[go: up one dir, main page]

JPH01183863A - Laminated thermoelectric element - Google Patents

Laminated thermoelectric element

Info

Publication number
JPH01183863A
JPH01183863A JP63008983A JP898388A JPH01183863A JP H01183863 A JPH01183863 A JP H01183863A JP 63008983 A JP63008983 A JP 63008983A JP 898388 A JP898388 A JP 898388A JP H01183863 A JPH01183863 A JP H01183863A
Authority
JP
Japan
Prior art keywords
type semiconductor
semiconductor ceramic
green sheets
laminated
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63008983A
Other languages
Japanese (ja)
Inventor
Yutaka Shimabara
豊 島原
Yasunobu Yoneda
康信 米田
Akira Kumada
明 久万田
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP63008983A priority Critical patent/JPH01183863A/en
Publication of JPH01183863A publication Critical patent/JPH01183863A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To make it possible to use a semiconductor ceramic material, whose sintering has been hard as a thin plate, by baking layers in the state of semiconductor ceramic green sheets with ceramic insulator green sheets as a unitary body. CONSTITUTION:N-type ceramic insulator green sheets 4a-4f area provided in the region other than electrode forming parts 3a-3d between P-type semiconductor ceramic green sheets 1a-1c and N-type semiconductor ceramic green sheets 2a and 2b. The sheets are baked as a unitary body. Since the P-type semiconductor layers, the N-type semiconductor layers and the insulator layers are all laminated in the green sheet states, they are not broken down or cracked when they are laminated and compressed. Thus, each layer can be made thin.

Description

【発明の詳細な説明】 (al産業上の利用分野 この発明は、複数のp型半導体セラミック層とn型半導
体セラミック層とを交互に積層してなる積層熱電素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Al Industrial Field of Application) The present invention relates to a laminated thermoelectric element formed by alternately laminating a plurality of p-type semiconductor ceramic layers and n-type semiconductor ceramic layers.

(bl従来の技術 従来、熱電材料として、Bi、Te、、FeSi、5i
−Geなどが知られている。また、これらの材料を用い
て熱電素子を構成する際、その熱起電力を高めるために
積層構造をとっている。
(bl Conventional technology) Conventionally, as thermoelectric materials, Bi, Te, , FeSi, 5i
-Ge, etc. are known. Furthermore, when constructing a thermoelectric element using these materials, a laminated structure is used to increase the thermoelectromotive force.

Ic)発明が解決しようとする問題点 ところで、熱電素子の性能指数をZとすれば次の関係で
表される。
Ic) Problems to be Solved by the Invention By the way, if the figure of merit of the thermoelectric element is Z, it is expressed by the following relationship.

Z=α2/にρ ここでαはゼーベック係数、Kは熱伝導率、ρは比抵抗
である。
Z=α2/ρ where α is the Seebeck coefficient, K is the thermal conductivity, and ρ is the specific resistance.

前記従来の熱電素子に用いられている熱電材料はρが小
さいため例えばペルチェ効果を利用した電子冷却素子ま
たは電子加熱素子などの電力用途には優れている。しか
しながら熱センサとして用いる場合、その起電圧を利用
するため、ゼーベック係数αの大きな熱電材料を用いて
高感度化をはかることが重要である。
Since the thermoelectric materials used in the conventional thermoelectric elements have a small ρ, they are excellent for power applications such as electronic cooling elements or electronic heating elements that utilize the Peltier effect. However, when used as a thermal sensor, it is important to use a thermoelectric material with a large Seebeck coefficient α to increase sensitivity in order to utilize the electromotive force.

上記従来の熱電材料のゼーベック係数αは200〜60
0μV/に程度でしかない。半導体セラミック材料の一
部には前記熱電材料よりも大きなゼーベック係数を有す
るものもあるが、従来有効に利用された例はない。その
理由は、薄板の焼結体の製造が困難であること、またた
とえば複数のセラミック焼結板同士を貼り合わせる際、
工程上で破壊されるなどの問題があるためである。
The Seebeck coefficient α of the above conventional thermoelectric material is 200 to 60.
It is only about 0 μV/. Although some semiconductor ceramic materials have a larger Seebeck coefficient than the thermoelectric materials, there have been no examples of such materials being effectively utilized. The reason for this is that it is difficult to manufacture thin sintered bodies, and for example, when bonding multiple ceramic sintered plates together,
This is because there are problems such as destruction during the process.

この発明の目的は熱電材料として半導体セラミックを用
い、しかも多層化を容易にして、例えば高感度な熱セン
サを構成できるようにした積層熱電素子を提供すること
にある。
An object of the present invention is to provide a laminated thermoelectric element that uses semiconductor ceramic as a thermoelectric material and that can be easily multilayered to construct, for example, a highly sensitive thermal sensor.

+d1問題点を解決するための手段 この発明の積層熱電素子は、複数のn型半導体セラミッ
ク層とn型半導体セラミック層とが交互に積層された積
層熱電素子において、 n型半導体セラミックグリーンシートとn型半導体セラ
ミックグリーンシート間に、電極形成部を除く領域に絶
縁体セラミックグリーンシートが介在され、一体焼成さ
れたことを特徴としている(81作用 この発明の積層熱電素子においては、n型半導体セラミ
ックグリーンシートとn型半導体セラミックグリーンシ
ート間に、電極形成部を除く領域すなわち両手導体セラ
ミック層間を絶縁する領域に絶縁体セラミックグリーン
シートが介在されて一体焼成されている。したがってn
型半導体セラミック層とn型半導体セラミック層は絶縁
体セラミック層を介して一体化されている。ここでp型
半導体層とn型半導体層および絶縁体層はいずれもグリ
ーンシートの状態で積層されたものであるため、積層加
圧時に破壊されたり、クランクが入ることはない。この
ため、各層は薄層化が可能となる。
+d1 Means for Solving the Problem The laminated thermoelectric element of the present invention is a laminated thermoelectric element in which a plurality of n-type semiconductor ceramic layers and n-type semiconductor ceramic layers are alternately laminated. It is characterized in that an insulating ceramic green sheet is interposed between the n-type semiconductor ceramic green sheets in the area excluding the electrode forming portion, and is integrally fired (81). An insulating ceramic green sheet is interposed between the sheet and the n-type semiconductor ceramic green sheet in a region excluding the electrode forming portion, that is, a region insulating between the two-handed conductor ceramic layers.Therefore, the n-type semiconductor ceramic green sheet is integrally fired.
The type semiconductor ceramic layer and the n-type semiconductor ceramic layer are integrated through an insulating ceramic layer. Here, since the p-type semiconductor layer, the n-type semiconductor layer, and the insulator layer are all laminated in the form of green sheets, they will not be destroyed or cranked during stacking and pressurization. Therefore, each layer can be made thinner.

p型半導体セラミックとしては、Nip、MnO,co
o、FeO中から一種以上主体としてLi2Qをドープ
して半導体化した材料を用いることができる。また、n
型半導体セラミックとしてはBaTi0.またはBaT
iO3に5rTi03 、Ca T t O31P b
 T iO3一種以上を固溶させた材料に希土類または
Nbz Os 、 Ta20、をドープして半導体化し
た材料を用いることができる。なお、上記p型半導体セ
ラミックとn型半導体セラミックは空気中で焼成しても
半導体化が可能である。
As p-type semiconductor ceramics, Nip, MnO, co
o, a material made into a semiconductor by doping one or more types of FeO mainly with Li2Q can be used. Also, n
As the type semiconductor ceramic, BaTi0. or BaT
iO3 to 5rTi03, Ca T t O31P b
A material obtained by doping a rare earth element, NbzOs, or Ta20 into a material in which one or more types of TiO3 are dissolved in solid solution to make it a semiconductor can be used. Note that the p-type semiconductor ceramic and the n-type semiconductor ceramic described above can be converted into semiconductors by firing in air.

一体焼成で問題となるのは絶縁層の材料をどうするかで
ある。絶縁層はp型半導体層とn型半導体層に対してあ
まり相互拡散せず、かつ接合性の高い材料が必要となる
。そこで絶縁体セラミックとしては、ZrO2Ti0z
  AO(A:Ni、 Mn、 Co、 Fe)−A1
203−Yz Ox系を用いることができる。ここでZ
r0gは反応性を抑えるため、Alz 03 、Y20
3は焼結温度を下げるための添加剤である。電極材料と
しては、Pt、Pd、Ag−Pdを用いることができる
(f)実施例 p型半導体セラミックとして、Ni099.5mo1%
にLi、OをQ、5mo1%ドープした材料を用い、n
型半導体セラミックとしてBaTi0:+  80.0
mo1%にCaTi0=を19゜5mo 1%固溶させ
た材料にY2O3を0.5m01%ドープした材料を用
いた。また、絶縁体セラミックとして、 Zr0t 1
5moJ% 。
The problem with integral firing is what material to use for the insulating layer. The insulating layer needs to be made of a material that does not significantly interdifuse with the p-type semiconductor layer and the n-type semiconductor layer and has high bonding properties. Therefore, as an insulating ceramic, ZrO2Ti0z
AO(A:Ni, Mn, Co, Fe)-A1
203-Yz Ox system can be used. Here Z
r0g suppresses reactivity, so Alz 03 , Y20
3 is an additive for lowering the sintering temperature. As the electrode material, Pt, Pd, and Ag-Pd can be used. (f) Example As the p-type semiconductor ceramic, Ni099.5mo1%
Using a material doped with Li and O at 5 mo1%, n
BaTi0: +80.0 as type semiconductor ceramic
A material obtained by doping 0.5m01% of Y2O3 into a material in which 19°5mo1% of CaTi0= was dissolved in mo1% was used. In addition, as an insulating ceramic, Zr0t 1
5moJ%.

Tie□ 30mo1%、Ni0N103O% 。Tie□ 30mo1%, Ni0N103O%.

Al2O325moJ%からなる材料を用い、それぞれ
バインダを添加してドクターブレード法によってグリー
ンシートを成形した。
Using materials consisting of 25 moJ% of Al2O3, a binder was added to each material, and a green sheet was formed by a doctor blade method.

第1図はn型半導体セラミックグリーンシートとn型半
導体セラミックグリーンシートおよび絶縁体セラミック
グリーンシートの積層状態を示している。図においてl
a、lb、lcはそれぞれn型半導体セラミックグリー
ンシート、2a、2bはそれぞれn型半導体セラミック
グリーンシートである。これらの半導体セラミックグリ
ーンシートには予めAg : Pd=1 : 9からな
る導電ペースト3a、3b、3c、3dを印刷しておく
FIG. 1 shows a laminated state of an n-type semiconductor ceramic green sheet, an n-type semiconductor ceramic green sheet, and an insulator ceramic green sheet. In the figure l
a, lb, and lc are n-type semiconductor ceramic green sheets, and 2a and 2b are n-type semiconductor ceramic green sheets, respectively. Conductive pastes 3a, 3b, 3c, and 3d consisting of Ag:Pd=1:9 are printed on these semiconductor ceramic green sheets in advance.

これらの導電ペーストは各グリーンシートを積層して焼
成した後n型半導体セラミック層とn型半導体セラミッ
ク層の層間を一端部で電気的に接続する電極として作用
する。また、図において4a〜4fはそれぞれ絶縁体セ
ラミックグリーンシートであり、各半導体セラミックグ
リーンシート間においては前記導電ペーストの形成され
ている以外の領域に配置する。
After the green sheets are laminated and fired, these conductive pastes act as an electrode that electrically connects the n-type semiconductor ceramic layer and the n-type semiconductor ceramic layer at one end. Further, in the figure, 4a to 4f are insulating ceramic green sheets, which are arranged between the semiconductor ceramic green sheets in a region other than the area where the conductive paste is formed.

上記各グリーンシートを積層し加圧した後、N2−0□
または空気中で1300″Cで焼成した。
After laminating and pressurizing each of the above green sheets, N2-0□
Or fired at 1300''C in air.

焼成後、外側部の半導体セラミックの露出部に取出電極
を形成し、所定の寸法にスライスすることによって積層
熱電素子を得た。第2図は完成した積層熱電素子の断面
構造を示している。このようにn型半導体セラミック層
1a、lb、lcとn型半導体セラミック層2a、2b
の各層間を電極3a、3b、3c、3dによって電気的
に接続するとともに、各半導体セラミック層間および外
側部を絶縁体セラミック層4a、4b、4c、4d、4
e、4fによって電気的に絶縁した。なお、5aと5b
は取出電極を示している。
After firing, an extraction electrode was formed on the exposed portion of the semiconductor ceramic on the outside, and a laminated thermoelectric element was obtained by slicing into a predetermined size. FIG. 2 shows the cross-sectional structure of the completed laminated thermoelectric element. In this way, the n-type semiconductor ceramic layers 1a, lb, lc and the n-type semiconductor ceramic layers 2a, 2b
The layers are electrically connected by electrodes 3a, 3b, 3c, 3d, and the semiconductor ceramic layers and the outer part are connected by insulating ceramic layers 4a, 4b, 4c, 4d, 4.
e, electrically insulated by 4f. In addition, 5a and 5b
indicates the extraction electrode.

第1図と第2図では説明上n型半導体層を3層、n型半
導体層を2層とした例を示したが、p型n型それぞれ1
0層として10X2X1mにスライスした熱電素子のゼ
ーベック係数の温度特性を表に示す。
For explanation purposes, FIGS. 1 and 2 show an example in which there are three n-type semiconductor layers and two n-type semiconductor layers, but one p-type and one n-type semiconductor layer each.
The temperature characteristics of the Seebeck coefficient of the thermoelectric element sliced into 10 x 2 x 1 m slices as the zero layer are shown in the table.

表 表に示すように実施例におけるp型半導体セラミックは
温度に対するゼーベック係数の絶対値が負特性であり、
n型半導体セラミックは温度に対するゼーベック係数の
絶対値が正特性である。このため、両生導体セラミック
の積層体である熱電素子は正負キャンセルされた略平坦
な温度特性を備えている。
As shown in the table, the p-type semiconductor ceramic in the example has a negative absolute value of the Seebeck coefficient with respect to temperature,
The n-type semiconductor ceramic has a positive characteristic in terms of the absolute value of the Seebeck coefficient with respect to temperature. For this reason, the thermoelectric element, which is a laminate of amphibically conductive ceramics, has substantially flat temperature characteristics with positive and negative cancellation.

fg1発明の効果 以上のようにこの発明によれば、複数のn型半導体セラ
ミック層とn型半導体セラミック層とを交互に積層する
際、半導体セラミックグリーンシートの状態で絶縁体セ
ラミックグリーンシートとともに一体焼成されたもので
あるため、従来薄板焼結化しにくかったゼーベック係数
の大きな半導体セラミック材料を用いることができ、高
感度な熱センサを構成することができる。また、各層を
薄板化しても製造途中で破壊やクランクの発生がなくか
つ安価に量産できる。さらに、素子全体を小型化できる
ため、熱容量の小さな熱電素子を容易に得ることができ
る。
fg1 Effects of the Invention According to the present invention, when a plurality of n-type semiconductor ceramic layers and n-type semiconductor ceramic layers are alternately laminated, the semiconductor ceramic green sheets are integrally fired together with the insulator ceramic green sheets. Therefore, it is possible to use a semiconductor ceramic material with a large Seebeck coefficient, which has conventionally been difficult to sinter into a thin plate, and a highly sensitive thermal sensor can be constructed. Furthermore, even if each layer is made thinner, there will be no breakage or cranking during manufacturing, and mass production can be achieved at low cost. Furthermore, since the entire device can be miniaturized, a thermoelectric device with a small heat capacity can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例である積層熱電素子の積層前
の状態を表す斜視図、第2図は完成された積層熱電素子
の断面図である。 la、lb、lc  p型半導体セラミックグリーンシ
ートおよびその焼結体、 2a、2b−n型半導体セラミックおよびその焼結体、 3a、3b、3c、3d−導電ペーストおよびその焼付
による電極、 4a、  4b、  4c、  4d、  4e、  
4f −絶縁体セラミックグリーンシートおよびその焼
結体、 5a、5b−取出電極。
FIG. 1 is a perspective view showing a state before lamination of a laminated thermoelectric element according to an embodiment of the present invention, and FIG. 2 is a sectional view of the completed laminated thermoelectric element. la, lb, lc p-type semiconductor ceramic green sheet and its sintered body, 2a, 2b-n-type semiconductor ceramic and its sintered body, 3a, 3b, 3c, 3d-conductive paste and electrode by baking it, 4a, 4b , 4c, 4d, 4e,
4f - Insulator ceramic green sheet and its sintered body, 5a, 5b - Extraction electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)複数のp型半導体セラミック層とn型半導体セラ
ミック層とが交互に積層された積層熱電素子において、 p型半導体セラミックグリーンシートとn型半導体セラ
ミックグリーンシート間に、電極形成部を除く領域に絶
縁体セラミックグリーンシートが介在され、一体焼成さ
れてなる積層熱電素子。
(1) In a laminated thermoelectric element in which a plurality of p-type semiconductor ceramic layers and n-type semiconductor ceramic layers are alternately laminated, there is a region between the p-type semiconductor ceramic green sheet and the n-type semiconductor ceramic green sheet, excluding the electrode forming part. A laminated thermoelectric element is made by interposing an insulating ceramic green sheet and integrally firing it.
JP63008983A 1988-01-18 1988-01-18 Laminated thermoelectric element Pending JPH01183863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63008983A JPH01183863A (en) 1988-01-18 1988-01-18 Laminated thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63008983A JPH01183863A (en) 1988-01-18 1988-01-18 Laminated thermoelectric element

Publications (1)

Publication Number Publication Date
JPH01183863A true JPH01183863A (en) 1989-07-21

Family

ID=11707926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63008983A Pending JPH01183863A (en) 1988-01-18 1988-01-18 Laminated thermoelectric element

Country Status (1)

Country Link
JP (1) JPH01183863A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393541A (en) * 1989-09-07 1991-04-18 Murata Mfg Co Ltd Composite ceramic green sheet composed of different kinds of materials and preparation thereof
JP2008277555A (en) * 2007-04-27 2008-11-13 Tdk Corp Thermoelectric element, manufacturing method thereof, and thermoelectric conversion module
JP2008300730A (en) * 2007-06-01 2008-12-11 Tdk Corp Thermoelectric element manufacturing method and thermoelectric element
JP2009246296A (en) * 2008-03-31 2009-10-22 Tdk Corp Thermoelectric module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393541A (en) * 1989-09-07 1991-04-18 Murata Mfg Co Ltd Composite ceramic green sheet composed of different kinds of materials and preparation thereof
JP2008277555A (en) * 2007-04-27 2008-11-13 Tdk Corp Thermoelectric element, manufacturing method thereof, and thermoelectric conversion module
JP2008300730A (en) * 2007-06-01 2008-12-11 Tdk Corp Thermoelectric element manufacturing method and thermoelectric element
JP2009246296A (en) * 2008-03-31 2009-10-22 Tdk Corp Thermoelectric module

Similar Documents

Publication Publication Date Title
JP4983920B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
US8940571B2 (en) Thermoelectric conversion element
KR102609146B1 (en) Dielectric powder and multilayered ceramic electronic components using the same
WO2010103977A1 (en) Thermoelectric conversion module
JP4668233B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion module
JP5098589B2 (en) Thermoelectric conversion module
US6362723B1 (en) Chip thermistors
JP5007748B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JPH04253382A (en) electrostrictive effect element
US10910542B2 (en) Laminated thermoelectric conversion element
JP2005504438A (en) Electrical multilayer element
JPH01183863A (en) Laminated thermoelectric element
JPH04199755A (en) Laminated thermoelectric element
JPH01262678A (en) Laminated thermoelectric element and manufacture thereof
TW200921727A (en) Electrical multi-layer-component
JPH02178958A (en) Electronic cooling element and manufacture thereof
JPH01183862A (en) Laminated thermoelectric element and manufacture thereof
JP3058305B2 (en) Thermistor and manufacturing method thereof
JPH01194479A (en) Laminated thermoelectric element and manufacture thereof
JP4474517B2 (en) Manufacturing method of oxide thermoelectric generator
JPS6376386A (en) Manufacturing method of thermoelectric element for electronic wristwatch
JP5056544B2 (en) Thermoelectric module
JPH02214173A (en) Manufacture of laminated thermoelectric element
JP6791350B2 (en) Composite oxide
JP6904847B2 (en) Laminated pyroelectric element