signal corresponding to the Kerr rotation angle can be read.
前記光磁気ディスク20からの反射光は対物レンズ18
を通り第1のハーフプリズム16で反射されて受光系に
向かう、この光は第2のハーフプリズム24で互いに直
角な2つの経路に分離され、反射光はサーボ信号検出系
(図示せず)に向かい、透過光はλ/2板26を経てP
BS(偏光ビームスプリッタ)プリズム28へ向かう、
このλ/2板26とPBSプリズム28の組み合わせに
より光路が更に分離される。The reflected light from the magneto-optical disk 20 is reflected by the objective lens 18.
This light is reflected by the first half prism 16 and directed toward the light receiving system.The second half prism 24 separates the light into two paths perpendicular to each other, and the reflected light is sent to the servo signal detection system (not shown). Opposite, the transmitted light passes through the λ/2 plate 26 and reaches P.
toward the BS (polarizing beam splitter) prism 28,
The combination of the λ/2 plate 26 and the PBS prism 28 further separates the optical path.
一方は集光レンズ29を通り第1の受光素子30で検出
されて電気信号に変換され、他方は集光レンズ31を通
り第2の受光素子32で電気信号に変換される。そして
第1の受光素子30および第2の受光素子32の検出出
力が差動増幅器34の入力端に印加されて差動出力信号
を得ている。このような差動検出一方式を採用すること
によって光量変動によるノイズを低減することができる
。One passes through the condensing lens 29 and is detected by the first light receiving element 30 and converted into an electrical signal, and the other passes through the condensing lens 31 and is converted into an electrical signal by the second light receiving element 32. The detection outputs of the first light receiving element 30 and the second light receiving element 32 are applied to the input terminal of a differential amplifier 34 to obtain a differential output signal. By employing such a differential detection method, it is possible to reduce noise caused by variations in light amount.
[発明が解決しようとする課題]
従来技術では上記のように差動出力信号を取り出すため
に、PBSプリズムを用いている。[Problems to be Solved by the Invention] In the prior art, a PBS prism is used to extract the differential output signal as described above.
しかし光磁気ディスク20上でのカー回転角は通常1″
以下と非常に小さく、それに対して通常のPBSプリズ
ム2日の消光比は約30dB程度であり、そのため高い
C/N比を得ることが難しかった。However, the Kerr rotation angle on the magneto-optical disk 20 is usually 1''.
In contrast, the extinction ratio of a normal PBS prism is about 30 dB, making it difficult to obtain a high C/N ratio.
本発明の目的は、上記のような従来技術の欠点を解消し
、小型化が容易であり、またC/N比を向上できるよう
に改良した光磁気記録装置の光学ヘッドを提供すること
にある。SUMMARY OF THE INVENTION An object of the present invention is to provide an improved optical head for a magneto-optical recording device that eliminates the drawbacks of the prior art as described above, is easy to downsize, and improves the C/N ratio. .
[課題を解決するための手段]
上記のような目的を達成することのできる本発明は、光
磁気記録媒体からの光を検出する受光系に、単軸結晶の
複屈折材料からなる偏光プリズムを設け、それにより差
動出力信号を得るように構成した光学ヘッドである。[Means for Solving the Problems] The present invention, which can achieve the above objects, includes a polarizing prism made of a uniaxial crystal birefringent material in a light receiving system that detects light from a magneto-optical recording medium. The optical head is configured to provide a differential output signal and thereby obtain a differential output signal.
本発明の基本構成を第1図に示す、同図に示すように、
本発明に係る光学ヘッドでは受光系に偏光プリズム40
が配置されている。この偏光プリズム40は、水晶、ル
チル単結晶、方解石等の単軸結晶の複屈折材料からなり
、光磁気記録媒体からの読出し光が入射する面の法線方
向に対して結晶の光学軸がほぼ平行をなすように製作さ
れている三角プリズムである。The basic configuration of the present invention is shown in FIG.
In the optical head according to the present invention, a polarizing prism 40 is used in the light receiving system.
is located. The polarizing prism 40 is made of a birefringent uniaxial crystal material such as quartz, rutile single crystal, or calcite, and the optical axis of the crystal is approximately parallel to the normal direction of the surface on which the read light from the magneto-optical recording medium is incident. It is a triangular prism made parallel to each other.
また前記偏光プリズム40の斜面で全反射し、分離した
常光成分を検出する第1の受光素子42および異常光成
分を検出する第2の受光素子44と、両受光素子42.
44での検出信号が人力する差動増幅器46を具備して
いる。Further, a first light receiving element 42 detects an ordinary light component which is totally reflected on the slope of the polarizing prism 40 and separated, a second light receiving element 44 detects an extraordinary light component, and both light receiving elements 42.
A differential amplifier 46 is provided in which the detection signal at 44 is manually input.
[作用]
上記のように構成した光学ヘッドでは、光磁気記録媒体
からの続出し光は偏光プリズム40に入射する。単軸結
晶の複屈折材料からなる偏光プリズム40の光学軸が入
射面の法線方向に対して平行になっているため、前記入
射光は異常光成分と常光成分とに分離することなくその
まま偏光プリズム40を通る。そしてその斜面で全反射
する。全反射した光は常光成分と異常光成分とに分離し
出射する0本発明では通常の′喫型の複屈折プリズムと
比較して全反射により大きな分離角が得られる0例えば
斜面での入射角θは次のように設定する。[Operation] In the optical head configured as described above, the continuous light emitted from the magneto-optical recording medium is incident on the polarizing prism 40. Since the optical axis of the polarizing prism 40 made of a uniaxial crystal birefringent material is parallel to the normal direction of the incident surface, the incident light is polarized as it is without being separated into extraordinary light components and ordinary light components. It passes through a prism 40. It is then totally reflected on that slope. The totally reflected light is separated into an ordinary light component and an extraordinary light component and then emitted.In the present invention, a larger separation angle can be obtained through total reflection compared to a normal double refraction prism.For example, the angle of incidence on an inclined surface is θ is set as follows.
θ−tan伺(n、/n、) ここで、n、:異常光屈折率 no :常光屈折率 である。θ-tan visit (n, /n,) Here, n: extraordinary refractive index no: ordinary refractive index.
この分離した出射光が記録情報の再生に用いられる。そ
れを第2図により説明する。光磁気記録媒体に入射する
直線偏光の偏光面を符号Uで表すとする。光磁気記録媒
体で反射される光は、その光照射スポット部分の磁化の
向きによって十〇えもしくは−8、たけ回転する。偏光
プリズム40の斜面で全反射した光は常光成分と異常光
成分の2本に分離される。This separated emitted light is used to reproduce recorded information. This will be explained with reference to FIG. Assume that the polarization plane of linearly polarized light incident on the magneto-optical recording medium is represented by the symbol U. The light reflected by the magneto-optical recording medium is rotated by 10 degrees or -8 degrees depending on the direction of magnetization of the light irradiation spot. The light totally reflected on the slope of the polarizing prism 40 is separated into two components: an ordinary light component and an extraordinary light component.
例えば十〇3回転した偏光面Vについて考えると、常光
成分および異常光成分はそれぞれal+ bl とし
て得られるから、差動出力は(a+ bl )とな
る、それに対して一〇1回転した偏光面Wについて見れ
ば、常光成分はat、異常光成分はbtであるから、差
動出力は(az bz )となる、その結果子03回
転した偏光面Vの差動出力と−θ3回転した偏光面Wに
ついての差動出力の差は
(a+ bl) (az ’z)=as”bs
となる。つまり光磁気記録媒体の磁化の向きに応じて、
この(as +bs )という大きさの違いが生じ、こ
れによって光磁気記録媒体の記録情報を読み出すことが
可能となる。For example, considering the polarization plane V rotated by 103, the ordinary light component and the extraordinary light component are obtained as al+ bl respectively, so the differential output is (a+ bl ).On the other hand, the polarization plane W rotated by 101 , the ordinary light component is at and the extraordinary light component is bt, so the differential output is (az bz ).As a result, the differential output of the polarization plane V rotated by 03 and the polarization plane W rotated by -θ3 The differential output difference for is (a+bl) (az 'z)=as”bs
becomes. In other words, depending on the direction of magnetization of the magneto-optical recording medium,
This difference in size (as + bs) occurs, and this makes it possible to read the recorded information on the magneto-optical recording medium.
[実施例]
第3図は本発明に係る光学ヘッドの一実施例を示す説明
図である。半導体レーザ10から光磁気ディスク20に
至る読出し光の入射経路は第4図に示す従来技術と同様
であり、受光系の構成の大部分は第1図に示す基本構成
図と同様だから、説明を簡略化するため対応する部分に
は同一符号を付す。[Embodiment] FIG. 3 is an explanatory diagram showing an embodiment of the optical head according to the present invention. The incident path of the read light from the semiconductor laser 10 to the magneto-optical disk 20 is the same as that of the prior art shown in FIG. 4, and most of the configuration of the light receiving system is the same as the basic configuration diagram shown in FIG. For simplicity, corresponding parts are given the same reference numerals.
半導体レーザ10からの読出し光はコリメートレンズ1
2により集光され検光子14によって直線偏光が取り出
された後、ハーフプリズム16を通り対物レンズ18で
集光されて光磁気ディスク20の所定の位置を照射する
。The readout light from the semiconductor laser 10 is transmitted through the collimating lens 1
After the light is focused by 2 and linearly polarized light is taken out by an analyzer 14, the light passes through a half prism 16 and is focused by an objective lens 18 to illuminate a predetermined position on the magneto-optical disk 20.
光磁気ディスク20からの反射光は照射スポットの部分
での磁化の向きに応じて十〇、もしくは−0,だけ偏光
面が回転する。この反射光は対物レンズ18を通りハー
フプリズム16で反射された後、第2のハーフプリズム
24で互いに直角な2つの光路に分離され、反射光はサ
ーボ信号検出系に向かい、光学ヘッドの位置側′421
に使用される。The plane of polarization of the reflected light from the magneto-optical disk 20 is rotated by 10 or -0 depending on the direction of magnetization at the irradiation spot. After this reflected light passes through the objective lens 18 and is reflected by the half prism 16, it is separated into two optical paths perpendicular to each other by the second half prism 24, and the reflected light is directed toward the servo signal detection system, toward the position of the optical head. '421
used for.
透過光は集光レンズ39を通り偏光プリズム40に至る
。前記のように偏光プリズム40は複屈折材料からなり
、その結晶の光学軸が入射面の法線方向に対して平行に
なっているため、常光成分と異常光成分とに分離するこ
となくそのまま内部を進む、そして、その斜面で全反射
する。全反射した光は常光成分と異常光成分に分離され
る。そしてそれぞれ対応する受光素子42.44に達し
、そこで電気信号に変換される。これらの電気信号は差
動増幅器46に入力し増幅されて、光−気ディスク20
の記録情報に応じた差動出力が取り出される。The transmitted light passes through a condenser lens 39 and reaches a polarizing prism 40 . As mentioned above, the polarizing prism 40 is made of a birefringent material, and the optical axis of the crystal is parallel to the normal direction of the incident surface, so that the polarizing prism 40 is not separated into the ordinary light component and the extraordinary light component, but is directly transmitted inside. , and is totally reflected on that slope. The totally reflected light is separated into an ordinary light component and an extraordinary light component. The light then reaches the corresponding light receiving elements 42 and 44, where it is converted into an electrical signal. These electrical signals are input to the differential amplifier 46 and amplified, and then output to the optical disk 20.
A differential output corresponding to the recorded information is extracted.
偏光プリズム40としては、例えばルチル単結晶、水晶
、方解石等が用いられる。第1および第2の受光素子4
2.44はそれぞれ別個の光検出器でもよいが、常光成
分と異常光成分が接近していることから2分割光検出器
の方が望ましい。As the polarizing prism 40, for example, rutile single crystal, quartz, calcite, etc. are used. First and second light receiving elements 4
Although 2.44 may be separate photodetectors, a two-split photodetector is preferable because the ordinary light component and the extraordinary light component are close to each other.
[発明の効果]
本発明は上記のように光磁気記録媒体からの読出し光の
受光系に複屈折材料からなる偏光プリズムをその結晶の
光学軸が読出し光とほぼ平行になるように設けたから、
全反射させることで分離角を大きくして異常光成分と常
光成分を分離し差動出力を得ることができる。[Effects of the Invention] As described above, the present invention provides a polarizing prism made of a birefringent material in the light receiving system for the read light from the magneto-optical recording medium so that the optical axis of the crystal is substantially parallel to the read light.
By performing total reflection, the separation angle is increased, the extraordinary light component and the ordinary light component are separated, and a differential output can be obtained.
特に本発明では、分離した常光成分と異常光成分はほぼ
同じ方向に出射するため2個の受光素子を並設でき、2
分割光検出器が使用可能となり、且つ全反射により大き
な分離角が得られるため分離後の光路長を短(でき、小
型化が容易となる。In particular, in the present invention, since the separated ordinary light component and extraordinary light component are emitted in almost the same direction, two light receiving elements can be arranged in parallel.
Since a split photodetector can be used and a large separation angle can be obtained due to total reflection, the optical path length after separation can be shortened, making it easy to downsize.
また本発明で用いる偏光プリズムは通常のPBSプリズ
ムと比べて消光比が高い(約50dB)から、C/N比
を向上させることが可能となる。Furthermore, since the polarizing prism used in the present invention has a higher extinction ratio (approximately 50 dB) than a normal PBS prism, it is possible to improve the C/N ratio.
第1図は本発明の基本構成を示す説明図、第2図はその
動作説明図、第3図は本発明に係る光学ヘッドの一実施
例を示す説明図である。
また第4図は従来技術の一例を示す説明図である。
40・・・偏光プリズム、42.44・・・受光素子、
46・・・差動増幅器。
特許出願人 富士電気化学株式会社
代 理 人 茂 見 積第1図
第2図
第3図
2Q−〒
第4図FIG. 1 is an explanatory diagram showing the basic configuration of the present invention, FIG. 2 is an explanatory diagram of its operation, and FIG. 3 is an explanatory diagram showing an embodiment of the optical head according to the present invention. Further, FIG. 4 is an explanatory diagram showing an example of the prior art. 40... Polarizing prism, 42.44... Light receiving element,
46...Differential amplifier. Patent applicant Fuji Electrochemical Co., Ltd. Agent Shigeru Estimate Figure 1 Figure 2 Figure 3 Figure 2Q-〒 Figure 4
Claims (1)
記偏光プリズムの斜面で全反射し分離した常光成分と異
常光成分とを別々に検出する2個の受光素子と、両受光
素子の検出出力を入力とする差動増幅器を具備し、前記
偏光プリズムは光磁気記録媒体からの読出し光が入射す
る面の法線方向に対して結晶の光学軸がほぼ平行をなし
ている光磁気記録装置の光学ヘッド。1. A polarizing prism made of a uniaxial crystal birefringent material, two light-receiving elements that separately detect ordinary light components and extraordinary light components that are totally reflected on the slope of the polarizing prism and separated, and detection of both light-receiving elements. A magneto-optical recording device comprising a differential amplifier that receives an output as an input, and wherein the polarizing prism has an optical axis of a crystal substantially parallel to a normal direction of a plane on which read light from a magneto-optical recording medium is incident. optical head.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63012899A JPH01189052A (en) | 1988-01-22 | 1988-01-22 | Optical head of magneto-optical recording device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63012899A JPH01189052A (en) | 1988-01-22 | 1988-01-22 | Optical head of magneto-optical recording device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01189052A true JPH01189052A (en) | 1989-07-28 |
Family
ID=11818229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63012899A Pending JPH01189052A (en) | 1988-01-22 | 1988-01-22 | Optical head of magneto-optical recording device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01189052A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03225635A (en) * | 1990-01-31 | 1991-10-04 | Nec Corp | Optical head device |
-
1988
- 1988-01-22 JP JP63012899A patent/JPH01189052A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03225635A (en) * | 1990-01-31 | 1991-10-04 | Nec Corp | Optical head device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07118105B2 (en) | Optical fiber type magneto-optical head | |
US4841510A (en) | Optical characteristic measuring apparatus for an optical recording medium substrate | |
US4907858A (en) | Optical pickup apparatus | |
US5189651A (en) | Optical system in magneto-optical recording and reproducing device | |
JPS59203259A (en) | Optical magnetic disc device | |
JPH11110809A (en) | Optical information storage device | |
JPH01189052A (en) | Optical head of magneto-optical recording device | |
JPS5829155A (en) | Information reproducer by photomagnetic system | |
US5694384A (en) | Method and system for measuring Kerr rotation of magneto-optical medium | |
JPS5992457A (en) | Optical reproducer | |
JPH0327978B2 (en) | ||
JP2574915B2 (en) | Optical device for reproducing magneto-optical recording media | |
JPS62110643A (en) | Detecting method for photomagnetic signal | |
JP2657959B2 (en) | Detecting device for detecting optical transition in magneto-optical storage device | |
JPS62226453A (en) | Optical heads for magneto-optical recording devices | |
JPH0312045A (en) | Magneto-optical head device | |
JPH0696489A (en) | Device for reproducing magneto-optical information | |
KR850000421B1 (en) | Focus detection method | |
JPH01189051A (en) | Optical head for magneto optical recorder | |
JPS60157745A (en) | Photomagnetic recorder | |
JPS59157856A (en) | Reproduction structure for photomagnetic information recorder | |
JPS6292147A (en) | Photomagnetic recording and reproducing device | |
JP3277543B2 (en) | Magneto-optical disk reproducing apparatus and reproducing method | |
JPH047024B2 (en) | ||
JPS62226454A (en) | Photomagnetic recording and reproducing device |