JPH01188518A - Epoxy resin composition and resin-sealed semiconductor device produced by using same - Google Patents
Epoxy resin composition and resin-sealed semiconductor device produced by using sameInfo
- Publication number
- JPH01188518A JPH01188518A JP1082188A JP1082188A JPH01188518A JP H01188518 A JPH01188518 A JP H01188518A JP 1082188 A JP1082188 A JP 1082188A JP 1082188 A JP1082188 A JP 1082188A JP H01188518 A JPH01188518 A JP H01188518A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- resin
- semiconductor device
- composition
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、優れた耐熱衝撃性及び成形性を有する硬化物
を与える半導体封止用のエポキシ樹脂組成物及び該樹脂
組成物で封止されて成る樹脂封止型半導体装置に関する
。Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention provides an epoxy resin composition for semiconductor encapsulation that provides a cured product having excellent thermal shock resistance and moldability, and the resin composition. The present invention relates to a resin-sealed semiconductor device that is sealed with a material.
(従来の技術)
近年、半導体装置の封正に関する分野においては、半導
体素子の高集積化に伴って、素子上の各種機能単位の細
密化、素子ペレット自体の大型化が急速に進んでいる。(Prior Art) In recent years, in the field of encapsulation of semiconductor devices, as semiconductor devices have become highly integrated, various functional units on devices have become finer and device pellets themselves have become larger.
これらの素子ペレットの変化により封止用樹脂も従来の
封止用樹脂では耐熱衝撃性等の要求が満足できなくなっ
てきた。従来、半導体装置の封止用樹脂として用いられ
ている、フェノールノボラック樹脂で硬化させたエポキ
シ樹脂組成物は吸湿性、高温電気特性、成形性などがす
ぐれ、モールド用梗脂の主流となっている。Due to these changes in element pellets, conventional sealing resins are no longer able to satisfy requirements such as thermal shock resistance. Epoxy resin compositions cured with phenol novolac resins, which have been traditionally used as encapsulating resins for semiconductor devices, have excellent hygroscopicity, high-temperature electrical properties, and moldability, and have become the mainstream for molding. .
しかし、この系統の樹脂組成物を用いて大型でかつ微細
な表面構造を有する素子ペレットを封止すると、 素子
ペレット表面のアルミニウム(AQ)パターンを保護す
るための被覆材であるリンケイ酸ガラス(PSG)膜や
窒化ケイ素(NiN)膜に割れを生じたり、素子ペレッ
トに割れを生じたりする。特に冷熱サイクル試験を実施
した場合に、その傾向が非常に大きい。その結果、ペレ
ット割れによる素子特性の不良や該膜の割れに起因する
ANパターンの腐食による不良などを生じる。However, when this type of resin composition is used to seal a device pellet that is large and has a fine surface structure, phosphosilicate glass (PSG), which is a coating material to protect the aluminum (AQ) pattern on the surface of the device pellet, is sealed. ) film or silicon nitride (NiN) film, or the element pellet. This tendency is particularly significant when a thermal cycle test is performed. As a result, defects in device characteristics due to pellet cracking and defects due to corrosion of the AN pattern caused by the film cracking occur.
その対策としては、封止樹脂の内部封入物に対する応力
を小さくし、かつ封止樹脂と素子上のPSG膜やSiN
膜などのガラス膜との密着性を大きくする必要がある。As a countermeasure, the stress on the internal sealing resin is reduced, and the PSG film or SiN film on the sealing resin and the element is
It is necessary to increase the adhesion with glass films such as membranes.
例えば、封止樹脂の内部封入物に対する応力を小さくす
るため、充填剤量を増加させることにより、樹脂の熱膨
張率を低下させる方法がとられている。しかし、この場
合、多量の充填剤使用により、溶融度における粘度の著
しい上昇を招くため樹脂の成形性を損なうという問題が
あった。For example, in order to reduce the stress on the internal encapsulation of the sealing resin, a method has been adopted in which the coefficient of thermal expansion of the resin is reduced by increasing the amount of filler. However, in this case, there is a problem in that the use of a large amount of filler causes a significant increase in viscosity at the melting point, impairing the moldability of the resin.
さらにこれらの素子ペレットの変化と共に、チップに及
ぼす樹脂及びフィラーの極部応力が原因と思われる信頼
性の低下が問題となっており、これの回避には、破砕状
フィラーの粗粒をカットすることが有効であると考えら
れる。また、パッケージが小型、薄形である場合、成形
金型のゲートは通常のものよりせまいため、この場合も
、大きな破砕状フィラー粒子の存在は好ましくない。し
かしながら、これらの目的で、フィラーの平均粒径を小
さくした場合にも樹脂の溶融粘度が増して、未充填やボ
ンディングワイヤの変形を生じる可能性がある。Furthermore, along with these changes in the element pellet, there is a problem of reduced reliability, which is thought to be caused by the extreme stress of the resin and filler on the chip.To avoid this, it is necessary to cut the coarse particles of the crushed filler. This is considered to be effective. Further, when the package is small and thin, the gate of the molding die is narrower than usual, so the presence of large crushed filler particles is also undesirable in this case. However, even when the average particle size of the filler is reduced for these purposes, the melt viscosity of the resin increases, which may cause unfilling or deformation of the bonding wire.
従来、このような溶融粘度の増大を抑える手段としては
、マトリクス樹脂の分子量を小さくしたり、樹脂成型温
度1こおける粘度の低い成分を添加するなどの方策が取
られてきた。しかしながら、多くの場合ガラス転移温度
が低下するなど成型品 ・の耐熱性を損ったりあるいは
、強度が著しく低下するなどの欠点を有するため、未だ
十分な解決策を得るに至っていない。Conventionally, measures have been taken to suppress such an increase in melt viscosity, such as reducing the molecular weight of the matrix resin or adding components that have a low viscosity at 1°C of the resin molding temperature. However, in many cases, there are drawbacks such as a decrease in the glass transition temperature, which impairs the heat resistance of the molded product, or a significant decrease in strength, so a satisfactory solution has not yet been found.
(発明が解決しようとする課題)
上記したように、耐熱衝撃性改善のためのフィラーの増
量や微細化は溶融粘度の増大を招き、これを抑制するた
めの方策は、未だ十分な検討がなされていない。(Problem to be solved by the invention) As mentioned above, increasing the amount of filler or making it finer to improve thermal shock resistance leads to an increase in melt viscosity, and measures to suppress this have not yet been sufficiently studied. Not yet.
本発明の目的は、上記した問題点を解消し、す=4−
ぐれた耐熱衝撃性及び成型性を有する硬化物を与える半
導体封止用エポキシ樹脂組成物を提供することにある。An object of the present invention is to provide an epoxy resin composition for semiconductor encapsulation that solves the above problems and provides a cured product having excellent thermal shock resistance and moldability.
本発明者らは、上記目的を達成するため、鋭意研究の結
果、1価のマレイミド化合物を樹脂組成物に配合するこ
とにより、他の特性、特に耐熱性を損なうことなく組成
物の溶融粘度を低下させ得ることを見出し、本発明を完
成するに至った。In order to achieve the above object, the present inventors have conducted extensive research and found that by blending a monovalent maleimide compound into a resin composition, the melt viscosity of the composition can be increased without impairing other properties, especially heat resistance. The present inventors have discovered that it is possible to reduce the amount of carbon dioxide, and have completed the present invention.
すなわち、本発明の半導体装置封止用エポキシ樹脂組成
物及び樹脂封止型半導体装置は、(A) エポキシ樹
脂
CB) フェノール樹脂硬化剤
(C) 硬化促進剤
(D) −船人
(式中、又は水素、ハロゲン原子、水酸基、アルコキシ
基、カルボキシル基のいずれかを示し、またnは1〜5
の整数を示す)
で表わされる1価のマレイミド化合物
(E) 無機質充てん剤
より成り、(E)の配合量が(A)(B)(C)(D)
及び(E)の総配合量に対し、50〜75容量%である
ことを特徴とする半導体封止用のエポキシ樹脂組成物及
びこれで封止されて成る樹脂封止型半導体装置である。That is, the epoxy resin composition for encapsulating a semiconductor device and the resin-encapsulated semiconductor device of the present invention contain: (A) epoxy resin CB) phenolic resin curing agent (C) curing accelerator (D) - Shipman (in the formula, or hydrogen, a halogen atom, a hydroxyl group, an alkoxy group, or a carboxyl group, and n is 1 to 5
A monovalent maleimide compound (E) represented by (representing an integer of
An epoxy resin composition for encapsulating a semiconductor, characterized in that the amount is 50 to 75% by volume based on the total amount of (E), and a resin-encapsulated semiconductor device encapsulated with the same.
本発明の(A)成分であるエポキシ樹脂は、1分子中に
エポキシ基を少なくとも2個含有するものであれば、い
かなるものであってもよく、例えば、ビスフェノールA
型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環型エ
ポキシ樹脂、グリシジルエステル型エポキシ樹脂が挙げ
られ、これらは単独あるいは2種以上の混合系で使用さ
れる。The epoxy resin which is the component (A) of the present invention may be any resin as long as it contains at least two epoxy groups in one molecule. For example, bisphenol A
Examples include type epoxy resins, novolac type epoxy resins, alicyclic type epoxy resins, and glycidyl ester type epoxy resins, and these can be used alone or in a mixture of two or more types.
本発明の(B)成分であるフェノール樹脂硬化剤は、一
般にエポキシ樹脂の硬化剤として知られているものであ
ればいかなるものであってもよく、例えば、フェノール
ノボラック樹脂、クレゾールノボラック樹脂などのフェ
ノール性水酸基2個以上を有するノボラック型フェノー
ル樹脂が挙げられる。The phenolic resin curing agent, which is component (B) of the present invention, may be any one that is generally known as a curing agent for epoxy resins, such as phenol novolac resins, cresol novolac resins, etc. Novolak type phenolic resins having two or more hydroxyl groups are mentioned.
この(B)成分の配合量は(A)成分100重量部に対
し、通常、30〜150重量部である。30重量部未満
の場合は、硬化が不十分であり、150重量部を超える
と耐湿性に劣る。好ましくは、50〜100重量部であ
る。The blending amount of component (B) is usually 30 to 150 parts by weight per 100 parts by weight of component (A). If it is less than 30 parts by weight, curing will be insufficient, and if it exceeds 150 parts by weight, moisture resistance will be poor. Preferably it is 50 to 100 parts by weight.
本発明の(C)成分である硬化促進剤は、フェノール樹
脂を用いてエポキシ樹脂を硬化する際に、硬化促進剤と
して使用されることが知られているものであればいかな
るものであってもよい。この(C)成分の具体例として
は、2−メチルイミダゾール、2−エチル−4−メチル
イミダゾール、1−シアノエチル−2−エチル−メチル
イミダゾール等のイミダゾール化合物;ベンジルジメチ
ルアミン、トリスジメチルアミノメチルフェノール等の
第3アミン化合物;トリフェニルホスフィン。The curing accelerator which is component (C) of the present invention may be any curing accelerator known to be used as a curing accelerator when curing epoxy resin using phenolic resin. good. Specific examples of component (C) include imidazole compounds such as 2-methylimidazole, 2-ethyl-4-methylimidazole, and 1-cyanoethyl-2-ethyl-methylimidazole; benzyldimethylamine, trisdimethylaminomethylphenol, etc. tertiary amine compound; triphenylphosphine.
トリシクロヘキシルホスフィン、トリブチルホスフィン
、メチルジフェニルホスフィン等の有機ホスフィン化合
物;1.8−ジアザ−ビシクロ(5,4゜0)ウンデセ
ン−7もしくはその塩類等が挙げられ、これらは単独あ
るいは2種以上の混合系で使用される。Organic phosphine compounds such as tricyclohexylphosphine, tributylphosphine, methyldiphenylphosphine; 1,8-diaza-bicyclo(5,4゜0)undecene-7 or its salts; these may be used alone or in combination of two or more. used in the system.
この(C)成分の配合量は(A)成分100重量部に対
して、通常、0.01重量部〜10重量部である。The amount of component (C) to be blended is usually 0.01 parts by weight to 10 parts by weight per 100 parts by weight of component (A).
0.01−重量部未満の場合には硬化性に劣り、10重
量部を超えると耐湿性が低下する。If the amount is less than 0.01 parts by weight, the curability will be poor, and if it exceeds 10 parts by weight, the moisture resistance will decrease.
本発明の(D)成分である1価のマレイミド化合物は、
前述した一般式で表わされるものであればいかなるもの
であっても良いが、好ましくは、Xが水素のフェニルマ
レイミドである。この(D)成分の配合量は、 (A)
成分100重量部に対し1〜棹Q
重量部である。1重量部未満の場合には、溶融粘度を低
下させるには充分でなく、50重量部以上の場合には硬
化性に劣る。The monovalent maleimide compound which is component (D) of the present invention is:
It may be of any type as long as it is represented by the above-mentioned general formula, but preferably phenylmaleimide in which X is hydrogen. The blending amount of this component (D) is (A)
The amount is 1 to 1 part by weight per 100 parts by weight of the ingredients. When the amount is less than 1 part by weight, it is not sufficient to lower the melt viscosity, and when it is 50 parts by weight or more, the curability is poor.
本発明の(E)成分である無機質充てん剤は通常布てん
剤として使用される無機質粉体であればいかなるもので
あってもよいが、好ましくはシリカ粉である。シリカ粉
は溶融、結晶性を問わず、これらの混合物であってもか
まわないが、好ましくは溶融シリカ粉である。またその
形状は特に限定されるものではない。さらに、封入素子
への局部的な応力の集中を回避するため、充てん剤の最
大粒径は75I#以下であることが好ましい。The inorganic filler which is component (E) of the present invention may be any inorganic powder commonly used as a fabric filler, but preferably silica powder. The silica powder may be fused or crystalline, and may be a mixture thereof, but fused silica powder is preferable. Moreover, the shape is not particularly limited. Further, in order to avoid local stress concentration on the encapsulated element, the maximum particle size of the filler is preferably 75 I# or less.
(E)成分の配合量は前記(A)(B)(C)(D)及
び(E)成分の総配合量に対して50〜75容量%であ
る。The amount of component (E) is 50 to 75% by volume based on the total amount of components (A), (B), (C), (D), and (E).
配合量が50容量%未満の場合には、得られる硬化物が
十分な耐熱衝撃性を有することができず、75容量%を
超えると溶融粘度の上昇を招き、成形性が低下する。If the amount is less than 50% by volume, the resulting cured product will not have sufficient thermal shock resistance, and if it exceeds 75% by volume, the melt viscosity will increase and moldability will decrease.
なお、本発明の組成物は必要に応じてγ−グリシドキシ
プロピルトリメトキシシランなどの界面処理剤、高級脂
肪酸、ワックス類などの離型剤;アンチモン、リン化合
物、臭素や塩素を含む公知の難燃化剤が配合されてもよ
く、またポリスチレン、ポリメタクリル酸メチル、ポリ
酢酸ビニル。The composition of the present invention may optionally contain surface treatment agents such as γ-glycidoxypropyltrimethoxysilane, mold release agents such as higher fatty acids and waxes, and known agents containing antimony, phosphorus compounds, bromine and chlorine. Flame retardants may also be added, such as polystyrene, polymethyl methacrylate, and polyvinyl acetate.
あるいはこれらの共重合体などの各種熱可塑性樹脂やシ
リコーンオイル、シリコーンゴムなどを添加してもよい
。Alternatively, various thermoplastic resins such as copolymers of these, silicone oil, silicone rubber, etc. may be added.
また本発明の樹脂封止型半導体装置とは前述したエポキ
シ樹脂で封止され得る半導体装置であれば、いかなるも
のであっても良い。Further, the resin-sealed semiconductor device of the present invention may be any semiconductor device as long as it can be sealed with the above-mentioned epoxy resin.
以下本発明の実施例を掲げ本発明を更に詳述する。なお
、表の値は特にことわらない限りは、すべて重量%を表
わす。EXAMPLES The present invention will be explained in more detail below with reference to Examples. It should be noted that all values in the table represent weight % unless otherwise specified.
(実施例)
実施例1〜3
第1表に示す組成の各成分を使用し、本発明の組成物を
得た。上記組成物は、まず、ヘンシェルミキサー中で、
充填剤を界面処理剤で処理した後、残りの成分をミキサ
ー中に投入混合した後、60〜110℃の加熱ロールで
混練し、冷却後、粉砕して得られた。(Example) Examples 1 to 3 Compositions of the present invention were obtained using the components shown in Table 1. The above composition is first mixed in a Henschel mixer.
After treating the filler with a surfactant, the remaining components were mixed in a mixer, kneaded with heated rolls at 60 to 110°C, cooled, and pulverized.
本発明の組成物は、上記した各成分を加熱ロールによる
溶融混線、ニーダ−による溶融混線、押出機による溶融
混練、微粉砕等の特殊混合機による混合及びこれらの各
方法の適宜な組合わせによって製造することができる。The composition of the present invention can be prepared by mixing the above-mentioned components using a special mixer such as melt blending using a heating roll, melt blending using a kneader, melt kneading using an extruder, pulverization, or an appropriate combination of these methods. can be manufactured.
なお、第1表中の各樹脂はオクトクレゾールノボラック
型エポキシ樹脂(エポキシ当量196.軟化点76℃)
、難燃性エポキシ樹脂(エポキシ当量270゜軟化点8
4°C)、 フェノールノボラック樹脂(フェノール当
量106.軟化点84°C)を使用した。In addition, each resin in Table 1 is an octocresol novolac type epoxy resin (epoxy equivalent: 196, softening point: 76°C)
, flame-retardant epoxy resin (epoxy equivalent: 270°, softening point: 8
4°C), and a phenol novolak resin (phenol equivalent: 106, softening point: 84°C) was used.
比較例1〜3
第1表に示す組成の各成分を実施例と同様に処理し。比
較例とした。Comparative Examples 1 to 3 Each component of the composition shown in Table 1 was treated in the same manner as in the example. This was used as a comparative example.
(以下余白)
一11=
上記実施例1〜3、及び比較例1〜3により得られた組
成物について下記の実験を行った。その結果を第2表に
示した。(The following is a blank space) 111= The following experiments were conducted on the compositions obtained in Examples 1 to 3 and Comparative Examples 1 to 3 above. The results are shown in Table 2.
まず前記組成物の流動性を評価するため、高化式フロー
テスターを用いて、 175℃における溶融粘度を測定
した。First, in order to evaluate the fluidity of the composition, the melt viscosity at 175°C was measured using a Koka type flow tester.
また硬化物については、低圧トランスファモールド成型
したサンプルについて線膨張係数、ガラス転移温度を測
定した。Regarding the cured product, the linear expansion coefficient and glass transition temperature were measured for samples molded by low-pressure transfer molding.
さらに同組成物を用いて表面にPSG層を有する大型ペ
レット評価用素子を低圧トランスファー成型により封止
した。Furthermore, using the same composition, a large pellet evaluation element having a PSG layer on the surface was sealed by low-pressure transfer molding.
得られた試料素子について耐熱衝撃性を評価するために
、熱衝撃試験(−65℃〜150℃の冷熱サイクルテス
ト)を行い、特性不良を測定した。In order to evaluate the thermal shock resistance of the obtained sample element, a thermal shock test (cooling/heating cycle test from -65°C to 150°C) was conducted to measure property defects.
第2表より明らかなとおり、実施例の本発明品は比較品
と比べて、耐熱衝撃性において優れておな
り、又、充分な耐熱性を保ちながらも適度砿粘度を有す
るものである。As is clear from Table 2, the products of the present invention in Examples are superior in thermal shock resistance as compared to comparative products, and have a moderate viscosity while maintaining sufficient heat resistance.
本発明の半導体封止用エポキシ樹脂組成物は、耐熱性を
損うことなく良好な成形性を有するとともに、優れた耐
熱衝撃性を有する硬化物を与えるため、半導体電子部品
のパッケージ材料として有用であり、その工業的価値は
極めて大である。The epoxy resin composition for semiconductor encapsulation of the present invention has good moldability without impairing heat resistance and provides a cured product with excellent thermal shock resistance, so it is useful as a packaging material for semiconductor electronic components. Yes, and its industrial value is extremely large.
代理人 弁理士 則 近 憲 佑 同 松山光之Agent: Patent Attorney Noriyuki Chika Same as Mitsuyuki Matsuyama
Claims (2)
基、カルボキシル基のいずれかを示し、またnは1〜5
の整数を示す) で表わされる1価のマレイミド化合物 (E)無機質充てん剤 より成り、(E)の配合量が(A)(B)(C)(D)
及び(E)の総配合量に対し50〜75容量%であるこ
とを特徴とするエポキシ樹脂組成物。(1) (A) Epoxy resin (B) Phenolic resin curing agent (C) Curing accelerator (D) General formula ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ (In the formula, X is hydrogen, halogen atom, hydroxyl group, alkoxy group, carboxyl group, and n is 1 to 5
(representing an integer of ) consisting of a monovalent maleimide compound (E) inorganic filler represented by
An epoxy resin composition characterized in that the amount is 50 to 75% by volume based on the total amount of (E).
基、カルボキシル基のいずれかを示し、またnは1〜5
の整数を示す) で表わされる1価のマレイミド化合物 (E)無機質充てん剤 より成り、(E)の配合量が(A)(B)(C)(D)
及び(E)の総配合量に対し50〜75容量%であるエ
ポキシ樹脂組成物により封止されてなることを特徴とす
る樹脂封止型半導体装置。(2) (A) Epoxy resin (B) Phenolic resin curing agent (C) Curing accelerator (D) General formula ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ (In the formula, X is hydrogen, halogen atom, hydroxyl group, alkoxy group, carboxyl group, and n is 1 to 5
(representing an integer of ) consisting of a monovalent maleimide compound (E) inorganic filler represented by
A resin-sealed semiconductor device, characterized in that it is encapsulated with an epoxy resin composition in an amount of 50 to 75% by volume based on the total amount of (E).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1082188A JP2593503B2 (en) | 1988-01-22 | 1988-01-22 | Epoxy resin composition and resin-sealed semiconductor device using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1082188A JP2593503B2 (en) | 1988-01-22 | 1988-01-22 | Epoxy resin composition and resin-sealed semiconductor device using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01188518A true JPH01188518A (en) | 1989-07-27 |
JP2593503B2 JP2593503B2 (en) | 1997-03-26 |
Family
ID=11761022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1082188A Expired - Lifetime JP2593503B2 (en) | 1988-01-22 | 1988-01-22 | Epoxy resin composition and resin-sealed semiconductor device using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2593503B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04300974A (en) * | 1991-03-28 | 1992-10-23 | Somar Corp | Epoxy resin powder coating material |
US20130026660A1 (en) * | 2011-07-29 | 2013-01-31 | Namics Corporation | Liquid epoxy resin composition for semiconductor encapsulation, and semiconductor device using the same |
US8470936B2 (en) | 2011-07-29 | 2013-06-25 | Namics Corporation | Liquid epoxy resin composition for semiconductor encapsulation |
JP2017145334A (en) * | 2016-02-18 | 2017-08-24 | 富士電機株式会社 | Resin composition, semiconductor device, and method for manufacturing semiconductor device |
-
1988
- 1988-01-22 JP JP1082188A patent/JP2593503B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04300974A (en) * | 1991-03-28 | 1992-10-23 | Somar Corp | Epoxy resin powder coating material |
US20130026660A1 (en) * | 2011-07-29 | 2013-01-31 | Namics Corporation | Liquid epoxy resin composition for semiconductor encapsulation, and semiconductor device using the same |
WO2013018847A1 (en) * | 2011-07-29 | 2013-02-07 | Namics Corporation | Epoxy resin composition for semiconductor encapsulation, semiconductor device using the same, and method for producing semiconductor device |
US8470936B2 (en) | 2011-07-29 | 2013-06-25 | Namics Corporation | Liquid epoxy resin composition for semiconductor encapsulation |
CN103717634A (en) * | 2011-07-29 | 2014-04-09 | 纳美仕有限公司 | Epoxy resin composition for semiconductor encapsulation, semiconductor device using the same, and method for producing semiconductor device |
KR20140064820A (en) * | 2011-07-29 | 2014-05-28 | 나믹스 코포레이션 | Epoxy resin composition for semiconductor encapsulation, semiconductor device using the same, and method for producing semiconductor device |
JP2014521754A (en) * | 2011-07-29 | 2014-08-28 | ナミックス株式会社 | Epoxy resin composition for semiconductor encapsulation, semiconductor device using the same, and semiconductor manufacturing method |
JP2017145334A (en) * | 2016-02-18 | 2017-08-24 | 富士電機株式会社 | Resin composition, semiconductor device, and method for manufacturing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2593503B2 (en) | 1997-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6274924A (en) | Epoxy resin composition for sealing semiconductor device | |
JPH06345847A (en) | Epoxy resin composition and semiconductor device | |
JP2000281750A (en) | Epoxy resin composition and semiconductor device | |
JPS62209128A (en) | Epoxy resin composition for sealing semiconductor device | |
JPH01188518A (en) | Epoxy resin composition and resin-sealed semiconductor device produced by using same | |
JP3339772B2 (en) | Epoxy resin composition | |
JPH02261856A (en) | Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith | |
JPH11116775A (en) | Epoxy resin composition for semiconductor sealing and production thereof | |
JPH0379370B2 (en) | ||
JPH0564166B2 (en) | ||
JP4724947B2 (en) | Epoxy resin molding material manufacturing method and semiconductor device | |
JP3417283B2 (en) | Epoxy resin composition for sealing and semiconductor device sealing method | |
JP2003040981A (en) | Epoxy resin composition and semiconductor device | |
JPS63299149A (en) | Semiconductor device | |
JP2885345B2 (en) | Semiconductor device | |
JPH11199754A (en) | Semiconductor device | |
JPH10176099A (en) | Epoxy resin composition and resin-sealed type semiconductor device by using the same | |
KR100414202B1 (en) | Epoxy resin composition for encapsulating semiconductor device | |
JP3471895B2 (en) | Epoxy resin composition and resin-encapsulated semiconductor device | |
JP4040370B2 (en) | Epoxy resin composition and semiconductor device | |
JPH11199650A (en) | Epoxy resin composition for sealing semiconductor and semiconductor device | |
JPH1171442A (en) | Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith | |
JPS63179923A (en) | Epoxy resin based composition and resin-sealed type semiconductor device using said composition | |
JPS6289721A (en) | Sealing resin composition | |
JPH05175373A (en) | Epoxy resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071219 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081219 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081219 Year of fee payment: 12 |