JPH01188644A - Titanium alloy having excellent corrosion resistance - Google Patents
Titanium alloy having excellent corrosion resistanceInfo
- Publication number
- JPH01188644A JPH01188644A JP1272488A JP1272488A JPH01188644A JP H01188644 A JPH01188644 A JP H01188644A JP 1272488 A JP1272488 A JP 1272488A JP 1272488 A JP1272488 A JP 1272488A JP H01188644 A JPH01188644 A JP H01188644A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- corrosion resistance
- added
- present
- corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 44
- 230000007797 corrosion Effects 0.000 title claims abstract description 44
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 7
- 239000010936 titanium Substances 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 abstract description 28
- 239000000956 alloy Substances 0.000 abstract description 28
- 229910004337 Ti-Ni Inorganic materials 0.000 abstract description 11
- 229910011209 Ti—Ni Inorganic materials 0.000 abstract description 11
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 9
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- 229910052719 titanium Inorganic materials 0.000 abstract description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 2
- 235000011149 sulphuric acid Nutrition 0.000 abstract description 2
- 150000002500 ions Chemical class 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 229910000990 Ni alloy Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- -1 chlorine ions Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910010381 TiNi3 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、Ti−Ni合金においてRuを少量添加して
耐食性を改善したT i −N i合金に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a Ti-Ni alloy in which corrosion resistance is improved by adding a small amount of Ru to the Ti-Ni alloy.
Niを45−60wt%含むTi−Ni合金は、強度、
伸び、靭性などの機械的性質が良好であることに加え、
酸、アルカリに対する耐食性、耐摩耗性なども優れてい
るため、様々な工業分野で広く応用されつつある。Ti-Ni alloy containing 45-60 wt% Ni has strength,
In addition to having good mechanical properties such as elongation and toughness,
Because it has excellent corrosion resistance against acids and alkalis, and wear resistance, it is being widely applied in various industrial fields.
また、T i −N i合金の中でもTi:Niが原子
比で1:1の合金は形状記憶効果や超弾性といった特有
の現象を示し、機能材料としても工業的な応用が期待さ
れている。Furthermore, among Ti-Ni alloys, alloys with a Ti:Ni atomic ratio of 1:1 exhibit unique phenomena such as shape memory effects and superelasticity, and are expected to be used industrially as functional materials.
しかしながら、Ti−Ni合金の耐食性は、純チタンと
同様に不動態被膜の形成によるため、塩素イオンの存在
する環境中では、すき間腐食を生じることがある。この
ため塩素イオンを含む環境中でのTi−Ni合金の使用
は著しく制限されており、その改良が工業上から要望さ
れている。また、HCI、H2SO4等の非酸化性溶液
中でもより優れた耐食性が要求されている。However, like pure titanium, the corrosion resistance of the Ti-Ni alloy is due to the formation of a passive film, and therefore crevice corrosion may occur in an environment where chlorine ions are present. For this reason, the use of Ti--Ni alloys in environments containing chlorine ions is severely restricted, and there is an industrial demand for improvements therein. Furthermore, better corrosion resistance is required even in non-oxidizing solutions such as HCI and H2SO4.
このような欠点を補うため、すき間腐食性の防止法とし
て、Pdを少量添加したT i −N i合金が提案さ
れているが(例えば、特開昭58−189348を参照
)、この合金は高価なPdを使用するため、値段が高い
という欠点をもつ。一方、表面処理方法では、Pdをコ
ーティングする方法が提案されているが、Pdを添加し
た合金はど信頼性のおけるものが現れていない。To compensate for these drawbacks, a Ti-Ni alloy with a small amount of Pd added has been proposed as a method to prevent crevice corrosion (see, for example, Japanese Patent Application Laid-Open No. 189348/1983), but this alloy is expensive. Since it uses Pd, it has the disadvantage of being expensive. On the other hand, as a surface treatment method, a method of coating with Pd has been proposed, but no reliable alloy to which Pd is added has yet been developed.
本発明は、かかる問題を解決するために、Pd添加のT
i−Ni合金に匹敵する耐食性を有し、しかもPd添加
のTi−Ni合金より安価に製造できる方法を鋭意研究
した結果、Ni45〜6゜wt%、Ru0.01−2.
0wt%、残部T]及び不可避的不純物からなる耐食性
に優れたチタン合金を提供する。In order to solve this problem, the present invention provides Pd-added T
As a result of intensive research into a method that has corrosion resistance comparable to that of an i-Ni alloy and can be manufactured at a lower cost than a Pd-added Ti-Ni alloy, we have found that Ni: 45-6°wt%, Ru: 0.01-2.
0 wt%, balance T] and inevitable impurities, providing a titanium alloy with excellent corrosion resistance.
次に、本発明について詳細に述べる。Next, the present invention will be described in detail.
ここで、Ruの添加量の下限をO,01wt%としたの
はO,01wt%未満では、耐食性の向上が望めないた
めであり、2.0wt%を超えると添加量はど期待され
た耐食性が得られず、また経済的な効果が薄れるためで
ある。Here, the lower limit of the amount of Ru added is O.01 wt% because if it is less than O.01 wt%, no improvement in corrosion resistance can be expected, and if it exceeds 2.0 wt%, the expected corrosion resistance will not be improved. This is because the economic effects will be weakened.
一方、Niを45−60 w t%としたのは45wt
%未満では、加工しゃすいT1Niの量よりも非常に脆
いT]2N1の量の方が多くなり、 はとんど実質的に
加工できなくなるためであり、また上限を60wt%と
したのは、これより多くN1を添加すると加工性、耐食
性の悪いTiNi3の量の方が多くなるためである。On the other hand, when Ni was set to 45-60 wt%, it was 45wt%.
%, the amount of extremely brittle T]2N1 will be greater than the amount of processable T1Ni, making it almost impossible to process.The reason why the upper limit was set at 60 wt% is that This is because if more N1 is added, the amount of TiNi3, which has poor workability and corrosion resistance, will increase.
次に、本発明を具体的な実施例に基づいて説明する。 Next, the present invention will be explained based on specific examples.
供試材は、本発明合金及び比較合金としてT1−Ni合
金、Ti−Ni−Pd合金を用いた。これらの供試材は
冷延材を20 mm X 2 On++nの板に切断し
、真空焼鈍を施した後、表面を#6oO研摩紙でしあげ
、表面を清浄化して腐食試験を行った。As the test materials, T1-Ni alloy and Ti-Ni-Pd alloy were used as the present invention alloy and comparative alloy. For these test materials, cold-rolled materials were cut into 20 mm x 2 On++n plates, vacuum annealed, and then the surface polished with #6oO abrasive paper to clean the surface and conduct a corrosion test.
腐食試験は、すき間腐食試験及び全面腐食試験を行った
。The corrosion tests included a crevice corrosion test and a general corrosion test.
すき間腐食試験では、供試材を図1のように組みたてた
試験片を沸騰25wt%NaC1水溶液中に浸漬し、2
0時間後、40時間後、60時間後、100時間後での
すき間腐食の発生を調べた。In the crevice corrosion test, a specimen assembled as shown in Figure 1 was immersed in a boiling 25 wt% NaCl aqueous solution.
The occurrence of crevice corrosion was examined after 0 hours, 40 hours, 60 hours, and 100 hours.
その結果を第1表に示す。また全面腐食試験では5wt
%、15wt%、20wt%、25wt%の80℃HC
I水溶液中での腐食速度を測定した。The results are shown in Table 1. In addition, in the general corrosion test, 5w
%, 15wt%, 20wt%, 25wt% of 80°C HC
Corrosion rate in I aqueous solution was measured.
その結果を第2表に示す。The results are shown in Table 2.
第1表においてNn 1− Na 3、Na 9− N
a 10、Na 13−Nn21が比較合金、Na 4
〜Na 8、Na 11− Na 12が本発明合金で
ある。Nα1〜N(19はNiを50wt%とし、Ru
をO〜4.0wt%の範囲で変化させたものである。N
n 10− Nn 13はRuを0.05wt%とし、
Niを35〜65 w t%の範囲で変化させたもの、
Na 14〜Ha 21はPdをO、OO1−4、Ow
t%の範囲で変化させたものである。In Table 1, Nn 1- Na 3, Na 9- N
a 10, Na 13-Nn21 is the comparative alloy, Na 4
~Na8, Na11-Na12 are the alloys of the present invention. Nα1~N (19 is Ni 50wt%, Ru
was changed in the range of 0 to 4.0 wt%. N
n10-Nn13 has Ru of 0.05wt%,
Ni varied in the range of 35 to 65 wt%,
Na 14-Ha 21 is Pd O, OO1-4, Ow
It was changed within a range of t%.
実験の結果、Ru +lJP dも添加しない比較合金
(Nα1)では、浸漬後24時間で変色を生し、40時
間ですき間腐食の発生をみた。Ruの添加量が増大する
と、耐すき間腐食性は向上し0.01〜4.0wt%の
範囲で極めて優れた耐食性を示している。従ってRu含
有量の下限をO,01wt%とした。また、Ruが4.
0wt%の試験片(Nα9)も耐すき間腐食性に優れて
いるが、はぼNα8と同程度であるため、Ruの上限を
2.0wt%とした。一方、Niを変化させた試験片(
Nα10〜Nα13)については、Ni含有量が65w
t%に達すると耐食性が非常におちてくる。従ってNi
の上限を60wt%とした。As a result of the experiment, a comparative alloy (Nα1) to which Ru + lJP d was not added also showed discoloration 24 hours after immersion, and crevice corrosion occurred 40 hours after immersion. As the amount of Ru added increases, the crevice corrosion resistance improves, and extremely excellent corrosion resistance is shown in the range of 0.01 to 4.0 wt%. Therefore, the lower limit of the Ru content was set to 0.01 wt%. Moreover, Ru is 4.
The test piece (Nα9) containing 0 wt% also has excellent crevice corrosion resistance, but the resistance is comparable to that of Nα8, so the upper limit of Ru was set at 2.0 wt%. On the other hand, test pieces with varying Ni content (
For Nα10 to Nα13), the Ni content is 65w
When it reaches t%, corrosion resistance deteriorates significantly. Therefore, Ni
The upper limit was set at 60 wt%.
次に比較合金(Ha 14〜Nn21)と本発明合金と
を比較すると、明らかにPdを添加するよりRuを添加
する方が耐すき間腐食性の向上に効果があり、本発明合
金が耐食性の点で優れていることがわかる。また、逆に
同等な耐食性を得ようとすれば、Pclを添加する代わ
りに、Pdより安価なRuを微量添加するだけですみ、
本発明合金が経済的な効果という面でも非常に優れてい
ることがわかる。Next, when comparing comparative alloys (Ha 14 to Nn 21) and the present alloy, it is clear that adding Ru is more effective in improving crevice corrosion resistance than adding Pd, and the present alloy has a higher corrosion resistance. It can be seen that it is excellent. On the other hand, if you want to obtain the same corrosion resistance, you can simply add a small amount of Ru, which is cheaper than Pd, instead of adding Pcl.
It can be seen that the alloy of the present invention is also very superior in terms of economical effects.
第2表の全面腐食試験においても第1表と全く同様な結
果を示している。The general corrosion test shown in Table 2 also shows the same results as in Table 1.
以上、本発明の合金ではTi−Ni合金にRuを添加す
ることにより塩素イオンを含む溶液及びHCI、H2S
O4等の非酸化性溶液中で著しく耐食性が改善され、し
かも、Pdより安価なRuを使用することにより経済的
に優れていることがらTi−Ni合金の応用範囲を広げ
、工業的な著しい効果を発揮するものである。As mentioned above, in the alloy of the present invention, by adding Ru to the Ti-Ni alloy, solutions containing chloride ions and HCI, H2S
Corrosion resistance is significantly improved in non-oxidizing solutions such as O4, and the use of Ru, which is cheaper than Pd, is economically superior, which expands the range of applications of Ti-Ni alloys and has significant industrial effects. It is something that demonstrates the.
なお、本発明に係る材料は腐食環境と接するところに存
在すれば十分その機能を発揮するので、例えばクラッド
や溶接接合等のように内部に異種材料を用い表面のみ本
発明材料から構成されている電極材あるいは溶射やめっ
き等の表面被覆を施した後それを拡散して本発明の合金
組成を形成する電極材も当然本発明に含まれる。In addition, since the material according to the present invention sufficiently exhibits its function as long as it exists in a place where it comes into contact with a corrosive environment, for example, a different material is used inside, such as a cladding or a welded joint, and only the surface is made of the material of the present invention. The present invention naturally also includes an electrode material or an electrode material that is coated with a surface coating such as thermal spraying or plating and then diffused to form the alloy composition of the present invention.
上述から、ニッケルが45wt%以上、60wt%以下
でRuQ、01wt%以上、2.0wt%以下で残部が
チタン及び不可避的不純物からなる本発明合金は、非酸
化性の酸などの非常にきびしい腐食環境において優れた
耐食性を示す。From the above, it can be seen that the alloy of the present invention, which contains 45 wt% or more of nickel and 60 wt% or less of RuQ, and 01 wt% or more and 2.0 wt% or less of titanium and unavoidable impurities, is susceptible to extremely severe corrosion by non-oxidizing acids. Shows excellent corrosion resistance in the environment.
さらにまた、Pdより安価なRuを少量添加することに
より、上述の効果が得られることから経済的にも有利で
ある。Furthermore, by adding a small amount of Ru, which is cheaper than Pd, the above-mentioned effects can be obtained, which is economically advantageous.
以下余白 第1表 すき間腐食試験結果 0 変化なし Δ 変色よく × すき間腐食発生 =7− 第2表 全面腐食試験結果 0 0 、01 an /y以下の腐食速度を表す。Below margin Table 1 Crevice corrosion test results 0 No change Δ Good discoloration × Crevice corrosion occurs =7- Table 2 Overall corrosion test results 0 0 , 01 an /y or less corrosion rate.
八 〇、01nn/y−0,1mm/yの 〃X
0.1mm/y以上の 〃
=8−80,01nn/y-0,1mm/y 〃X
0.1mm/y or more =8-
第1図は本発明の腐食試験に用いる装置の説明図である
。
(1)供試材
(2) ポリスチレンフィルム
(3)テフロンスペーサー
(4)ボルト、ナツトFIG. 1 is an explanatory diagram of the apparatus used for the corrosion test of the present invention. (1) Test material (2) Polystyrene film (3) Teflon spacer (4) Bolts and nuts
Claims (1)
残部Ti及び不可避的不純物からなる耐食性に優れたチ
タン合金。Ni45-60wt%, Ru0.01-2.0wt%,
A titanium alloy with excellent corrosion resistance, consisting of the balance Ti and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1272488A JPH01188644A (en) | 1988-01-25 | 1988-01-25 | Titanium alloy having excellent corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1272488A JPH01188644A (en) | 1988-01-25 | 1988-01-25 | Titanium alloy having excellent corrosion resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01188644A true JPH01188644A (en) | 1989-07-27 |
Family
ID=11813378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1272488A Pending JPH01188644A (en) | 1988-01-25 | 1988-01-25 | Titanium alloy having excellent corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01188644A (en) |
-
1988
- 1988-01-25 JP JP1272488A patent/JPH01188644A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3916088B2 (en) | Titanium alloy for corrosion resistant materials | |
JP2000512345A (en) | Nickel-chromium-molybdenum-alloy | |
US8025747B2 (en) | Titanium alloy having improved corrosion resistance and strength | |
GB2167769A (en) | Corrosion-resistant titanium-base alloy | |
US5026521A (en) | Zirconium-titanium and/or tantalum oxygen alloy | |
JPH01188644A (en) | Titanium alloy having excellent corrosion resistance | |
JPH01502202A (en) | Titanium-based alloy composition and anode structure | |
JPS61127844A (en) | Titanium alloy having superior corrosion resistance | |
JPS61194142A (en) | Titanium alloy having superior corrosion resistance | |
KR100721107B1 (en) | Titanium article having corrosion resistance | |
CA2528107C (en) | Fabricated titanium article having improved corrosion resistance | |
JPH04350138A (en) | Titanium alloy excellent in corrosion resistance | |
JPS62199744A (en) | Titanium alloy with excellent crevice corrosion resistance | |
US3666448A (en) | Copper/iron/aluminium alloys | |
JPS6270543A (en) | Titanium-base alloy excellent in corrosion resistance | |
JPS61127843A (en) | Titanium alloy having superior corrosion resistance | |
JPS62120452A (en) | Titanium-base alloy material excellent in corrosion resistance | |
EP4124670A1 (en) | High chromium and silicon-rich corrosion resistant steel and article comprising the same | |
JPS62280341A (en) | Highly corrosion resistant cobalt-based stainless alloy | |
JPH03197636A (en) | Titanium alloy having excellent corrosion resistance | |
CN115679225A (en) | High chromium silicon corrosion resistant steel and use thereof | |
JPS58189348A (en) | Shape memory or superelastic ni-ti alloy having high corrosion resistance | |
JPH03267335A (en) | Corrosion resistant ti-based alloy | |
JPS634892B2 (en) |