JPH01184308A - Nuclear power plant - Google Patents
Nuclear power plantInfo
- Publication number
- JPH01184308A JPH01184308A JP63006803A JP680388A JPH01184308A JP H01184308 A JPH01184308 A JP H01184308A JP 63006803 A JP63006803 A JP 63006803A JP 680388 A JP680388 A JP 680388A JP H01184308 A JPH01184308 A JP H01184308A
- Authority
- JP
- Japan
- Prior art keywords
- drain
- feed water
- dissolved oxygen
- condensate
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 87
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 58
- 239000001301 oxygen Substances 0.000 claims abstract description 58
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 58
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 4
- 238000010248 power generation Methods 0.000 claims 1
- 238000005260 corrosion Methods 0.000 abstract description 12
- 230000007797 corrosion Effects 0.000 abstract description 12
- 239000010935 stainless steel Substances 0.000 abstract description 4
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 2
- 238000011084 recovery Methods 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 7
- 229910001882 dioxygen Inorganic materials 0.000 description 7
- 238000010612 desalination reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005336 cracking Methods 0.000 description 3
- 239000008400 supply water Substances 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、給水加熱器ドレンの復水・給水への回収シス
テムを備えている原子力発電プラントに係り、特にドレ
ン中の溶存酸素濃度のコントロールと、復水・給水中の
腐食生成物(クラッド)の低減を図った原子力発電プラ
ントに関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a nuclear power plant equipped with a system for recovering feed water heater drain to condensate/feed water, and in particular, to This article relates to a nuclear power plant that aims to control dissolved oxygen concentration and reduce corrosion products (crud) in condensate and water supply.
(従来の技術)
近年、原子力発電プラントでは効率向上の要請から高熱
の給水加熱器ドレンを復水器に回収せず。(Conventional technology) In recent years, in order to improve efficiency in nuclear power plants, high-temperature feedwater heater drain is no longer collected in a condenser.
直接復水・給水に回収するドレン回収システムが多く採
用されている。Condensate recovery systems that directly collect condensate water or water supply are widely used.
一般に、この種の原子力発電プラントは、第2図に示す
ように、原子炉1、高圧タービン2、湿分分離加熱器3
、低圧タービン4、復水器5、低圧復水ポンプ6、復水
脱塩装置7、高圧復水ポンプ8、低圧給水加熱器9、原
子炉給水ポンプ10゜高圧給水加熱器11等を順次経て
原子炉1へ戻る循環サイクルが構成されており、前記原
子炉1で発生した蒸気によって各タービン2および4を
駆動させて図示しない発電機を作動し、原子力発電を行
なうようになっている。一方、前記低圧給水加熱器9及
び高圧給水加熱器11には抽気管12を通して各タービ
ン2および4から加熱蒸気が送入され、この蒸気により
給水が加熱される。加熱蒸気は熱交換後ドレンとなり、
ドレンタンク13に貯蔵される。ドレンタンク13に貯
蔵されたドレンは高温で。Generally, this type of nuclear power plant includes a nuclear reactor 1, a high-pressure turbine 2, a moisture separation heater 3, as shown in FIG.
, low pressure turbine 4, condenser 5, low pressure condensate pump 6, condensate desalination device 7, high pressure condensate pump 8, low pressure feed water heater 9, reactor feed water pump 10° high pressure feed water heater 11, etc. A circulation cycle returning to the nuclear reactor 1 is configured, and the steam generated in the nuclear reactor 1 drives each of the turbines 2 and 4 to operate a generator (not shown) to generate nuclear power. On the other hand, heating steam is sent from each turbine 2 and 4 to the low-pressure feedwater heater 9 and high-pressure feedwater heater 11 through the bleed pipe 12, and the feedwater is heated by this steam. The heated steam becomes drain after heat exchange,
It is stored in the drain tank 13. Drain stored in drain tank 13 is at high temperature.
しかも低圧給水加熱器9ドレン流量は給水流量の約55
%、高圧給水加熱器11ドレン流量は、給水流量の45
%と多く、熱回収による効率向上を目的として、ドレン
ポンプ14によりドレン回収配管15を介して給水に送
入され、給水と混合して一体とな。Moreover, the low pressure feed water heater 9 drain flow rate is approximately 55% of the feed water flow rate.
%, the high pressure feed water heater 11 drain flow rate is 45% of the feed water flow rate.
%, and for the purpose of improving efficiency through heat recovery, it is sent to the water supply via the drain recovery pipe 15 by the drain pump 14, and is mixed with the water supply to be integrated.
す、各給水加熱器9,11を経て原子炉1へ還流される
。The water is then returned to the reactor 1 via the feed water heaters 9 and 11.
また、各給水加熱器9,11には、原子炉1内で水の放
射化分解により生成した酸素、水素から成る不凝縮ガス
が、加熱蒸気とともに油気管12を介して混入し、熱効
率が低下するため、不凝縮ガスの大部分は、排気管16
を通して復水器5に排出される。不凝縮ガスの復水器へ
の排気量は、排気管16の途中に設けられたオリフィス
板17にて、常に一定にコントロールされており、通常
油気蒸気量の0.5%あるいは1%とされている。In addition, non-condensable gas consisting of oxygen and hydrogen generated by radioactive decomposition of water in the reactor 1 enters each feedwater heater 9, 11 through the oil air pipe 12 along with heated steam, reducing thermal efficiency. Therefore, most of the non-condensable gas flows through the exhaust pipe 16.
It is discharged to the condenser 5 through the condenser 5. The amount of non-condensable gas exhausted to the condenser is always controlled to be constant by an orifice plate 17 installed in the middle of the exhaust pipe 16, and is normally 0.5% or 1% of the amount of oil vapor. has been done.
そして、BWR型原子力発電プラント等では、原子炉1
内で発生する放射化生成物を低減させるために、原子炉
1内に持ち込まれるクラッド量を厳しく制限している。In BWR type nuclear power plants, etc., reactor 1
In order to reduce the activation products generated within the nuclear reactor 1, the amount of crud brought into the reactor 1 is strictly limited.
そのため、炭素鋼で作られた復水・給水配管18や各給
水加熱器9.11等から腐食によるクラッド発生を防止
するために酸素ボンベ19より給水中に溶存酸素として
20〜200ppbの管理範囲で通常50ppb以上と
なるように酸素ガスが注入されている。注入酸素ガス量
は、酸素ガス注入点以後に設置された。溶存酸素計20
によりコントロールされている。Therefore, in order to prevent the formation of crud due to corrosion from the condensate/water supply piping 18 made of carbon steel and each feed water heater 9.11, etc., dissolved oxygen in the water supply from the oxygen cylinder 19 is maintained within a controlled range of 20 to 200 ppb. Oxygen gas is usually injected to a concentration of 50 ppb or more. The amount of injected oxygen gas was set after the oxygen gas injection point. Dissolved oxygen meter 20
is controlled by.
(発明が解決しようとする課題)
しかしながら、このような従来のドレン回収システムを
備えた原子力発電プラントにおいては。(Problems to be Solved by the Invention) However, in a nuclear power plant equipped with such a conventional drain recovery system.
各給水加熱器9,11の不凝縮ガス排気量によって、ド
レン中の溶存酸素濃度が異なるという不具合があった。There was a problem in that the dissolved oxygen concentration in the drain differed depending on the amount of noncondensable gas discharged from each of the feed water heaters 9 and 11.
すなわち不凝縮ガス排気量を0.5%にした場合、不凝
縮ガス中の酸素ガスのドレン中への溶は込みが多く、溶
存酸素濃度が数千PPbとなり、各給水加熱器9,11
の腐食は非常に抑制されドレン中のクラッドは少なくな
るが、ドレンを給水に回収した場合、20〜200PP
bに管理されている給水溶存酸素濃度が、200ppb
を越える結果、原子炉1水中の溶存酸素濃度が上昇し、
原子炉1回りの図示しないステンレス鋼製配管の応力腐
食割れの発生が懸念される。一方、不凝縮ガス排気量を
1.0%にした場合、酸素ガスのドレン中への溶は込み
が少なくなり、溶存酸素濃度が数十PPbとなり、ドレ
ン回収時の給水溶存酸素濃度上昇の問題はなく、むしろ
低下するため酸素ガス注入量を増やすことで対応可能で
あるが、ドレン中溶存酸素濃度低下により各給水加熱器
9.11の腐食が増大し、その結果、ドレン中クラッド
が増大し、ドレン回収後の給水中クラッド量が制限値を
回り1問題となる。In other words, when the non-condensable gas exhaust amount is set to 0.5%, the oxygen gas in the non-condensable gas is dissolved into the drain, and the dissolved oxygen concentration becomes several thousand ppb.
corrosion is greatly suppressed and the amount of crud in the drain is reduced, but if the drain is collected into the water supply, 20 to 200 PP
The dissolved oxygen concentration in the feed water managed by b is 200ppb
As a result, the dissolved oxygen concentration in the reactor 1 water increases,
There is a concern that stress corrosion cracking may occur in the stainless steel piping (not shown) surrounding the reactor. On the other hand, when the non-condensable gas exhaust amount is set to 1.0%, the dissolution of oxygen gas into the drain is reduced, and the dissolved oxygen concentration becomes several tens of ppb, which causes the problem of an increase in the dissolved oxygen concentration of the feed water when recovering the drain. However, as the concentration of dissolved oxygen in the drain decreases, corrosion of each feed water heater 9.11 increases, and as a result, crud in the drain increases. , the amount of crud in the feed water after drain collection exceeds the limit value, causing a problem.
これに対し、不凝縮ガス排気量を固定式でなく自動調節
するという考えがあるが、実プラントの給水加熱器は合
計18台もあり、これらすべてをコントロールすること
は、技術的にも、コスト的にも困難である。 −
そこで、本発明はドレン回収をした場合、給水中の溶存
酸素濃度が上昇せず、しかもクラッド量も抑制すること
が出来る原子力発電プラントを提供することを目的とす
る。In response, there is an idea to automatically adjust the non-condensable gas exhaust amount instead of using a fixed method, but there are a total of 18 feed water heaters in the actual plant, and controlling all of them would be difficult from a technical standpoint as well as cost. It is also difficult. - Therefore, an object of the present invention is to provide a nuclear power plant in which the dissolved oxygen concentration in the water supply does not increase when drain is recovered, and the amount of crud can also be suppressed.
(課題を解決するための手段)
本発明は、ドレンタンクに貯蔵されるドレンの溶存酸素
濃度を好適に制御して、そのドレンを復水・給水に送る
ようにしたものである。すなわち、原子炉、高圧タービ
ン、低圧タービン、復水器、低圧給水加熱器、高圧給水
加熱器等を順次直列に接続して循環サイクルを構成する
一方、給水加熱器ドレンをドレンタンクに貯蔵した後、
復水・給水中に送入するドレン回収システムを備えた原
子力発電プラントにおいて、前記ドレンタンクと復水器
とを結ぶ連結管を設けるとともに、この連結管に流量調
整弁を配設し、前記ドレンタンクからのドレンが復水・
給水に送られる際、復水・給水中の溶存酸素濃度が一定
値を越えないよう前記流量調整弁に開閉信号を与える制
御装置を設けたことを特徴とする特
(作用)
原子力発電プラント運転時には、ドレン中の溶存酸素濃
度が測定され、この値と既設の復水・給水溶存酸素濃度
値と比較し、ドレン中の値が高い場合は、復水器と接続
された連通管に設けられた流量調整弁の開度が大きくな
り、ドレン中の値が低い場合は、逆に開度が小さくなる
。(Means for Solving the Problems) According to the present invention, the dissolved oxygen concentration of drain stored in a drain tank is suitably controlled, and the drain is sent to condensate/water supply. In other words, a nuclear reactor, a high pressure turbine, a low pressure turbine, a condenser, a low pressure feed water heater, a high pressure feed water heater, etc. are connected in series to form a circulation cycle, while the feed water heater drain is stored in a drain tank. ,
In a nuclear power plant equipped with a drain recovery system that feeds condensate water into the water supply, a connecting pipe is provided that connects the drain tank and the condenser, and a flow rate regulating valve is installed in this connecting pipe, so that the drain Drain from the tank condenses
Features (effects) characterized in that a control device is provided that gives an opening/closing signal to the flow rate regulating valve so that the dissolved oxygen concentration in the condensate/supply water does not exceed a certain value when it is sent to the water supply.During the operation of a nuclear power plant , the dissolved oxygen concentration in the drain is measured, and this value is compared with the existing condensate/supply water dissolved oxygen concentration value, and if the value in the drain is high, a If the opening degree of the flow rate regulating valve increases and the value in the drain is low, the opening degree will conversely decrease.
このため、給水加熱器内部で高かったドレン中の溶存酸
素濃度もドレンタンク中でコントロールされて復水・給
水に送入されるため、復水・給水溶存酸素濃度の上昇を
抑制することができる。Therefore, the dissolved oxygen concentration in the drain, which was high inside the feed water heater, is controlled in the drain tank and sent to the condensate and feed water, making it possible to suppress increases in the dissolved oxygen concentration in the condensate and feed water. .
(実施例)
以下、第1図を参照にして本発明の好適な一実施例を説
明する。(Embodiment) Hereinafter, a preferred embodiment of the present invention will be described with reference to FIG.
第1図は本発明の一実施例の構成を示しており、図にお
いて示される符号101は原子炉であって。FIG. 1 shows the configuration of an embodiment of the present invention, and the reference numeral 101 shown in the figure is a nuclear reactor.
原子力発電プラントは、原子炉101から高圧タービン
102、湿分分離加熱器103、低圧タービン104、
復水器105、低圧復水ポンプ106、復水脱塩装置1
07、高圧復水ポンプ108.低圧給水加熱器109、
原子炉給水ポンプ110、高圧給水加熱器111を経て
前記原子炉101へ戻るように接続され、循環閉サイク
ルを構成している。そして前記原子炉101で発生した
蒸気を高圧タービン102. 続いて低圧タービン1
04に送入して各タービン102,104を駆動させ、
図示しない発電機を作動させて発電を行なうようになっ
ている。しかして、前記タービン102゜104で仕事
をした蒸気は復水器105で凝縮して復水となった後、
前記低圧復水ポンプ106で吸引され、復水脱塩装置1
07に送りこまれ、クラッドが除去される。その後、高
圧復水ポンプ108、低圧給水加熱器109、原子炉給
水ポンプ110、高圧給水加熱器111を経て原子炉1
01に還流され、一つのサイクルが終了する。また、給
水中には、炭素鋼で作られた復水・給水配管124や各
給水加熱器109,111等から腐食によるクラッド発
生を防止するため、酸素ボンベ125より給水中に溶存
酸素として20〜200ppbの管理範囲で、通常5o
ppb以上となるように酸素ガスが注入されており、注
入酸素ガス量は溶存酸素計126でコントロールされて
いる。The nuclear power plant includes a nuclear reactor 101, a high pressure turbine 102, a moisture separation heater 103, a low pressure turbine 104,
Condenser 105, low pressure condensate pump 106, condensate desalination device 1
07. High pressure condensate pump 108. low pressure feed water heater 109,
It is connected to the nuclear reactor 101 via a reactor feed water pump 110 and a high pressure feed water heater 111 to form a closed circulation cycle. The steam generated in the nuclear reactor 101 is then transferred to a high pressure turbine 102. Next, low pressure turbine 1
04 to drive each turbine 102, 104,
A generator (not shown) is operated to generate electricity. After the steam that has done work in the turbines 102 and 104 is condensed into condensate in the condenser 105,
Suctioned by the low pressure condensate pump 106, the condensate desalination device 1
07, and the cladding is removed. After that, the reactor 1
01, and one cycle is completed. Additionally, in order to prevent the generation of crud due to corrosion from the condensate/water supply piping 124 made of carbon steel and the respective feed water heaters 109, 111, etc., dissolved oxygen from an oxygen cylinder 125 is added to the water supply. With a control range of 200ppb, typically 5o
Oxygen gas is injected so that it is at least ppb, and the amount of injected oxygen gas is controlled by a dissolved oxygen meter 126.
一方、前記低圧給水加熱器109及び高圧給水加熱器1
11には、油気管112を通して各タービン102及び
104から加熱蒸気が送入され、この蒸気と給水が熱交
換される結果、給水は加熱され、蒸気は凝縮してドレン
となり、ドレンタンク113に貯蔵される。ドレンタン
ク113に貯蔵されたドレンは。On the other hand, the low pressure feed water heater 109 and the high pressure feed water heater 1
11, heated steam is sent from each turbine 102 and 104 through an oil air pipe 112, and as a result of heat exchange between this steam and feed water, the feed water is heated, the steam is condensed, becomes drain, and is stored in a drain tank 113. be done. Drain stored in the drain tank 113.
熱回収のため、ドレンポンプ114によりドレン回収配
管115を介して給水に送入され、給水と混合して一体
となり、各給水加熱器109,111を経て原子炉10
1へ還流される。For heat recovery, the drain pump 114 sends the water to the feed water via the drain recovery pipe 115, mixes it with the feed water, and then passes through each feed water heater 109, 111 to the reactor 10.
It is refluxed to 1.
また、各給水加熱器109,111には、原子炉101
内で水の放射化分解により生成した酸素、水素からなる
不凝縮ガスが、加熱蒸気とともに混入し、熱効率が低下
するため、不凝縮ガスの大部分は、排気管116を通し
て復水器105に排出される。不凝縮ガスの復水器への
排気量は、排気管116の途中に設けられたオリフィス
板117により、抽気蒸気量の0.5%で一定になって
おり、ドレン中クラッド量は低く押さえられているが、
溶存酸素濃度は数千ρPbと高くなっている。In addition, each feed water heater 109, 111 includes a reactor 101.
Non-condensable gas consisting of oxygen and hydrogen generated by the radioactive decomposition of water in the condenser 105 mixes with the heated steam, reducing thermal efficiency, so most of the non-condensing gas is discharged to the condenser 105 through the exhaust pipe 116. be done. The amount of non-condensable gas exhausted to the condenser is kept constant at 0.5% of the amount of extracted steam by an orifice plate 117 provided in the middle of the exhaust pipe 116, and the amount of crud in the drain is kept low. Although,
The dissolved oxygen concentration is as high as several thousand ρPb.
そこで、ドレンタンク113にはドレン回収後も給水中
の溶存酸素濃度が基準値を上回らないように、溶存酸素
制御装置118を設けている。この溶存酸素制御装置1
18は比較回路122および演算部123からなる。ま
たドレンタンク113には復水器105に連通ずる連結
管120を設け、この連結管120に流量調整弁119
を配設する。さらに、前記ドレン回収配管115には溶
存酸素計121を付設する。Therefore, a dissolved oxygen control device 118 is provided in the drain tank 113 so that the dissolved oxygen concentration in the supplied water does not exceed a reference value even after drain collection. This dissolved oxygen control device 1
Reference numeral 18 includes a comparison circuit 122 and an arithmetic unit 123. Further, the drain tank 113 is provided with a connecting pipe 120 that communicates with the condenser 105, and a flow rate regulating valve 119 is connected to the connecting pipe 120.
to be placed. Furthermore, a dissolved oxygen meter 121 is attached to the drain recovery pipe 115.
しかして、原子力発電プラント運転中は、ドレン中の溶
存酸素濃度がドレン回収配管115に付設された溶存酸
素計121で測定され、また復水中の溶存酸素濃度が他
の溶存酸素計126で測定される。Therefore, during operation of a nuclear power plant, the dissolved oxygen concentration in the drain is measured by the dissolved oxygen meter 121 attached to the drain recovery pipe 115, and the dissolved oxygen concentration in the condensate is measured by another dissolved oxygen meter 126. Ru.
各溶存酸素計121及び126の信号は、比較回路12
2に送信され、比較回路122で両者の溶存酸素濃度が
比較される。復水中の溶存酸素濃度は20〜200Pp
bの範囲でコントロールされており、ドレン中の溶存酸
素濃度がこの範囲より高い場合、比較回路122からそ
の比較偏差値に応じた出力信号が演算部123に送られ
、その信号に応じて更に演算部123から流量調整弁1
19へ開度増の信号が送られ。The signals of each dissolved oxygen meter 121 and 126 are sent to a comparison circuit 12
2, and the comparison circuit 122 compares the dissolved oxygen concentrations of the two. Dissolved oxygen concentration in condensate is 20-200Pp
If the dissolved oxygen concentration in the drain is higher than this range, an output signal corresponding to the comparison deviation value is sent from the comparison circuit 122 to the calculation section 123, and further calculation is performed according to the signal. From part 123 to flow rate adjustment valve 1
A signal to increase the opening is sent to 19.
流量調整弁119の開度が増大する。流量調整弁119
の開度が増加すれば、ドレンタンク113と復水器10
5は連通管120により連通しているので、ドレン中の
溶存酸素は復水器105の脱気効果により、低下する。The opening degree of the flow rate regulating valve 119 increases. Flow rate adjustment valve 119
If the opening degree of the drain tank 113 and condenser 10 increases,
5 are in communication with each other through the communication pipe 120, the dissolved oxygen in the drain is reduced by the degassing effect of the condenser 105.
また、ドレン中の溶存酸素濃度が、給水中の溶存酸素濃
度より低い場合は、上記と逆の動作によりドレン中の溶
存酸素濃度は高くなる。Furthermore, when the dissolved oxygen concentration in the drain is lower than the dissolved oxygen concentration in the water supply, the dissolved oxygen concentration in the drain increases by the operation opposite to the above.
この様に、ドレン中の溶存酸素濃度を復水中の溶存酸素
濃度と同じになるように、流量調整弁119の開度でコ
ントロールした後、ドレンポンプ114によりドレン回
収配管115を介して復水・給水中にドレンを送入する
ことにより、復水・給水中の溶存酸素濃度が基準値の2
0〜200PPbを越えることはなく、常に一定に保つ
ことが出来る。これにより、基準値を越える場合の原子
炉1回りの図示しないステンレス配管の応力腐食割れ問
題、基準値を下回る場合の復水・給水配管124、各給
水加熱器109,111の腐食によるクラッド増加を防
止出来る。また、各給水加熱器109,111中の溶存
酸素濃度は、数千PPbと高く維持されているため、ド
レン中のクラッドは非常に少なく、ドレン回収後の給水
中クラッドの増加を防止することが出来る。In this way, after controlling the opening degree of the flow rate adjustment valve 119 so that the dissolved oxygen concentration in the drain becomes the same as the dissolved oxygen concentration in the condensate, the condensate is By sending condensate into the water supply, the dissolved oxygen concentration in the condensate/supply water can be reduced to 2 of the standard value.
It never exceeds 0 to 200 PPb and can always be kept constant. This prevents the problem of stress corrosion cracking of the stainless steel pipes (not shown) around the reactor when the standard value is exceeded, and the increase in crud due to corrosion of the condensate/feed water pipe 124 and each feed water heater 109, 111 when the standard value is below the standard value. It can be prevented. In addition, since the dissolved oxygen concentration in each feed water heater 109, 111 is maintained at a high level of several thousand PPb, there is very little crud in the drain, and it is possible to prevent crud from increasing in the feed water after drain recovery. I can do it.
以上説明したように本発明は、ドレン回収系に溶存酸素
制御装置を設置し、給水加熱器内部の溶存酸素濃度は高
い状態にしたままドレン中溶存酸素濃度を復水・給水溶
存酸素濃度範囲にコントロールするようにしたものであ
るから、ドレンを復水・給水に回収しても復水・給水の
溶存酸素濃度は変化せず、原子炉回りのステンレス配管
の応力腐食割れ、復水・給水配管及び給水加熱器の腐食
によるクラッド増加を防止出来る。またドレン中のクラ
ッドも低く押さえられているので、給水のクラッド増加
を抑制出来る等の効果を奏する6As explained above, the present invention installs a dissolved oxygen control device in the drain recovery system, and brings the dissolved oxygen concentration in the drain to the condensate/feed water dissolved oxygen concentration range while maintaining the dissolved oxygen concentration inside the feed water heater in a high state. Because it is controlled, the dissolved oxygen concentration in the condensate and feed water does not change even if condensate is recovered as condensate and feed water, resulting in stress corrosion cracking of stainless steel piping around the reactor, condensate water piping, and water supply piping. Also, it is possible to prevent the increase in crud due to corrosion of the feed water heater. In addition, since the crud in the drain is kept low, it has the effect of suppressing the increase in crud in the water supply6.
第1図は本発明に係る原子力発電プラントの一実施例を
示す系統図、第2図は従来の原子力発電プラントを示す
系統図である。
lot・・・原子炉、 102・・・高圧ター
ビン、103・・・湿分分離加熱器、104・・・低圧
タービン、105・・・復水器、 106・・・
低圧復水ポンプ、107・・・復水脱塩装置I、10g
・・・高圧復水ポンプ。
109・・・低圧給水加熱器、110・・・原子炉給水
ポンプ、111・・・高圧給水加熱器、112・・・抽
気管。
113・・・ドレンタンク、 114・・・ドレンポン
プ、115・・・ドレン回収配管、116・・・排気管
。
117・・・オリフィス板、118・・・溶存酸素制御
装置、119・・・流量調整弁、 120・・・連結
管、121.126・・・溶存酸素計、122・・・比
較回路、123・・・演算部、 124・・・復
水・給水配管、125・・・酸素ボンベ。
代理人 弁理士 則 近 憲 佑
同 第子丸 健FIG. 1 is a system diagram showing an embodiment of a nuclear power plant according to the present invention, and FIG. 2 is a system diagram showing a conventional nuclear power plant. lot...Nuclear reactor, 102...High pressure turbine, 103...Moisture separation heater, 104...Low pressure turbine, 105...Condenser, 106...
Low pressure condensate pump, 107...Condensate desalination device I, 10g
...High pressure condensate pump. 109...Low pressure feed water heater, 110...Reactor feed water pump, 111...High pressure feed water heater, 112...Bleed pipe. 113...Drain tank, 114...Drain pump, 115...Drain recovery piping, 116...Exhaust pipe. 117... Orifice plate, 118... Dissolved oxygen control device, 119... Flow rate adjustment valve, 120... Connecting pipe, 121.126... Dissolved oxygen meter, 122... Comparison circuit, 123... ...Arithmetic unit, 124...Condensate/water supply piping, 125...Oxygen cylinder. Agent Patent Attorney Noriyuki Chika Yudo Ken Daishimaru
Claims (1)
ン、復水器、低圧給水加熱器、高圧給水加熱器等を順次
直列に接続して循環サイクルを構成した原子力発電プラ
ントにおいて、前記低圧及び高圧給水加熱器で生じたド
レンを貯蔵するドレンタンクが前記復水器に連通するよ
うに連結管を設けるとともに、この連結管に流量調整弁
を配設し、前記ドレンタンクからのドレンが復水・給水
に送られる際、復水・給水中の溶存酸素濃度が一定値を
超えないよう前記流量調整弁に開閉信号を与える制御装
置を設けたことを特徴とする原子力発電プラント。In a nuclear power plant in which a nuclear reactor, high-pressure turbine, moisture separation heater, low-pressure turbine, condenser, low-pressure feedwater heater, high-pressure feedwater heater, etc. are connected in series to form a circulation cycle, the low-pressure and high-pressure A connecting pipe is provided so that a drain tank that stores the drain generated in the feed water heater communicates with the condenser, and a flow rate adjustment valve is installed in this connecting pipe, so that the drain from the drain tank is condensed and connected to the condenser. A nuclear power generation plant, characterized in that a control device is provided for giving an opening/closing signal to the flow rate regulating valve so that the dissolved oxygen concentration in the condensate/feed water does not exceed a certain value when the water is sent to the water supply.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63006803A JPH01184308A (en) | 1988-01-18 | 1988-01-18 | Nuclear power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63006803A JPH01184308A (en) | 1988-01-18 | 1988-01-18 | Nuclear power plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01184308A true JPH01184308A (en) | 1989-07-24 |
Family
ID=11648348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63006803A Pending JPH01184308A (en) | 1988-01-18 | 1988-01-18 | Nuclear power plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01184308A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ299757B6 (en) * | 2006-12-20 | 2008-11-12 | Ústav jaderného výzkumu Rež, a.s. | Apparatus for determining and monitoring composition of thickened solutions and sediments in structural joints with heat flow and located in track of feed water of power device steam generators, such as thermal or nuclear power stations |
-
1988
- 1988-01-18 JP JP63006803A patent/JPH01184308A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ299757B6 (en) * | 2006-12-20 | 2008-11-12 | Ústav jaderného výzkumu Rež, a.s. | Apparatus for determining and monitoring composition of thickened solutions and sediments in structural joints with heat flow and located in track of feed water of power device steam generators, such as thermal or nuclear power stations |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4578354B2 (en) | Waste heat utilization equipment for steam turbine plant | |
CN110454769A (en) | A kind of Generator Set high back pressure steam feed pump control system and control method | |
CN110713220B (en) | Dosing system and method for deoxidizer hydrazine in high-temperature gas cooled reactor nuclear power plant secondary loop system | |
CN106122929A (en) | A add medicine and sampling system for combined cycle generating set multi-pressure exhaust-heat boiler | |
CN112303610A (en) | Operation system and method for recovering high-energy water in shutdown and non-shutdown operation mode | |
CN206037003U (en) | Secondary reheating unit EC BEST steam turbine steam exhaust heating deoxidization boiler feed water's thermodynamic system | |
CN206018578U (en) | A add medicine and sampling system for combined cycle generating set multi-pressure exhaust-heat boiler | |
CN211226440U (en) | Chemical dosing system for deoxidant hydrazine of two-loop system of high-temperature gas cooled reactor nuclear power plant | |
CN209540862U (en) | A kind of Boiler Steam reduction treatment system | |
CA1267819A (en) | System for recovering drain from feed-water heaters in a generating plant | |
CN217844064U (en) | Nuclear energy heat supply and steam supply coupling system | |
JPH01184308A (en) | Nuclear power plant | |
CN205955783U (en) | Draw gas low -pressure system of heating boiler feedwater of power station steam turbine | |
CN217928732U (en) | Drive steam condensate recovery system and absorption heat pump drive steam condensate recovery system | |
CN219264266U (en) | Heat regeneration system of cylinder cutting unit | |
JP2543905B2 (en) | Nuclear power plant turbine system | |
CN222143018U (en) | Steam-water recovery device for waste heat boiler pollution discharge | |
CN221868393U (en) | A controllable heat transfer furnace catalyst temperature increase efficiency device | |
JP2927860B2 (en) | Feed water heater for reactor | |
JPS6124679B2 (en) | ||
RU2213293C2 (en) | Apparatus for producing of high-pressure superheated water | |
CN115680893A (en) | OTC closed cooling system for simple circulation of gas turbine | |
JP2642389B2 (en) | Steam turbine bypass device | |
JP3067053B2 (en) | Condenser | |
SU1129390A1 (en) | Method of replenishing condensate in multicylinder extraction steam turbine plant |