JPH0118388B2 - - Google Patents
Info
- Publication number
- JPH0118388B2 JPH0118388B2 JP63140476A JP14047688A JPH0118388B2 JP H0118388 B2 JPH0118388 B2 JP H0118388B2 JP 63140476 A JP63140476 A JP 63140476A JP 14047688 A JP14047688 A JP 14047688A JP H0118388 B2 JPH0118388 B2 JP H0118388B2
- Authority
- JP
- Japan
- Prior art keywords
- field winding
- insulation resistance
- resistance
- value
- external resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000009413 insulation Methods 0.000 claims description 53
- 238000004804 winding Methods 0.000 claims description 44
- 238000012544 monitoring process Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 5
- 238000012806 monitoring device Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
Description
【発明の詳細な説明】
<産業上の利用分野>
本発明は界磁巻線の絶縁抵抗監視方法に関す
る。更に詳言すると、界磁巻線にプラス側電圧と
マイナス側電圧の比を用いてその絶縁抵抗を監視
する場合において測定・監視の不感域を実効的に
除去し得るよう改良したものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for monitoring insulation resistance of a field winding. More specifically, this is an improvement that effectively eliminates the dead zone of measurement and monitoring when monitoring the insulation resistance of a field winding using the ratio of the positive side voltage to the negative side voltage.
<従来の技術>
回転電機の運転中にその界磁巻線の絶縁抵抗を
監視する方法として、界磁巻線のプラス側端子と
接地端子との間及び前記界磁巻線のマイナス側端
子と前記接地端子との間に夫々既値の第1外部抵
抗及び第2外部抵抗を接続してこの第1外部抵抗
及び第2外部抵抗の両端の電圧を測定し両電圧を
比較するというものがある。<Prior art> As a method for monitoring the insulation resistance of a field winding during operation of a rotating electric machine, a method is used to monitor the insulation resistance of a field winding between the positive terminal and the ground terminal of the field winding and between the negative terminal of the field winding. There is a method in which a first external resistor and a second external resistor, each having a predetermined value, are connected between the ground terminal and the voltages across the first external resistor and the second external resistor are measured and the two voltages are compared. .
即ち、この方法を実現する従来技術に係る絶縁
抵抗監視装置では、第1図に示すように、界磁巻
線1のプラス側端子1aと接地抵抗RAが接続さ
れるとともに、界磁巻線1のマイナス側端子1b
と接地端子2との間に第2外部抵抗RBが接続さ
れている。 That is, in the conventional insulation resistance monitoring device that implements this method, as shown in FIG. 1 negative terminal 1b
A second external resistor R B is connected between the ground terminal 2 and the ground terminal 2 .
かかる装置において、電圧計3で前記第1外部
抵抗RAの両端の電圧VAを測定し、また電圧計4
で前記第2外部抵抗RBの両端の電圧VBを測定し
両者を比較している。このとき第1外部抵抗RA
と第2外部抵抗RBの値は等しくとつてある。 In such a device, a voltmeter 3 measures the voltage V A across the first external resistor R A , and a voltmeter 4 measures the voltage V A across the first external resistor R A.
The voltage V B across the second external resistor R B is measured and compared. At this time, the first external resistance R A
The values of R and the second external resistor R B are set to be equal.
第2図はこのときの絶縁抵抗RZをパラメータ
とする界磁巻線1の各部の絶縁抵抗RZを前記電
圧VAと電圧VBの比α=VB/VAで示す特性図である。 Figure 2 is a characteristic diagram showing the insulation resistance R Z of each part of the field winding 1 using the insulation resistance R Z as a parameter, as the ratio α = V B /V A of the voltage V A and the voltage V B. be.
同図において、横軸には界磁巻線1のプラス側端
子1aとマイナス側端子1bとの間の距離lTに対
する界磁巻線1の各部のプラス側端子1aからの
距離lXの比β=lX/lTを採つてある。即ち、界磁
巻線1の抵抗値はそのプラス側端子1aからの距
離に比例しているとして、プラス側端子1aから
界磁巻線1の各部までの抵抗をra、またはこの各
部からマイナス側端子1bまでの抵抗をrbとする
とra/ra+rbが横軸に採つてあることになる。一
方、縦軸には電圧VAと電圧VBとの比α=VB/VA
を採つてある。これにより界磁巻線1のある部分
の絶縁抵抗RZが劣化するにしたがい縦軸の値α
=VB/VAが大きく変化することを利用して前記
絶縁抵抗RZを監視し得るのである。In the figure, the horizontal axis shows the ratio of the distance lX of each part of the field winding 1 from the positive terminal 1a to the distance l β= lX / lT is taken. That is, assuming that the resistance value of the field winding 1 is proportional to the distance from the positive terminal 1a, the resistance from the positive terminal 1a to each part of the field winding 1 is r a , or from each part to the negative If the resistance up to the side terminal 1b is r b , then r a / ra + r b is plotted on the horizontal axis. On the other hand, the vertical axis shows the ratio α of voltage V A to voltage V B = V B /V A
has been taken. As a result, as the insulation resistance R Z of a certain part of the field winding 1 deteriorates, the value α on the vertical axis
The insulation resistance R Z can be monitored by utilizing the large change in =V B /V A.
例えば界磁巻線1のβ=lX/lT=0.2の部分の絶
縁抵抗RZに着目するとその値が10MΩ、5MΩ、
3MΩ、1MΩと変遷するにしたがいα=VB/VA
の値が1.05、1.11、1.19、1.5と変遷していること
を理解される。更に詳言すると、界磁巻線の絶縁
抵抗は、界磁巻線の絶縁層の絶縁抵抗値が最も小
さい部分の状態に依存する。そこで最初に界磁巻
線の絶縁抵抗値をメガー等により計測し、同時に
電圧VA,VBを測定することによりそのときのα
値を求め、これら絶縁抵抗値とα値により第2図
のグラフを用いてβ値を求めることにより最も絶
縁が弱い部位が判明する。即ち、前述の如き計測
の結果界磁巻線の絶縁抵抗値が10MΩ、α値が
1.06と求まつたとすると、第2図のグラフにより
β=0.2であることが分かる。そこで、以後はα
値を監視することによりβ=0.2の点の絶縁状態
を監視する。界磁巻線の絶縁層の劣化は最も絶縁
が弱い部分で最も顕著に進行するので、界磁巻線
の最初の絶縁抵抗値の測定により特定された絶縁
が最も弱い部位(β値に該当する位置)の状態を
監視すれば充分である。 For example, if we focus on the insulation resistance R Z of the field winding 1 at β = l X / l T = 0.2, the values are 10 MΩ, 5 MΩ,
As it changes from 3MΩ to 1MΩ, α=V B /V A
It is understood that the value of changes from 1.05, 1.11, 1.19, and 1.5. More specifically, the insulation resistance of the field winding depends on the state of the portion of the insulating layer of the field winding where the insulation resistance value is the smallest. Therefore, first measure the insulation resistance value of the field winding with a megger, etc., and at the same time measure the voltages V A and V B.
The location where the insulation is weakest can be determined by determining the β value using the graph of FIG. 2 based on the insulation resistance value and the α value. In other words, as a result of the measurements described above, the insulation resistance value of the field winding is 10MΩ, and the α value is
Assuming that 1.06 is found, the graph in Figure 2 shows that β = 0.2. Therefore, from now on, α
By monitoring the value, the insulation state at the point β = 0.2 is monitored. Deterioration of the insulating layer of the field winding progresses most noticeably in the part where the insulation is weakest, so the part where the insulation is the weakest (corresponding to the β value) identified by the initial measurement of the insulation resistance value of the field winding. It is sufficient to monitor the status of the location).
<発明が解決しようとする課題>
ところが、第2図を参照すれば明らかな通り、
上記従来の方法によれば必ず不感帯Aを生じてし
まう。即ち、βlX/lT=0.5を中心としてその近傍
部分では絶縁抵抗RZが劣化してもα=VA/VBの
値は殆んど変化しない。例えば、最初の絶縁抵抗
の測定の際、絶縁抵抗値が10MΩ、α値が1.00と
求まつたとすると、このときのβ値は第2図より
0.5と求まる。即ち、β=0.5の部位の絶縁が最も
弱いのでこの部位の絶縁の状態を監視する必要が
あるのであるが、β=0.5の部位の絶縁がいくら
劣化してもαの値は変化しない。これは第1外部
抵抗RA=第2外部抵抗RBとしたためβ=lX/lT=
0.5の点、即ちra=rbとなつた点で一種のブリツジ
回路である当該絶縁抵抗監視装置の平衡条件を満
足してしまうからである。ブリツジ回路として平
衡してしまえばその点の絶縁抵抗RZがいくら変
化してもVB/VA=1となつて不変である。この
ように従来技術においては必ず不感帯Aを生じて
しまうのでこれによる欠点を除去する技術思想の
出現が待望されている。<Problem to be solved by the invention> However, as is clear from FIG.
According to the above-mentioned conventional method, a dead zone A always occurs. That is, in the vicinity of βl X /l T =0.5, the value of α=V A /V B hardly changes even if the insulation resistance R Z deteriorates. For example, when first measuring insulation resistance, if the insulation resistance value is 10MΩ and the α value is 1.00, the β value at this time is calculated from Figure 2.
It is found to be 0.5. That is, since the insulation at the part where β=0.5 is the weakest, it is necessary to monitor the state of the insulation at this part, but no matter how much the insulation at the part where β=0.5 deteriorates, the value of α does not change. This is because the first external resistance R A = the second external resistance R B , so β = l X / l T =
This is because the equilibrium condition of the insulation resistance monitoring device, which is a type of bridge circuit, is satisfied at the point of 0.5, that is, the point where r a = r b . Once the bridge circuit is balanced, no matter how much the insulation resistance R Z at that point changes, V B /V A =1, which remains unchanged. As described above, in the conventional technology, the dead zone A always occurs, and therefore, it is desired that a technical concept to eliminate the drawbacks caused by this dead zone A be developed.
本発明は、上記従来技術に鑑み、界磁巻線の絶
縁抵抗を監視する際の不感帯を実効的に除去し得
る絶縁抵抗監視方法を提供することを目的とす
る。 SUMMARY OF THE INVENTION In view of the above-mentioned prior art, an object of the present invention is to provide an insulation resistance monitoring method that can effectively eliminate a dead zone when monitoring the insulation resistance of a field winding.
<課題を解決するための手段>
上記目的を達成する本発明の構成は、回転電機
の界磁巻線のプラス側端子と接地端子との間及び
前記界磁巻線のマイナス側端子と前記接地端子と
の間に夫々既値の第1外部抵抗及び第2外部抵抗
を接続し、この第1外部抵抗及び第2外部抵抗の
夫々の両端の電圧を測定し、このようにして測定
した両電圧の比が界磁巻線の絶縁抵抗に応じて変
化することを利用して前記界磁巻線の絶縁抵抗を
監視する絶縁抵抗監視方法において、前記第1外
部抵抗の抵抗値と第2外部抵抗の抵抗値との比を
一定時間毎に変化させるようにしたことを特徴と
する。<Means for Solving the Problems> The configuration of the present invention that achieves the above-mentioned object is such that there is a connection between the positive side terminal of the field winding of the rotating electric machine and the ground terminal, and between the negative side terminal of the field winding and the ground terminal. Connect a first external resistor and a second external resistor with the respective predetermined values between the terminals, measure the voltage across each of the first external resistor and the second external resistor, and calculate the voltages measured in this way. In the insulation resistance monitoring method of monitoring the insulation resistance of the field winding by utilizing that the ratio of the resistance value of the first external resistance and the second external resistance changes depending on the insulation resistance of the field winding It is characterized in that the ratio between the resistance value and the resistance value is changed at regular intervals.
<実施例>
以下本発明の実施例を図面に基づき詳細に説明
する。なお従来技術と同一部分には同一番号を付
して重複する説明は省略する。<Examples> Examples of the present invention will be described in detail below based on the drawings. Note that parts that are the same as those in the prior art are given the same numbers and redundant explanations will be omitted.
第3図aに示すように、第1外部抵抗RAの中
間タツプ5と接地端子2との間にはリレーRyを
介在せしめてあり、このリレーRyの接点6が閉
成されたとき前記中間タツプ5と接地端子2との
間が短絡されるようになつている。したがつてこ
のときには第1外部抵抗RAの低抗値と第2外部
抵抗RBの抵抗値との比は1:2、即ち2RA=RBと
なる。このとき前記リレーRyの励磁コイルMは
発振器7が送出するパルス信号により一定時間毎
に付勢・消勢が繰り返され前記接点6の閉成・開
放を繰り返す。したがつて第1外部抵抗RAの抵
抗値と第2外部抵抗RBの抵抗値は周期的にRA=B
若しくは2RA=RBとなつてこの関係が交互に繰り
返される。したがつてRA=RBのときの界磁巻線
1の各部の絶縁抵抗RZをα=VB/VAで示す特性
は第2図と同様であるが、2RA=RBのときのそれ
は第4図に示すようになる。同図を参照すれば
2RA=RBのときにはβ=lX/lT=0.667の点で当該
絶縁抵抗監視装置が平衡しこの近傍が不感帯Bと
なることが理解される。これは、第3図bに界磁
巻線1を抽出して示すように、前者の場合には中
央部にあつた不感帯Aが後者の場合には重畳する
ことなく図中の下方にシフトされた不感帯Bとな
ることを意味している。 As shown in Figure 3a, a relay Ry is interposed between the intermediate tap 5 of the first external resistor R A and the ground terminal 2, and when the contact 6 of this relay Ry is closed, The intermediate tap 5 and the ground terminal 2 are short-circuited. Therefore, in this case, the ratio of the low resistance value of the first external resistor RA to the resistance value of the second external resistor RB is 1:2, that is, 2RA = RB . At this time, the excitation coil M of the relay Ry is repeatedly energized and deenergized at regular intervals by the pulse signal sent by the oscillator 7, and the contact 6 is repeatedly closed and opened. Therefore, the resistance value of the first external resistor R A and the resistance value of the second external resistor R B periodically become R A = B
Alternatively, 2R A = R B and this relationship is repeated alternately. Therefore, the characteristic where the insulation resistance R Z of each part of the field winding 1 when R A = R B is expressed as α = V B /V A is the same as shown in Fig. 2, but when 2R A = R B At that time, it becomes as shown in Fig. 4. If you refer to the same figure
It is understood that when 2R A =R B , the insulation resistance monitoring device is balanced at the point β=l X /l T =0.667, and the area near this point becomes a dead zone B. This is because, as shown in Figure 3b, which extracts the field winding 1, the dead zone A located at the center in the former case is shifted downward in the figure without overlapping in the latter case. This means that there is a dead zone B.
したがつて最初の測定でβ値がいかなる値にな
つても第2図及び第4図に示すグラフの少なくと
も一方に基づけばα値を監視することにより絶縁
抵抗を監視することができる。 Therefore, no matter what value the β value is in the first measurement, the insulation resistance can be monitored by monitoring the α value based on at least one of the graphs shown in FIGS. 2 and 4.
即ち、界磁巻線の絶縁抵抗は、界磁巻線の絶縁
層の絶縁抵抗値が最も小さい部分の状態に依存す
る。そこで本実施例では、最初に界磁巻線の絶縁
抵抗値をメガー等により計測し、同時に電圧VA,
VBを測定することによりそのときのα値を求め、
これら絶縁抵抗値とα値により第2図のグラフを
用いてβ値を求めることにより最も絶縁が弱い部
位が判明する。即ち、前述の如き計測の結果界磁
巻線の絶縁抵抗値が10MΩ、α値が1.06と求まつ
たとすると、第2図のグラフによりβ=0.2であ
ることが分かる。そこで、以後はα値を監視する
ことによりβ=0.2の点の絶縁状態を監視する。 That is, the insulation resistance of the field winding depends on the state of the portion of the insulating layer of the field winding where the insulation resistance value is the smallest. Therefore, in this example, the insulation resistance value of the field winding is first measured using a megger, etc., and at the same time the voltage V A ,
Find the α value at that time by measuring V B ,
By determining the β value from the insulation resistance value and the α value using the graph in FIG. 2, the location where the insulation is weakest can be determined. That is, if the insulation resistance value of the field winding is determined to be 10 MΩ and the α value to be 1.06 as a result of the measurement as described above, it can be seen from the graph of FIG. 2 that β=0.2. Therefore, from now on, the insulation state at the point β=0.2 will be monitored by monitoring the α value.
一方、前述の如き態様で求めたβが第2図にお
ける不感帯である0.428≦β≦0.572の範囲にある
場合には、その範囲を不感帯としない第4図に基
づき特定のβ値を有する点のα値を監視する。 On the other hand, if β determined in the manner described above is within the range of 0.428≦β≦0.572, which is the dead zone in Figure 2, then the point with a specific β value based on Figure 4 does not include that range as the dead zone. Monitor alpha value.
ここで本発明の原理となる現象を定量的に考察
してみる。第5図には絶縁抵抗監視装置に対応す
る等価回路を示す。同図において、E=電源電
圧、ra=界磁巻線1のプラス側端子1aからこの
界磁巻線1のある点までの抵抗、rb=界磁巻線1
の前記ある点からマイナス端子1bまでの抵抗、
RZ=絶縁抵抗、RA=第1外部抵抗、RB=第2外
部抵抗である。ここで回路の電流を図に示すよう
に採れば次の関係式が成り立つ。 Here, let us quantitatively consider the phenomenon that is the principle of the present invention. FIG. 5 shows an equivalent circuit corresponding to the insulation resistance monitoring device. In the figure, E = power supply voltage, r a = resistance from the positive terminal 1a of field winding 1 to a certain point in field winding 1, r b = field winding 1
The resistance from the certain point to the negative terminal 1b,
R Z = insulation resistance, R A = first external resistance, and R B = second external resistance. If the current in the circuit is taken as shown in the figure, the following relational expression holds.
VA=I2RA …(2)
VB=I3RB …(3)
ここで(1)式よりI2,I3を求め(2)式及び(3)式に代
入してVAとVBとの比αを求めると、
α=VB/VA=
RB{ra・rb+rb・RA+(ra+rb)・RZ}/RA{ra・rb
+ra・RB+(ra+rb・RZ}…(4)
ここで
RA、RB≫ra、rb …(5)
RB=aRA …(6)
ra/ra+rb=β …(7)
(5)式〜(7)式の条件を(4)式に代入して整理する
と、
α=VB/VA=a(1−β)RA+RZ/β・RA+RZ …(8)
ここで(8)式にリレーRyが消勢されているとき
の条件、a=1を代入すると、a=1になる、即
ち不感帯Aの中心である平衡条件を満足するには
β=0.5とならなければならない。これは不感帯
Aの中心が界磁巻線1の中央であることを意味し
ている。また(8)式にリレーRyが付勢されている
ときの条件、a=2を代入すると、a=1にな
る、即ち不感帯Bの中心である平衡条件を満足す
るにはβ=0.667とならなければならない。これ
は不感帯Bの中心が界磁巻線1のプラス側端子1
aから2/3の点であることを意味している。 V A = I 2 R A …(2) V B = I 3 R B …(3) Here, find I 2 and I 3 from equation (1), substitute them into equations (2) and (3), and calculate V Calculating the ratio α between A and V B , α=V B /V A = R B {r a・r b +r b・R A + ( ra + r b )・R Z }/R A {r a・r b
+r a・R B +(r a +r b・R Z }…(4) where R A , R B ≫ r a , r b …(5) R B = aR A …(6) r a / r a +r b = β …(7) Substituting the conditions of equations (5) to (7) into equation (4) and rearranging, α=V B /V A =a(1-β)R A +R Z / β・R A +R Z …(8) Here, if we substitute a=1, which is the condition when relay R y is de-energized, into equation (8), we get a=1, that is, the center of dead zone A. To satisfy the equilibrium condition, β must be 0.5. This means that the center of dead zone A is the center of field winding 1. Also, if relay R y is included in equation (8), Substituting a=2, which is the condition when the sensor is activated, becomes a=1, that is, in order to satisfy the equilibrium condition of the center of dead zone B, β=0.667.This is the center of dead zone B. is the positive terminal 1 of the field winding 1
This means that it is a point 2/3 from a.
<発明の効果>
以上実施例とともに具体的に説明したように、
本発明では、界磁巻線の絶縁抵抗を測定する際の
不感帯を一定時間毎にシフトしているので、実効
的にこの不感帯を除去でき界磁巻線のどの部分の
絶縁が劣化しても確実にこの劣化を検出し得る。<Effects of the Invention> As specifically explained above with the examples,
In the present invention, since the dead zone when measuring the insulation resistance of the field winding is shifted at regular intervals, this dead zone can be effectively removed, even if the insulation of any part of the field winding deteriorates. This deterioration can be reliably detected.
第1図は従来技術に係る絶縁抵抗監視装置を示
す回路図、第2図はそれにより検知するVB/VA
の界磁巻線の各部の絶縁抵抗に基づく特性図、第
3図aは本発明の実施例を実現する回路を示す回
路図、第3図bはその界磁巻線を抽出して不感帯
を説明するための説明図、第4図は前記実施例に
よりRB=2RAなる条件を満足せしめて検出する
VB/VAの界磁巻線の各部の絶縁抵抗に基づく特
性図、第5図は前記従来技術及び実施例に共通す
る等価回路を示す回路図である。
図面中、1は界磁巻線、1aはプラス側端子、
1bはマイナス側端子、2は接地端子、RAは第
1外部抵抗、RBは第2外部抵抗である。
Fig. 1 is a circuit diagram showing a conventional insulation resistance monitoring device, and Fig. 2 shows V B /V A detected by it.
Figure 3a is a circuit diagram showing a circuit realizing an embodiment of the present invention, and Figure 3b is a diagram showing the field winding and its dead zone. FIG. 4 is an explanatory diagram for explaining the detection by satisfying the condition R B = 2R A according to the above embodiment.
A characteristic diagram based on the insulation resistance of each part of the field winding of V B /V A , and FIG. 5 is a circuit diagram showing an equivalent circuit common to the prior art and the embodiment. In the drawing, 1 is the field winding, 1a is the positive terminal,
1b is a negative terminal, 2 is a ground terminal, R A is a first external resistor, and R B is a second external resistor.
Claims (1)
子との間及び前記界磁巻線のマイナス側端子と前
記接地端子との間に夫々既値の第1外部抵抗及び
第2外部抵抗を接続し、この第1外部抵抗及び第
2外部抵抗の夫々の両端の電圧を測定し、このよ
うにして測定した両電圧の比が界磁巻線の絶縁抵
抗に応じて変化することを利用して前記界磁巻線
の絶縁抵抗を監視する絶縁抵抗監視方法におい
て、前記第1外部抵抗の抵抗値と第2外部抵抗の
抵抗値との比を一定時間毎に変化させるようした
ことを特徴とする界磁巻線の絶縁抵抗監視方法。1. A first external resistance and a second external resistance of existing values are installed between the positive side terminal of the field winding and the ground terminal of the rotating electrical machine and between the negative side terminal of the field winding and the ground terminal, respectively. the first external resistor and the second external resistor, and utilize the fact that the ratio of the two voltages thus measured varies depending on the insulation resistance of the field winding. In the insulation resistance monitoring method for monitoring the insulation resistance of the field winding, the ratio between the resistance value of the first external resistor and the resistance value of the second external resistor is changed at regular intervals. A method for monitoring insulation resistance of field windings.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1980058200U JPS56159774U (en) | 1980-04-30 | 1980-04-30 | |
JP63140476A JPS64473A (en) | 1988-06-09 | 1988-06-09 | Method for monitoring insulation resistance of field winding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63140476A JPS64473A (en) | 1988-06-09 | 1988-06-09 | Method for monitoring insulation resistance of field winding |
Publications (3)
Publication Number | Publication Date |
---|---|
JPH01473A JPH01473A (en) | 1989-01-05 |
JPS64473A JPS64473A (en) | 1989-01-05 |
JPH0118388B2 true JPH0118388B2 (en) | 1989-04-05 |
Family
ID=15269494
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1980058200U Pending JPS56159774U (en) | 1980-04-30 | 1980-04-30 | |
JP63140476A Granted JPS64473A (en) | 1980-04-30 | 1988-06-09 | Method for monitoring insulation resistance of field winding |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1980058200U Pending JPS56159774U (en) | 1980-04-30 | 1980-04-30 |
Country Status (1)
Country | Link |
---|---|
JP (2) | JPS56159774U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2508587C1 (en) * | 2012-07-31 | 2014-02-27 | Общество с ограниченной ответственностью "Исследовательский центр "Бреслер" | Protection method of synchronous generators against fault to ground at one point of excitation circuit |
-
1980
- 1980-04-30 JP JP1980058200U patent/JPS56159774U/ja active Pending
-
1988
- 1988-06-09 JP JP63140476A patent/JPS64473A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS64473A (en) | 1989-01-05 |
JPS56159774U (en) | 1981-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2055477A (en) | Electrostatic type fuel measuring device | |
CN101268339A (en) | Method for operating an electromagnetic flowmeter and electromagnetic flowmeter | |
CN113108734B (en) | Two-wire vibrating wire sensor with temperature detection function and working method thereof | |
US3636444A (en) | Apparatus for measuring small changes in condition-sensitive capacitance transducers | |
US5033300A (en) | Device for measuring displacement | |
CA2373434C (en) | Abnormality diagnosis method and apparatus for separable transformer | |
JPH0118388B2 (en) | ||
JP3679708B2 (en) | Measuring medium flow measurement device | |
US12055443B2 (en) | RTD degradation detection | |
JPH11231008A (en) | Capacitor life diagnostic device and apparatus with built-in capacitor | |
JPH02129881A (en) | Monitoring system for deterioration of zinc oxide type arrester | |
DE3006669A1 (en) | Thermoelement temp. sensing measurement circuit - compensates thermo-element variations from measurement of resistance as well as thermo-voltage | |
JP2597028B2 (en) | Oil leak detection method and detector | |
JPS6346372B2 (en) | ||
JPS6131429B2 (en) | ||
JPH01473A (en) | Method for monitoring insulation resistance of field windings | |
JPH0769381B2 (en) | Cable partial discharge test method | |
JPH03160354A (en) | Method of monitoring corrosion of tank bottom plate | |
JPS593319A (en) | Liquid level detector | |
JPS5928370Y2 (en) | Gears press lightning arrester deterioration detection device | |
JPH0535296Y2 (en) | ||
JPH0125331Y2 (en) | ||
JPH0799362B2 (en) | Sensor connection judgment circuit in potentiostatic electrolysis gas measuring device | |
JPH06113442A (en) | Ground fault detection circuit for DC power supply circuit | |
JPS59102151A (en) | Denaturation detector for oil |